
Appears in the 19th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC)
Vancouver, BC, Canada, December 2013

1

Applying Reduced Precision Arithmetic to
Detect Errors in Floating Point Multiplication

Kushal Seetharam, Lance Co Ting Keh, Ralph Nathan, and Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University

Durham, NC USA
{kushal.seetharam, lance.co.ting.keh, ralph.nathan}@duke.edu, sorin@ee.duke.edu

Abstract—Prior work developed an efficient technique,
called reduced precision checking, for detecting errors in
floating point addition. In this work, we extend reduced
precision checking (RPC) to multiplication. Our results show
that RPC can successfully detect errors in floating point
multiplication at relatively low cost.

Keywords—fault tolerance, floating point, error detection

I. INTRODUCTION
One of the primary purposes of computers is to perform

arithmetic. In particular, many categories of software
perform vast amounts of floating point arithmetic.
Scientific applications—including simulators of all kinds of
physical phenomena—use floating point arithmetic to
computationally evaluate models. Financial applications
use floating point arithmetic to computationally evaluate
models of economies and businesses. Other types of
applications, including military, avionics, and gaming, use
floating point arithmetic as well.

Because floating point arithmetic is critical for many
applications, there are many situations in which an error in
a floating point calculation could be problematic or even
disastrous. Errors can arise due to physical faults such as
transient high-energy particle strikes or permanent wearout
of transistors, and industry projects that faults are likely to
be more common as future transistor and wire dimensions
continue to shrink [1].

In this paper, we focus on detecting errors in floating
point arithmetic performed by the floating point units
(FPUs) in processor cores. In particular, we focus on
floating point multiplication, and we extend a previously
developed scheme, called reduced precision checking
(RPC) [2], that has previously been applied only to
addition.

Some other prior work exists detecting errors in floating
point arithmetic, but it has drawbacks compared to RPC.
Lipetz and Schwarz at IBM [6] propose residue checking,
which is complete and cost-efficient, but the paper provides
insufficient detail for us to reproduce their results. We
cannot devise a residue checking scheme that handles
rounding. Based on an IBM patent [3], we believe that the

rounding information is passed to the residue checker from
the checked unit, which then implies that errors in the
rounding logic are undetected. Maniatakos et al. [7]
propose checking the exponents of floating point
computations, which detects many errors but fewer than if
one also checks mantissas.

The contribution of this paper is to demonstrate that
RPC is a viable option for the important problem of
detecting errors in floating point multiplication. In Section
II, we present the background work on RPC and how it was
previously applied to addition. In Section III, we explain
how to extend RPC to multiplication. In Section IV, we
describe our hardware implementation of RPC for
multiplication. In Section V, we present our experimental
evaluation of RPC’s ability to detect injected errors. In
Section VI, we evaluate RPC’s area and power overheads.
In Section VII, we compare RPC for multiplication to RPC
for addition. We conclude in Section VIII.

II. REDUCED PRECISION CHECKING
In the RPC scheme for addition [2], a 32-bit floating

point adder is checked by a k-bit (k<32) reduced-precision
floating point checker adder. The checker adder has a sign
bit and the same number of exponent bits, but it has fewer
mantissa bits. Comparing the most significant bits of the
result of the 32-bit adder to the result of the k-bit checker
adder reveals whether an error occurred.

RPC offers a tune-able tradeoff of cost versus error
coverage. Reducing the checker adder’s mantissa size
reduces the cost of the checker but increases the likelihood
of missing an error. Specifically, a shorter checker adder
increases the magnitude of an error that can be undetected
by RPC.

The design challenge in RPC is that, even in the
absence of errors, the most significant mantissa bits of the
checker do not necessarily match the most significant
mantissa bits of the adder. This small possible discrepancy
is due to the checker adder truncating the least significant
mantissa bits. The RPC authors added logic to detect when
discrepancies were possible in the absence of errors and
thus not signal an error in such situations. As a result, RPC

Appears in the 19th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC)
Vancouver, BC, Canada, December 2013

2

detects all large errors and some fraction of small errors
determined by the checker’s mantissa length.

 RPC is viable, but thus far it has been applied only to
addition. Modern processors—including both CPUs and
GPUs—have hardware support for many floating point
operations, but numerically sophisticated code generally
uses only the hardware adder and multiplier (and constructs
other operations in software, if needed). Thus processors
must also be able to check floating point multiplication.

