
Robot Motion Planning on a Chip
Sean Murray, Will Floyd-Jones∗, Ying Qi∗, Daniel Sorin and George Konidaris

Duke Robotics
Departments of Computer Science and Electrical & Computer Engineering

Duke University, Durham NC 27708

Appearing in Robotics: Science and Systems 2016

Abstract—We describe a process that constructs robot-specific
circuitry for motion planning, capable of generating motion plans
approximately three orders of magnitude faster than existing
methods. Our method is based on building collision detection
circuits for a probabilistic roadmap. Collision detection for the
roadmap edges is completely parallelized, so that the time to
determine which edges are in collision is independent of the
number of edges. We demonstrate planning using a 6-degree-
of-freedom robot arm in less than 1 millisecond.

I. INTRODUCTION

Recent advances in robotics have the potential to dramati-
cally change the way we live. Robots are being developed for a
wide spectrum of real-world applications including health care,
personal assistance, general-purpose manufacturing, search-
and-rescue, and military operations. Unlike traditional robotics
applications in which a robot operates in a tightly controlled
environment (e.g., on an assembly line where the environment
is static and known a priori), these applications require the
robot to adapt to its environment at runtime, which means
that it must perform motion planning [15].

Motion planning is the problem of determining how a
robot should move to achieve a goal; for example, a robot
may wish to move its arm to reach a desired object without
colliding with itself or any other object. It is a heavily stud-
ied algorithmic problem with several well-known solutions.
Unfortunately, existing motion planning algorithms running
on current hardware are generally too slow to plan in real-
time for complex robots and environments. The fastest existing
implementations run on graphics processing units (GPUs)
[3, 17, 23, 24, 25, 26], requiring hundreds of milliseconds
to run and consuming substantial power, which might be
infeasible for untethered robots or large-scale factory settings.
The ability to perform motion planning is critical to dealing
with natural environments that are not carefully controlled or
designed, and our inability to generate plans in real-time is
a major obstacle preventing the widespread deployment of
robots in the workplace and the home.

We propose the use of specialized hardware for robot
motion planning—specifically, we describe a process that
generates robot-specific circuitry that exploits a combination
of aggressive precomputation and massive parallelism to gen-
erate motion plans for real robots approximately three orders
of magnitude faster than existing GPU implementations. We

∗Equal contribution.
†A video showing the Jaco arm and our chip in action can be seen at:

https://youtu.be/u4snHh S Ao

implement our circuits on a field-programmable gate array
(FPGA), which is able to find plans for the Jaco-2 6-degree-
of-freedom arm in less than 1 millisecond†.

II. BACKGROUND

We can describe the pose of an articulated robot—one
consisting of a set of rigid bodies connected by joints—
by assigning positions to all of its joints. The space of all
such joint positions is called the robot’s configuration space
(often called C-space) [19], denoted Q. Some configurations
would result in a collision with an obstacle in the robot’s
environment, a description of which is assumed to be given
before planning commences, or the robot’s own body; the
remainder of Q is called free space. The robot motion-planning
problem consists of finding a path through free space from
some start configuration q0 to any configuration within a target
set G.

A common approach to solving motion planning problems
is to build a probabilistic roadmap [13], or PRM. A PRM
consists of a graph where each node is a point in free-
space, and a pair of points can be connected if a straight-line
movement between them is possible without a collision. This
is depicted in Figure 1. Given a (q0, G) pair, we can find a
motion plan by sampling nodes in free space, attempting to
find a collision-free connection from each node to its nearest
neighbors, and then eventually finding a path through the graph
from q0 to some node in G. If the nodes in the PRM are
sampled randomly from C-space, the PRM is probabilistically
complete—guaranteed to find a solution if one exists, with

a path in free space

q0

G

a PRM in free space

obstacle

obstacle

obstacle

obstacle

Fig. 1: The goal of motion planning is to find a path in free
space (left). A PRM is a graph consisting of points in free-
space, with edges connecting points when a direct movement
between them is collision-free (right).

