
Appears in Proceedings of ACM SIGMETRICS/Performance 2006
June 26-30, 2006, Saint Malo, France

Applying Architectural Vulnerability Analysis to Hard
Faults in the Microprocessor

Fred A. Bower
IBM, Duke University Department of

Computer Science
3039 Cornwallis Rd., B205/F4N

Research Triangle Park, NC 27709 USA

bowerf@us.ibm.com

Derek Hower, Mahmut Yilmaz, Daniel J. Sorin, Sule Ozev
Duke University Department of Electrical and Computer Engineering

Box 90291
Durham, NC 27708 USA

{drh5, my, sorin, sule}@ee.duke.edu

ABSTRACT
In this paper, we present a new metric, Hard-Fault Architectural
Vulnerability Factor (H-AVF), to allow designers to more
effectively compare alternate hard-fault tolerance schemes. In
order to provide intuition on the use of H-AVF as a metric, we
evaluate fault-tolerant level-1 data cache and register file
implementations using error correcting codes and a fault-
tolerant adder using triple-modular redundancy (TMR). For
each of the designs, we compute its H-AVF. We then use these
H-AVF values in conjunction with other properties of the
design, such as die area and power consumption, to provide
composite metrics. The derived metrics provide simple,
quantitative measures of the cost-effectiveness of the evaluated
designs.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault Tolerance

C.1.0 [Processor Architectures]: General

General Terms
Design, Measurement, Reliability

Keywords
Computer Architecture, Hard-Fault Tolerance, Reliability

1. INTRODUCTION
Microarchitects seeking to implement low-cost hard-fault
tolerance are currently stymied by the lack of a simple,
quantitative measure with which to analyze their designs.
Having such a tool would help microarchitects in understanding
where a design is in need of additional hardening. Further, this
metric would allow comparison of competing hard-fault tolerant
designs.

Both mean time to failure (MTTF) and failures in time (FIT) are
used as metrics of component reliability, but both obscure
important effects from the fault-tolerance microarchitect. First,
these metrics do not consider the inputs to the component, and

fault masking is a function of the inputs. Second, these metrics
do not consider the utilization of the component.

For analyzing a processor’s vulnerability to soft faults, previous
work has introduced the widely-embraced architectural
vulnerability factor (AVF) metric [2]. AVF is an insightful
measure of the vulnerability of a storage structure (e.g., reorder
buffer, reservation station, etc.) to soft faults. In the equation for
AVF, the occupancy of the structure is divided into bits that
affect architecturally correct execution (ACE) and the total of
all bits. The metric reflects the fraction of time a storage cell is
occupied by an ACE bit. Unfortunately, AVF does not apply to
hard faults or to combinational logic.

2. A METRIC FOR HARD-FAULT
TOLERANCE
Intuitively, H-AVF for a structure is directly proportional to the
probability that a fault in that structure—for all possible fault
sites and fault models—causes an instruction to commit
erroneous state. For a given software benchmark, the H-AVF of
a structure is computed as shown below.

∑∑
∀∀

=−
insts

error
elsfault

insts
faultsitesinsts

AVFH
mod

11

In the equation, we compute the absolute number of instructions
that would commit erroneous architectural state for a given
instruction’s set of inputs (instserror). This sum is then divided by
the absolute number of fault sites for the structure under
evaluation (a constant for the structure). Results are averaged
over all instructions to provide accurate accounting of masking
effects for a given workload. This process is repeated for each
of the fault models that are considered. The most common fault
models are single-bit-stuck-at-0 and single-bitstuck-at-1. Other
fault models exist, however, and may be appropriate for a
particular analysis. H-AVF supports the application of multiple
fault models, if appropriate. Lower H-AVF values indicate that
a given design is less vulnerable. As intuition would suggest, a
design with fewer possible fault models, each with an equal
effect on architectural correctness, will have a lower H-AVF
than a design that is subject to more fault models.

Fault densities are generally considered to be constant for a
given process technology. Thus, without area normalization, it
is possible for raw H-AVF numbers to provide misleading
conclusions. By normalizing the H-AVF to H-AVF per
transistor, we can compare designs with equivalent

Copyright is held by the author/owner(s).
SIGMETRICS/Performance’06, June 26–30, 2006, Saint Malo, France.
ACM 1-59593-330-4/06/0006.

functionality, but wildly differing implementations.
Additionally, H-AVF can be composed with cost metrics such
as area and power consumption. These normalized, composed
metrics provide the microarchitect with the ability to balance
hard-fault tolerance and cost requirements in a design space.