III. EXTENDING RPC TO MULTIPLICATION
At a high level, RPC for multiplication is similar to

RPC for addition. As with RPC for addition, the checker
multiplier has a sign bit and the same number of exponent
bits as the multiplier being checked, but it has fewer
mantissa bits. Also similar to RPC for addition, the
challenge is in determining which discrepancies in results
are legitimate (i.e., could occur even in the absence of
faults). The primary difference between the RPC adder and
the RPC multiplier is the logic that determines how
truncation/rounding errors can influence the discrepancy
between the higher and reduced precision units in the
absence of faults.

In Figure 1, we illustrate RPC for the multiplication of
two 32-bit floating point numbers, A and B, each of which

has 1 sign bit, 7 exponent bits, and 24 mantissa bits.1 We
decompose the mantissas of both A and B into an X-bit high
portion (Ahigh and Bhigh) and a Y-bit low portion (Alow and
Blow), where X+Y=24. The RPC product’s mantissa is
AhighBhigh. To detect errors, we compare the RPC product’s
mantissa, denoted RPCproduct, to the mantissa of the full
product, AB. The following four equations help to illustrate
the relationship between the full mantissa and the RPC
product’s mantissa.

AB = AhighBhigh + AhighBlow + AlowBlow + AlowBhigh

AB = AhighBhigh + ABlow + AlowBhigh
RPCproduct = AhighBhigh

AB – RPCproduct = ABlow + AlowBlow

To determine the possible fault-free discrepancies

between AB and RPCproduct, we must consider their bit
lengths to see how they overlap. (Recall that multiplying
an x-bit number with a y-bit number results in a product
with x+y bits.) The pre-rounded mantissa of the full
product, AB, has 2X+2Y bits, and the pre-rounded mantissa

1 A floating point number is stored with a 23-bit mantissa, and the

24th bit is an implicit leading one, but all computations operate
on 24-bit mantissas.

Figure 1. RPC for Multiplication

Appears in the 19th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC)
Vancouver, BC, Canada, December 2013

3

of RPCproduct, AhighBhigh, has 2X bits. The length of (AB-
RPCproduct)is (X+2Y+1) bits.

We now compute the overlap between RPCproduct and
(AB-RPCproduct). Referring to Figure 1, there is a tall, thin,
darkly-shaded rectangle that represents this overlap. To
compute the width of this rectangle, we first compute the
width of the non-overlapping portion, labeled “no-overlap”
in the figure.

width of no-overlap = 2X+2Y-(X+2Y+1) = X-1
width of overlap = width of truncated RPCproduct

 - width of no-overlap + 1
width of overlap = X – (X-1) + 1 = 2

The width of the overlap has what might appear to be

an extra “1”, but we must account for the discrete point at
which two widths meet.

Thus, even in the absence of faults, the RPC product
can differ from the upper bits of the full product, because of
this 2-bit overlap.

With two bits of overlap, the maximum fault-free
difference between the full mantissa and the RPC mantissa
is less than three bits. This three-bit discrepancy can
manifest only in the lowest three bits of the RPC mantissa.
Consequently, our RPC unit checks that the base-10 value
of the upper 2X+1 bits of the full product mantissa is
within 7 (i.e., 23-1) of the base-10 value of the RPC
mantissa. Thus, actual faults that cause errors in low-order
bits will not be detected. If a fault occurs, the maximum
undetected error is 7 out of a maximum possible mantissa
value of 2X-1. For example, if X=7, then the maximum
undetected error is about 5.5%. Intuitively, increasing X
decreases the maximum undetected error.

IV. IMPLEMENTATION
We implemented RPC for an open-source VHDL

floating point multiplier from opencores.org.2 As a sanity
check, we also (re-)implemented RPC for the adder from
opencores.org. Our implementation disables error checking
when the operands or the product are non-standard floating
point numbers (e.g., infinity, NaN, or denorm). This design
decision leads to possibly undetected errors in these rare
situations, but it greatly reduces the cost of RPC.

For both the multiplication checker and the addition
checker, the checkers use 7-bit mantissas. This 7-bit
checker mantissa represents a mid-point in the range of
possible mantissa sizes.

V. ERROR DETECTION COVERAGE

The goal of our experimental evaluation is to determine
the error detection coverage of RPC. We evaluate both
multiplication and, for completeness, addition.
A. Fault Injection Methodology

To evaluate the error detection coverage, we ran an
extensive set of fault injection experiments. In each

2 http://opencores.org/project,fpu100

experiment, we forced a single stuck-at fault on a different
wire in the floating point unit’s flattened netlist. Note that
a single stuck-at fault on a wire can often cause multiple
faults downstream of the injected fault, due to fan-out, and
thus injecting faults at this low level is far more rigorous
than injecting faults in a microarchitectural simulator [4].
We injected thousands of single stuck-at faults throughout
the multiplier and adder, including in the RPC hardware
itself.