1

https://youtu.be/u4snHh_S_Ao


po
si
tio

n 
1

p
os

it
io

n
 2

swept
volume

Fig. 2: A swept volume refers to the space covered by a
movement between two robot configurations (equivalently, two
points in C-space). The dominating computational expense
in sample-based motion planning algorithms is determining
whether a swept volume overlaps with an obstacle.

probability 1 in the limit of the number of samples.
In practice, the dominating computational expense in con-

structing a PRM is determining whether a straight-line path
between two points in configuration space (i.e., directly mov-
ing each joint from one position to another) collides with
an obstacle; one study [3] showed that collision detection
consumed 99% of the compute time of a sample-based motion
planner. There are techniques to shift the asymptotic bottle-
neck from collision detection to nearest-neighbor search by
memoizing certain information while collision checking and
amortizing the cost over a large number of nodes [4]. However,
the constants attached to these terms are such that the roadmap
must be extremely dense for the computational burden of
nearest neighbor search to approach that of collision detection.

Collision detection requires us to build a geometric model
of the swept volume of each robot movement—we illustrate
a volume swept by an example movement in Figure 2—and
to test this model against a geometric model of each obstacle.
The models are typically CAD-like mesh models, since robot
arms and real obstacles often have irregular or complex shapes.

The PRM is a multi-query algorithm: a great deal of
computational effort must be expended to construct the graph,
but it can then be reused to find plans for new (q0, G) pairs.
However, direct reuse is only possible if the obstacles are
unchanged. When the obstacles change, we must re-compute
the connectivity [18], which is quite expensive. There has been
work on re-planning algorithms that attempt to leverage spatial
knowledge to reduce the burden of dealing with environment
changes [2, 22], but these still involve significant computation.
Consequently, most planning algorithms are single query, and
are rerun from scratch for each (q0, G) pair (only including
edges on the shortest path from q0 to some other node,
resulting in a tree rather than a graph [16, 11]). However,
even these algorithms are insufficiently fast to perform real-
time planning on a commodity CPU for realistically complex
robot bodies and real environments.

Several research groups have sought to exploit the per-

formance of GPUs to improve the performance of collision
detection algorithms [3, 8, 14, 20, 23, 24, 25, 26], for both
motion planning and for use in graphics and simulations.
This technique uses the many-core architecture of GPUs to
exploit more parallelism from planning algorithms than a CPU
can extract. This area of research has demonstrated that with
some amount of algorithm tuning, collision detection can be
performed at substantially higher performance on GPUs than
on CPUs. Nevertheless, the performance and performance/watt
are still insufficient for real-time motion planning for complex
robots in real environments.

III. ROBOT MOTION PLANNING ON A CHIP

Our strategy broadly follows Leven and Hutchinson [18]:
we first build a single general-purpose PRM—in advance—
by assuming that the robot exists in an environment with no
obstacles. We then adapt the PRM to a particular problem
instance by removing the edges that collide with obstacles
of that instance. Finally, we create a motion plan by simply
finding a path through the resulting (smaller) PRM.

We use the following process, as depicted in Figure 3:

Once, At Design Time
1) Given a robot description, we produce a single PRM,

only checking for collisions with permanent features and
self-collisions. Since we will be reusing this PRM, it is
important that it has a high probability of containing a
plan for any particular scenario the robot may find itself
in. Therefore, we typically construct a very large PRM
and subsample it for coverage; we discuss this step in the
following section. (Figures 3a and b.)

2) Each edge in the PRM corresponds to a swept volume.
We discretize the 3D space around the robot into depth
pixels, and obtain a list of the depth pixels that are
in collision with each edge’s swept volume. Note that
the discretization need not be uniform—for example, we
might discretize more finely in areas close to the robot, or
where finer movements are likely to be required (Figure
3c).

3) We encode depth pixel coordinates in binary, and con-
struct a logical expression for each edge that returns
true if a given depth pixel is in the collision list for
that edge, and false if not. (Figure 3d.)

4) We construct and optimize a collision detection circuit
(CDC) for each edge using its logical expression. Each
CDC takes as input a binary description of a depth pixel
and outputs a single bit, indicating whether or not the
input depth pixel causes the edge to be in collision. Since
an edge is in collision if it collides with any depth pixel,
the results of all pixel collision evaluations are ORed
together, and the resulting collision bit is stored. Our
processor consists of the CDC circuitry for every edge.
(Figure 3e.)

At Runtime
5) When a robot wishes to solve a motion planning problem,

it resets the collision bits for each edge. It then senses

2



edge i

(a&!b&c&d&!e)
(!a&b&!c&d&!e)
(a&b&!c&d&e) 
 ...

||
||
||

a
b
c
d
e ...

a b dc e f

a
b
c
d
e

a
b
c
d
e

a
b
c
d
e

...