3. USING H-AVF TO EVALUATE
PROCESSOR SUB-STRUCTURES
Now that we have developed H-AVF as a metric, we will
analyze two representative storage structures and one
combinational logic structure found in the modern
microprocessor, the register file, the L1 data cache, and the 64-
bit integer adder. We selected these because they are
representative structures within the microprocessor and well-
known protection mechanisms exist for all three. Error
correcting codes (ECC) are used for the two storage structures
and triple-modular redundancy (TMR) is used for the adder.

3.1 Structure Details
In the microprocessor, the register file is a storage array that
stores the inputs and outputs of instructions. It is a small, fast
structure whose correct operation is critical to the correctness of
the processor. For purposes of this study, we model a register
file with 126 64-bit entries.

Cache memories are commonly used in microprocessors to hide
the main memory access latency and, thus, increase
performance. The level of a cache indicates how close it is to
the processor, with the closest cache having the smallest level.
The L1 data cache is the first cache that the processor accesses
when a memory value is needed. For the experiments we run,
we model after the Pentium 4, using a 16KB L1 data cache,
consisting of 256 64-byte blocks.

The 64-bit integer adder is at the heart of the modern
microprocessor. It is used for integer arithmetic operations as
well as common activities like calculating memory addresses.

3.2 Determining H-AVF
It is an intractable problem with current compute resources to
evaluate all 64-bit inputs to a structure. Even if we could
perform such an evaluation, we would not want to assume equal
weighting for each input, as certain inputs are much more likely
than others, and should thus weight our H-AVF measurement
commensurate with their impact for an actual workload.

Thus we use the SPECCPU 2000 benchmark suite to provide
inputs for all of our experiments. For the data cache and register
file, we simulated the first 10 million instructions from each
benchmark, using the sim-cache simulator from the
SimpleScalar simulation environment [1]. For the adder, we
used SimPoint [3] sampling of 100 million instructions per
benchmark simulated with a modified version of the sim-mase
simulator [1].

The results in Table 1 are averaged over the entire benchmark
suite. To account for the area overhead of the protected
implementations, we normalized results by scaling by the ratio
of transistors in the protected implementation to the base
implementation. For the register file, this factor was ~1.15. For
the L1 data cache, this factor was ~1.10. For the TMR adder,

this factor was ~3.31. The small magnitudes of the results are

due to the large size of the structures with respect to the values
we are storing and, in the case of the cache, the low cache miss
rates that the benchmark code exhibits.

For all structures, the fault-tolerance increases are significant.
The ECC-protected register file is ~8.4 times more hard-fault
tolerant than its unprotected counterpart. The ECC-protected L1
data cache is ~5.8 times more hard-fault tolerant than its
unprotected counterpart. Finally, the TMR-protected adder is
~2.8 times more hard-fault tolerant.

4. CONCLUSIONS
With the development of H-AVF, we have provided a general-
purpose metric for the microarchitect. It can be used first to
evaluate whether a particular sub-structure in the
microprocessor will benefit from hardening. It can then be used,
either by itself or composed with other design metrics, to
compare hard-fault tolerant designs to provide a quantitative
basis for comparison of competing designs.

5. ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation under grants CCF-0444516 and CCR-0309164, the
National Aeronautics and Space Administration under grant
NNG04GQ06G, Intel Corporation, and a Warren Faculty
Scholarship. We thank Alvin Lebeck for his insightful
comments on this work.

6. REFERENCES
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An

Infrastructure for Computer System Modeling. IEEE
Computer, 35(2):59–67, Feb. 2002.

[2] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on
Microarchitecture, Dec. 2003.

[3] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In Proceedings of the Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

Table 1. Average H-AVF Results for Unprotected and
ECC-Protected Register File and L1 Data Cache and

Unprotected and TMR-Protected 64-Bit Integer Adder

Structure Base
H-AVF

Protected
H-AVF

Normalized
Protected
H-AVF

Register File 0.08388 0.00871 0.00958

L1 Data Cache 0.00486 0.00076 0.00084

64-Bit Adder 0.1488 0.0161 0.0533