We considered injecting transient faults, but a very
large fraction of transient faults were masked (i.e., had no
impact on execution). Masking occurs for a variety of
reasons and is far more common than one might perhaps
expect [5]. Transient faults, in particular, are masked with
very high probability. To obtain statistically significant data
in a tractable amount of time, we injected permanent stuck-
at faults, which are less likely to be masked.
B. Results

We randomly chose 1,000 wires in the multiplier and
1,000 wires in the adder. For each chosen wire, we
performed 48 experiments in which we injected a fault and
performed the relevant computation (multiplication or
addition) for a different pair of randomly generated
operands. For both the multiplier and adder, approximately
85% of injected faults are masked; this large fraction of
masked faults is typical of functional units. It is unlikely
that any single fault affects the result of a single
computation.

Of those faults that are unmasked in the multiplier and
adder, our Reduced Precision Checkers detect 26.5% and
48.8% of the resulting errors, respectively. These detection
rates appear quite low, but recall that RPC detects the vast
majority of faults with large impact on the result (i.e., faults
that cause large errors). For all unmasked/undetected
faults, i.e., silent data corruptions (SDCs), we plot the
percent error in the result for the multiplier and adder in
Figure 2 and Figure 3, respectively. The results show that
the majority of SDCs have percent errors less than 0.01%,
and more than 90% of the SDCs have percent errors less
than 1%. Smaller errors are preferable, in general, and they
are often easier to tolerate with numerical algorithms,
particularly algorithms that iteratively converge on a
solution. A small error can often be tolerated (i.e., not
affect the final result) at the cost of the algorithm taking
more iterations to converge.

These results show that RPC is indeed viable for
multiplication. RPC for multiplication, like RPC for
addition, detects the vast majority of faults that cause large
errors.

VI. AREA AND POWER OVERHEADS
We now evaluate the area and power overheads of our

implementation of RPC for multiplication and addition.
Recall that our RPC implementation uses 7-bit mantissas
for the checkers. The area and power overheads would be
less (more) for shorter (longer) checker mantissas.

Appears in the 19th IEEE Pacific Rim
Vancouver, BC, Canada,

A. Area
We used Synopsys CAD tools to layout our

consisting of a floating point multiplier and adder
and without RPC, in 45nm technology [8]
show that RPC’s area overhead is 17.8%.
B. Power

As with the area analysis, we used Synopsys tools to
determine the dynamic and static power overheads of
After laying out the circuitry, we obtained the parasitic
resistances and capacitances and back
circuits with them.

To determine the dynamic power, we
multiplier and adder with a sequence of
generated floating point number inputs. The results for this
experiment are shown in Table 1.

RPC’s total power overhead, including both dynamic
and static power, is 28%. Its dynamic power overhead is
35% and its static power overhead is 16%.

Table 1. FPU Power. RPC’s percent overhead in parentheses.
 Baseline RPC (overhead)
Dynamic Power 0.155mW 0.210mW

Static Power 0.098mW 0.114mW

Total Power 0.253mW 0.324mW

VII. COMPARING MULTIPLICATION TO

Having developed RPC for both addition and
multiplication, we now present a comparison based on our
experiences.

In RPC for addition, the RPC mantissa is with
(base-10) of the full-precision mantissa [2]. As
Section III, in RPC for multiplication, the RPC mantissa
within 7 (base-10) of the full-precision mantissa. The
reduced sensitivity in RPC for multiplication
three times more SDCs with magnitudes greater than
compared to RPC for addition (as shown in
Figure 3). Nevertheless, 90.8% of the SDCs in RPC
multiplication were less than 1%, thus showing that RPC
for multiplication can still detect the vast majority
errors.

Figure 2. RPC for Multiplication

Pacific Rim International Symposium on Dependable Computing
Vancouver, BC, Canada, December 2013

4

We used Synopsys CAD tools to layout our FPU–
floating point multiplier and adder—with

[8]. The results

As with the area analysis, we used Synopsys tools to
power overheads of RPC.

, we obtained the parasitic
resistances and capacitances and back-annotated the

he dynamic power, we provided the
multiplier and adder with a sequence of 1,000 randomly

The results for this

, including both dynamic
Its dynamic power overhead is

35% and its static power overhead is 16%.