Fig. 3: Our process for producing robot-specific motion planning circuitry. Given a robot description (a), we construct a PRM
(b), most likely subsampled for coverage from a much larger PRM. We discretize the robot’s reachable space into depth pixels
and, for each edge i on the PRM, precompute all the depth pixels that collide with the corresponding swept volume (c). We
use these values to construct a logical expression that, given the coordinates of a depth pixel encoded in binary, returns true
if that depth pixel collides with edge i (d); this logical expression is optimized and used to build a collision detection circuit
(CDC) (e). For each edge in the PRM there is one such circuit. When the robot wishes to construct a motion plan, it perceives
its environment, determines which depth pixels correspond to obstacles, and transmits their binary representations to every
CDC (f). All CDCs perform collision detection simultaneously, in parallel for each depth pixel, storing a bit which indicates
that the edge is in collision and should be removed from the PRM.

the obstacles in the environment, converts them to depth
pixels, encodes them in binary, and sends them sequen-
tially to the processor. Empty entries in the occupancy
grid are not sent. Upon receiving a depth pixel as input,
all collision detection circuits run simultaneously, in
parallel, to determine whether or not their edge collides
with that particular depth pixel. After all of the depth
pixels have been streamed to the chip, the collision bits
stored for each edge indicate whether or not that edge is
in collision. The robot retrieves the collision bits from the
chip, eliminates the corresponding edges from the PRM,
and then finds the least-cost path from start to goal using
those that remain (Figure 3f.)

If no path is found to the goal configuration, then
either obstacles have bisected the precomputed roadmap
such that there is no collision-free path to the goal, or
edges necessary to reach the goal were never present in
the roadmap. In either case, the system can fall back on
a conventional software planning routine that maintains
probabilistic completeness. In this way, the common
case would be drastically accelerated, while retaining
the theoretical guarantees that make sampling algorithms
attractive.

Note that the first four steps, while computationally in-
tensive, need only happen once—after that, the specialized
circuitry executes in parallel at very high speeds (our FPGA is
clocked such that it takes less than 50 nanoseconds to resolve
all collisions for a given depth pixel). Our process therefore
performs one very expensive design-time computation that
eliminates computational dependence on the complexity of
the robot model—both its shape and degrees of freedom—and
compiles the results into a structure that enables extremely fast
run-time computation.

IV. SUBSAMPLING THE PRM

There are two major competing constraints on our design:
first, we must use a single PRM, constructed in advance;

second, we have only a finite amount of hardware at our
disposal to construct circuits. The second constraint is a hard
one, and usually takes the form of an edge budget: we can
fit n edges on our chip. Consequently, we would like to find
the n-edge PRM most likely to be able to solve future motion
planning problems.

We model this problem as a probabilistic one. In addition
to accepting a description of the robot, we also use a scenario
distribution: a distribution over problems (start state, end goal,
and obstacles). The robot is expected to have to solve problems
drawn from the scenario distribution, and the distribution itself
expresses the structure inherent in the problem. A scenario
distribution is often reasonably easy to describe for real-life
applications; for example, any fixed obstacles are present with
probability 1, and we expect the robot broadly to have goals
that are in front of it and in a certain height range, rather than
immediately behind its shoulder joint.

We must therefore optimize the PRM to maximize the prob-
ability of solving problems drawn from the scenario distribu-
tion. Approaches to compress PRMs exist (for example using
graph spanners [7, 29, 31]), but to the best of our knowledge
none are probabilistic in the sense that we require. Spanners
attempt to maintain coverage properties, whereas we can use
information about the expected probabilistic distribution of
goals and obstacles to sacrifice coverage in uninteresting areas,
while maintaining critical edges. We therefore adopt a simple
heuristic approach: we draw many problems from the scenario
distribution, build a very large initial PRM, and then prune it
according to edge usage frequency in the sampled problems.

V. PROCESSOR DESIGN

A. Overview

The processor consists of N collision detection circuits
(CDCs), each of which corresponds to one edge in the PRM.
The primary input to the processor is a stream of depth pixels,
which are fed in one at a time. Each pixel input is a k-bit
entity (our current implementation uses 15 bits per pixel), and

3



{x,y,z}

k-bit

CDC 1
reset

{x,y,z}

k-bit

1 bitlogic

CDC

CDC 2

CDC N

N
 co

llisio
n
 b

its

Fig. 4: The high level processor design features N collision
detection circuits, one for each edge. Each CDC contains edge
collision circuitry plus a single bit of memory which stores
whether or not any pixels have caused a collision since the
last processor reset.

this input is fanned out to all of the CDCs. The output of
the processor is an N -bit string (i.e., one bit per CDC), in
which each bit corresponds to whether that edge collides with
any of the depth pixels that have been streamed in since the
most recent reset of the processor. We illustrate this high-level
design in Figure 4. The processor also has secondary inputs
(e.g., processor reset) for control purposes.

As each depth pixel input arrives at the chip, all of the CDCs
operate simultaneously, in parallel, on that pixel. Thus, the
latency to perform collision detection is linear in the number
of depth pixels but independent of the number of edges in
the PRM. This independence on the size of the PRM is the
key advantage enabled by implementing the collision detection
functionality in hardware.

B. Constructing a Collision Detection Circuit

We now explain in detail how we construct a collision
detection circuit for a specific edge, using the running example
of a simple 2D robot in a workspace discretized to an 8 × 8
grid. Each depth pixel is represented by a pair of 3-bit
numbers, one each for x and y; we denote their binary digits
as x1, x2, x3 and y1, y2, y3.

Consider edge i, which corresponds to a swept volume
that collides with just two depth pixels, at locations (6, 1)
and (5, 1) (which have binary representations (110, 001) and
(101, 001), respectively). Given a depth pixel described as
d = (x1, x2, x3, y1, y2, y3), the logical expression that deter-
mines whether it collides with this specific edge is:

x1

x2

x3

y1

y2

y3

Ci

Fig. 5: The circuit representing the logical expression given in
Equation 1.

Ci =(x1 ∧ x2 ∧ ¬x3 ∧ ¬y1 ∧ ¬y2 ∧ y3)∨
(x1 ∧ ¬x2 ∧ x3 ∧ ¬y1 ∧ ¬y2 ∧ y3).

The above expression has one conjunction per depth pixel, but
can be simplified to:

Ci = (¬y1∧¬y2∧y3)∧x1∧ ((¬x2∧x3)∨ (x2∧¬x3)), (1)

as the y-coordinates in this case are the same, and x1 is true
in both cases. This results in the Boolean circuit in Figure 5.

In addition to optimizing each circuit in isolation, we also
have the opportunity to optimize across the individual collision
circuits. We expect that many swept volumes will overlap and
have depth pixels in common; the circuitry for these common
expressions can be shared, saving hardware and ultimately
allowing us to use a larger PRM.

Each CDC includes one bit of storage to record whether
that CDC has detected a collision with any depth pixel input
since the most recent reset of the processor. A reset of the
processor causes this bit to be cleared in every CDC.

C. Implementation

We specified the circuitry using the Verilog hardware
description language and used CAD tools to compile the
circuitry into a format which can be downloaded onto a
field programmable gate array (FPGA). An FPGA is a chip
consisting of digital logic that can be reconfigured to provide
the functionality of a downloaded circuit. FPGAs thus provide
great flexibility, particularly for prototyping efforts.

VI. EXPERIMENTS

We now describe the results of applying our approach to two
planning problems—one in which a robot arm must perform
pick-and-place in an environment with obstacles, and another
in which it must reach a target in the presence of vertical
poles. Our experiments made extensive use of the Klampt
robot simulator [9], and the kinect2_bridge [32] and
ar_track_alvar [21] ROS packages.

4



A. Pick-and-Place

Our first experiment involves a pick-and-place scenario
where a 6-degree-of-freedom Kinova Jaco-2 arm must move
colored blocks from a table to one of two bins. The blocks,
as well as some boxes (which act as obstacles), are placed
uniformly at random on the table. Figure 6 shows a real
instance of this problem, as well as three randomly generated
sample environments.

Fig. 6: A real instance of our pick-and-place task, as well as
three randomly created environments simulated using Klampt.

Four Kinect-2 sensors mounted above the table on a wooden
frame were used for sensing. Each Kinect generates a point
cloud; the four point clouds were initially registered via an
AR Tag [12] placed on the empty table, and then merged
and converted into an occupancy grid at runtime using a
simple probabilistic filter. An example obstacle configuration
and occupancy grid are shown in Figure 7.

The planner’s goal was to find a grasp pose where the grip-
per was within 10cm of the center of the target and pointing
downward. This enabled us to use a Cartesian controller to
actually perform the grasp. In addition, the planner had to be
able to find a path to a pose 10cm above one of the two bins
mounted on the back of the frame, at which time we opened
the gripper to drop the target object off.