’s percent overhead in parentheses.
(overhead)
mW (35%)

mW (16%)

mW (28%)

ULTIPLICATION TO ADDITION
Having developed RPC for both addition and

multiplication, we now present a comparison based on our

addition, the RPC mantissa is within 2
. As explained in

he RPC mantissa is
precision mantissa. The

multiplication led to about
more SDCs with magnitudes greater than 1%,

as shown in Figure 2 and
, 90.8% of the SDCs in RPC for

less than 1%, thus showing that RPC
ct the vast majority of large

Despite the error sensitivity differences between RPC
for multiplication and addition, the hardware costs of both
RPC implementations are quite similar.

VIII. CONCLUSION

The goal of this research was to
reduced precision checking could be successfully extended
from addition to multiplication.
developing RPC for multiplication revealed it is non
to extend but viable. The experimental results show that
RPC for multiplication detects the vast majority of
that cause large errors and is thus a practical technology for
fault tolerant FPUs.

ACKNOWLEDGMENTS

This material is based on work supported by the
National Science Foundation under grant CCF
We thank Pat Eibl for his feedback on this work and paper

REFERENCES
[1] S. Borkar, “Designing Reliable Systems from Unreliable

Components: The Challenges of Transistor Variability and
Degradation,” IEEE Micro, vol. 25, no. 6, pp. 10

[2] P. J. Eibl, A. D. Cook, and D. J. Sorin, “Reduced Precision
Checking for a Floating Point Adder,” in
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2009.

[3] S. Iacobovici, “United States Patent: 77697
residue-based protection of an execution pipeline that supports
floating point operations,” U.S. Patent 776979503

[4] M.-L. Li, P. Ramachandran, R. U. Karpuzcu, S. K. S. Hari, and S.
Adve, “Accurate Microarchitecture
Studying Hardware Faults,” in Proceedings of the Fourteenth
International Symposium on High
Architecture, 2009.

[5] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and
Y. Zhou, “Understanding the Propagation of
Software and Implications for Resilient System Design,” in
Proceedings of the Thirteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2008.

[6] D. Lipetz and E. Schwarz, “Self Checking i
Point Units,” in 20th IEEE Symposium on Computer Arithmetic
2011, pp. 73–76.

[7] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer,
“Exponent Monitoring for Low-Cost Concurrent Error Detection
in FPU Control Logic,” in IEEE VLSI Tes
235–240.

[8] Nangate Development Team, “Nangate 45nm Open Cell Library.”
2012.

Multiplication Figure 3. RPC for Addition/Subtraction

ble Computing (PRDC)

Despite the error sensitivity differences between RPC
for multiplication and addition, the hardware costs of both

uite similar.
ONCLUSIONS

The goal of this research was to evaluate whether
reduced precision checking could be successfully extended

om addition to multiplication. Our experiences in
developing RPC for multiplication revealed it is non-trivial

but viable. The experimental results show that
RPC for multiplication detects the vast majority of faults

large errors and is thus a practical technology for

CKNOWLEDGMENTS
This material is based on work supported by the

National Science Foundation under grant CCF-111-5367.
feedback on this work and paper.

EFERENCES
S. Borkar, “Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and

, vol. 25, no. 6, pp. 10–16, Dec. 2005.
P. J. Eibl, A. D. Cook, and D. J. Sorin, “Reduced Precision
Checking for a Floating Point Adder,” in Proceedings of the 24th
IEEE International Symposium on Defect and Fault Tolerance in

S. Iacobovici, “United States Patent: 7769795 - End-to-end
based protection of an execution pipeline that supports

floating point operations,” U.S. Patent 776979503-Aug-2010.
L. Li, P. Ramachandran, R. U. Karpuzcu, S. K. S. Hari, and S.

Adve, “Accurate Microarchitecture-level Fault Modeling for
Proceedings of the Fourteenth

International Symposium on High-Performance Computer

L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, V. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design,” in
Proceedings of the Thirteenth International Conference on
Architectural Support for Programming Languages and Operating

D. Lipetz and E. Schwarz, “Self Checking in Current Floating-
20th IEEE Symposium on Computer Arithmetic,

M. Maniatakos, Y. Makris, P. Kudva, and B. Fleischer,
Cost Concurrent Error Detection

IEEE VLSI Test Symposium, 2011, pp.

Nangate Development Team, “Nangate 45nm Open Cell Library.”

Addition/Subtraction