We built a 150, 000 edge PRM for this problem using
Klampt’s implementation of PRM∗, and used the pruning
method described in Section IV with 10, 000 sample en-
vironments to reduce its size. Each sampled environment

Fig. 7: A configuration of obstacles (left) and the correspond-
ing sensed occupancy grid (right).

100 1000 10000 100000
PRM Size (Edges)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty
 o

f 
S
o
lu

ti
o
n

PRM
PRM with Grasp Samples

Fig. 8: The probability of finding a plan when pruning a PRM
(red) or a PRM with extra grasp samples (blue).

included the same fixed “environment obstacle” (the table), but
contained different numbers of randomly located obstacles of
variable size. In this way the robot was faced with some easy
scenarios and some quite challenging ones, and the frequency
of edge usage could be tracked; this enabled our heuristic
pruning. We then tested the ability of the smaller pruned PRM
to solve a new set of 10, 000 sample environments, and iterated
in this manner (pruning and retesting) to see how many edges
we actually needed. The results indicated that we could reduce
the PRM to approximately 10, 000 edges without dropping the
probability of finding a solution, but they also showed that
the initial large PRM was inadequate, only capable of solving
90% of problems even at full size. Our analysis of the failure
cases indicated that insufficient sampling at grasping height
was to blame, which led to an inability to find a suitable
goal node. To address this we added 100 grasping poses to
a freshly generated large PRM (50, 000 edges). This PRM
could be subsampled down to fewer than 1, 000 edges while
still solving all sampled problems. These results are shown in
Figure 8.

We therefore used a 1024-edge PRM (the FPGA can fit up
to 2500 edges) to construct collision detection circuitry for this
problem. We implemented the circuitry on a Stratix V FPGA
on Terasic’s DE5 development board, interfaced to a desktop
computer using PCIe. We first used Klampt to exhaustively
compute all the points in the discretized space above the table
that collided with each edge. The binary representations of
the points were used to construct truth tables representing the
logic functions of groups of 16 edges.

The next step was to optimize the logic functions to reduce
their size. Logic minimization is a well-studied problem due
to its usage in electronic design automation tools. We used
a version of the popular espresso heuristic logic minimizer
[6, 28]. This tool allows for group minimization across 16
outputs at a time. The resulting functions were then converted
into Verilog. Using espresso prior to converting to Verilog
enabled greater than 25% savings in logic utilization on the

5



Fig. 9: An example planned movement from the pick-and-
place domain, visualized clockwise from top left. The Jaco
arm navigates around the obstacle stack on the left to pick up
the purple block and drop it in the collection box.

FPGA, even though all FPGA tools attempt to do some logic
minimization on their own. It is likely that we could realize
even more hardware savings using more carefully selected
edge groupings prior to optimization.

We measured the total time this implementation uses for
motion planning (starting with an occupancy grid, and hence
excluding the cost of transforming video or depth-cloud data
into an occupancy grid) averaged over 1, 000 randomly drawn
environments, and compared it to various software implemen-
tations. We used the software versions of PRM and RRT in
Klampt; details and source code are available [9]. The resulting
timing data are shown in Table I. Our method is able to solve
such problems in less than a single millisecond on average—
the vast majority of which is spent communicating with the
FPGA and performing a graph search, which together account
for 87% of planning time. This represents the removal of the
collision detection bottleneck, shifting that distinction onto
other aspects of motion planning.

We tested the circuitry on many configurations of the real
instantiation of the pick-and-place task. We designed the
system so that it blocked until the user pressed a red button
(visible on the right of the wooden frame), whereupon plan-
ning was allowed to commence. Planning was instantaneous,
and the robot started moving immediately after the button press
without any noticeable delay. One solution is visualized in
Figure 9.

B. Vertical Obstacles

Our second experiment has a mobile robot, Anathema
Device, placed in front of three movable vertical obstacles
and asked to reach a target without colliding with any of them.
Three randomly sampled configurations (simulated in Klampt)
and the physical arrangement are shown in Figure 10.

In this case we used the Kinect-2 on board Anathema to
identify AR Tags attached to each vertical obstacle, which
were in turn used to build the occupancy grid based on our

Fig. 10: A real instance of our vertical obstacle task, as well as
three randomly created environments simulated using Klampt.

knowledge of the size of the vertical obstacles. We also used
an AR Tag to identify the goal, which was held in front of the
robot between waist and chest height using a long handle.

We used Klampt to build a large PRM—25, 000 edges—
-and a similar procedure to subsample down to 825 edges,
which were converted into collision circuits and realized
on the same FPGA. Timing results are shown in Table I,
again showing that our implementation finds paths for this
tricky problem in less than one millisecond. One solution is
visualized in Figure 11.

VII. RELATED WORK

The closest related work is the design of hardware, intended
for an FPGA, to accelerate the PRM algorithm directly [1].
The parallelism in this method is largely drawn from imple-
menting multiple triangle intersection functional units. This
speeds up the testing of whether or not the mesh models of
the robot and obstacles collide, by performing multiple pair-

Fig. 11: An example planned movement from the vertical
obstacle domain, visualized clockwise from top left.

6



FPGA-Accelerated Planning Software

Environment Goal ID Comm. Collision Del. Edges Path Total PRM RRT

Pick-and-Place 13 118 16 50 425 622 815,000 756,000
Vertical Obstacles 55 104 16 32 420 627 2,738,000 1,074,000

TABLE I: The time (in microseconds) required to perform path planning on the proposed system, broken into its components:
identifying goal nodes in the PRM, communication over PCIe, collision detection, deleting edges that are in collision from
the PRM, and performing path search. We have included reference times for two representative software planners available in
Klampt; these were run on a 4-core Intel Xeon processor clocked at 3.5 GHz with 16 GB of RAM.

wise checks in parallel. Unfortunately, triangle intersection
testing involves a very large amount of arithmetic (especially
multiplications), and even high-capacity FPGAs cannot fit
nearly enough multipliers to make this design feasible. Con-
sequently the authors were unable to fit their design on an
FPGA for their somewhat simplified test case. Furthermore,
even had their design been feasible, it would have provided
only a constant-factor speedup—parallelizing a small number
of triange-triangle tests—whereas our CDCs all execute in
parallel and thus have constant run-time complexity with
respect to roadmap size.

There is some additional related prior work in using special-
purpose processors to accelerate collision detection for ap-
plications other than motion planning [27, 34, 35]. These
processors are designed to accelerate graphics and physical
simulations. As such, these prior designs have very different
requirements. The graphics and simulation applications must
determine not just whether two moving objects collide, but
when and where they collide, with a high degree of preci-
sion. For robotics, we simply need to avoid collisions, and
it is acceptable to be conservative. Because of our simpler
requirements, we can sacrifice precision to achieve real-time
performance.

VIII. DISCUSSION AND CONCLUSIONS

The major constraint on our implementation is the amount
of hardware available to represent PRM edges. Although our
results are very promising, they are on relatively small PRMs,
which consumed a substantial portion of the capacity of our
high-capacity FPGA. However, a key attribute of our approach
is that the time to perform collision detection is independent
of the number of edges in the PRM—which means that it
is, by virtue of its parallelism, algorithmically faster (by a
factor linear in the number of edges) than any prior software
scheme. Consequently, other hardware platforms that are better
suited to our specific design could plan using much larger
PRMs at roughly the same speed. For example, our FPGA
implementation, while flexible, is a prototype device that
sacrifices the capacity, performance, and power-efficiency that
could be achieved with an application specific integrated cir-
cuit (ASIC). Our rough calculations∗ using industry-standard

∗We multiplied the number of transistors for each gate type by the number
of that type in the design (e.g., 6 transistors for 2-input AND and 2-input OR).
Because we configured the software to use “medium effort”, these results are
likely somewhat pessimistic.

CAD software from Synopsys indicate that 1, 000 collision
detection circuits could be implemented on an ASIC using
fewer than 10 million transistors. Since even relatively old
CMOS processes can fit 1 billion transistors on a single chip,
we predict that we could comfortably fit 100, 000 edges on an
ASIC. This would allow the chip to use roadmaps of sufficient
complexity to solve the real planning challenges present in
many industries. There is an inherent trade-off between the
low initial investment and high flexibility of an FPGA, and the
high once-off cost but low unit cost of an ASIC, which can
also yield higher capacity, performance, and power-efficiency.

There is also a trade-off when determining the resolution
of discretization between more accurate representations of the
environment (which is important in low-clearance situations),
and the amount of resources on the FPGA each edge con-
sumes. Doubling the resolution in all dimensions leads to a
roughly 4x increase in hardware usage (but has no significant
effect on execution time).

Another limitation of our approach is that the PRM must be
constructed in advance. Consequently, if the robot’s physical
configuration changes (for example, an arm is bent) the
planning circuitry may no longer be accurate. Of more concern
is that the same problem applies if the robot picks up an object
that substantially exceeds the size of its gripper. However,
since reconfiguring the FPGA takes just a few seconds, an
FPGA-based implementation could adjust the PRM in soft-
ware (e.g., in response to a bent arm), or carry a large number
of PRMs—perhaps one each for a finite number of grasped
object bounding boxes—and swap them out at runtime. Any
delay could be avoided by switching between two FPGAs, one
of which is re-programmed during plan execution. In future
work, we also plan to investigate adding extra bits that can
activate one of a small number of grasped object bounding
boxes for each swept volume.

Designing specialized hardware is an unusual step. How-
ever, the motion planning problem has two important char-
acteristics which make building specialized hardware for it
worthwhile: first, that it is basic to robot movement, and
therefore critical to do quickly and well; and second, the
problem affords massive parallelism which can be exploited
in hardware. Our results show that such an implementation is
indeed feasible, and provides performance that is several or-
ders of magnitude faster than the previous planners. Moreover,
although our experiments have demonstrated only kinematic
planning, our approach is applicable to any problem amenable

7



to a roadmap-style approach. The circuitry described here
performs motion planning faster than perception using off-
the-shelf sensors like the Kinect, which operates at 30Hz, and
opens up new possibilities beyond simple once-off planning.
Motion planning could be done in real-time in an environment
with moving obstacles and/or goals, or run in parallel with the
current motion. It is now even fast enough to be used as a
subroutine of some other software component—for example,
as is often required in combined task and motion planning
algorithms [33, 10, 30, 5]. These examples illustrate the core
role that motion planning will play in designing generally
capable robots, once it is fast enough. Specialized motion
planning hardware is a promising approach to solving this key
problem.

ACKNOWLEDGMENTS

We owe a great deal of thanks to Kris Hauser for developing
the Klampt robotics package [9], and for his assistance in
becoming familiar with the software. This work was supported
in part by the Defense Advanced Research Projects Agency
(DARPA) Robotics Fast Track Program. Any opinions, find-
ings, and conclusion or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the view of DARPA OSRF, or the US government. We are
grateful to Altera Corporation for their support on this project.
We would additionally like to thank Xiangyu Zhang, Barrett
Ames, Saeed Alrahama, Hayden Bader, and Martha Barker.

REFERENCES

[1] N. Atay and B. Bayazit. A motion planning processor
on reconfigurable hardware. In Proceedings of the IEEE
International Conference on Robotics and Automation,
pages 125–132, 2006.

[2] K. E. Bekris and L. E. Kavraki. Greedy but safe re-
planning under kinodynamic constraints. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 704–710, April 2007.

[3] J. Bialkowski, S. Karaman, and E. Frazzoli. Massively
parallelizing the RRT and the RRT∗. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3513–3518, 2011.

[4] J. Bialkowski, S. Karaman, M. Otte, and E. Frazzoli.
Efficient collision checking in sampling-based motion
planning. In Proceedings of the Tenth Workshop on
the Algorithmic Foundations of Robotics, pages 365–380,
2013.

[5] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti.
Geometric backtracking for combined task and motion
planning in robotic systems. Artificial Intelligence, 2015.

[6] R. Brayton, G. Hatchel, C. McMullen, and
A. Sangiovanni-Vincentelli. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, Boston, MA, 1984.

[7] A. Dobson and K. E. Bekris. Sparse roadmap spanners
for asymptotically near-optimal motion planning. In-

ternational Journal for Robotics Research, 33(1):18–47,
2014.

[8] N. K. Govindaraju, S. Redon, M.C. Lin, and D. Manocha.
CULLIDE: Interactive collision detection between com-
plex models in large environments using graph-
ics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics
Hardware, page 2532, 2003.

[9] K. Hauser. Robust contact generation for robot simu-
lation with unstructured meshes. In Proceedings of the
International Symposium on Robotics Research, 2013.

[10] L. Kaelbling and T. Lozano-Pérez. Hierarchical planning
in the Now. In Proceedings of the IEEE Conference on
Robotics and Automation, pages 1470–1477, 2011.

[11] S. Karaman and E. Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal
of Robotics Research, 30(7):846–894, 2011.

[12] H. Kato and M. Billinghurst. Marker tracking and
HMD calibration for a video-based augmented reality
conferencing system. In Proceedings of the 2nd IEEE
and ACM International Workshop on Augmented Reality,
1999.

[13] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[14] D. Knott and D. K. Pai. CInDeR: Collision and interfer-
ence detection in real-time using graphics hardware. In
Proceedings of Graphics Interface, pages 73–80, 2003.

[15] S. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[16] S. LaValle and J.J. Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Re-
search, 23(5):378–400, 2001.

[17] J. Lengyel, M. Reichert, B.R. Donald, and D.P. Green-
berg. Real-time robot motion planning using rasterizing
computer graphics hardware. In Proceedings of the
17th Annual Conference on Computer Graphics and
Interactive Techniques, pages 327–335, 1990.

[18] P. Leven and S. Hutchinson. A framework for real-
time path planning in changing environments. The
International Journal of Robotics Research, 21(12):999–
1030, 2002.

[19] T. Lozano-Perez. Spatial planning: A configuration space
approach. IEEE Transactions on Computers, C32(2):
108–120, 1983.

[20] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast
collision detection between complex solids using raster-
izing graphics hardware. The Visual Computer, 11(9):
497–511, 1995.

[21] S. Niekum. ar track alvar. http://wiki.ros.org/ar track
alvar, 2011 – 2015.

[22] Michael Otte and Emilio Frazzoli. RRT-X: Asymptoti-
cally optimal single-query sampling-based motion plan-
ning with quick replanning. The International Journal of
Robotics Research, 2015.

8

http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_track_alvar


[23] J. Pan and D. Manocha. GPU-based parallel collision
detection for fast motion planning. International Journal
of Robotics Research, 31(2):187–200, 2012.

[24] J. Pan, C. Lauterbach, and D. Manocha. g-Planner: Real-
time motion planning and global navigation using GPUs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, 2010.

[25] J. Pan, C. Lauterbach, and D. Manocha. Efficient nearest-
neighbor computation for GPU-based motion planning.
In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2243–2248,
2010.

[26] C. Park, J. Pan, and D. Manocha. Real-time optimization-
based planning in dynamic environments using GPUs.
In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 4090–4097, 2013.

[27] A. Raabe, S. Hochgurtel, J. Anlauf, and G. Zachmann.
Space-efficient FPGA-accelerated collision detection for
virtual prototyping. In Proceedings of the Design Au-
tomation Test in Europe Conference, pages 206–211,
March 2006.

[28] R.L. Rudell. Multiple-valued logic minimization for pla
synthesis. Technical Report UCB/ERL M86/65, EECS
Department, University of California, Berkeley, 1986.

[29] O. Salzman, D. Shaharabani, P. K. Agarwal, and
D. Halperin. Sparsification of motion-planning roadmaps
by edge contraction. The International Journal of
Robotics Research, 33(4):1711–1725, 2014.

[30] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Rus-
sell, and P. Abbeel. Combined task and motion plan-
ning through an extensible planner-independent interface
layer. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 639–646, 2014.

[31] W. Wang, D. Balkcom, and A. Chakrabarti. A fast
streaming spanner algorithm for incrementally construct-
ing sparse roadmaps. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 1257–1263, 2013.

[32] T. Wiedemeyer. IAI Kinect2. https://github.com/code-iai/
iai kinect2, 2014 – 2015. Accessed June 12, 2015.

[33] J. Wolfe, B. Marthi, and S. Russell. Combined Task
and Motion Planning for Mobile Manipulation. In
Proceedings of the Twentieth International Conference
on Automated Planning and Scheduling, pages 254–258,
2010.

[34] M. Woulfe, J. Dingliana, and M. Manzke. Hardware Ac-
celerated Broad Phase Collision Detection for Realtime
Simulations. In Workshop in Virtual Reality Interactions
and Physical Simulation ”VRIPHYS”. The Eurographics
Association, 2007.

[35] G. Zachmann and G. Knittel. An architecture for
hierarchical collision detection. In Journal of WSCG,
volume 11, pages 149–156. February 2003.

9

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2

	Introduction
	Background
	Robot Motion Planning on a Chip
	Subsampling the PRM
	Processor Design
	Overview
	Constructing a Collision Detection Circuit
	Implementation

	Experiments
	Pick-and-Place
	Vertical Obstacles

	Related Work
	Discussion and Conclusions



