Appears in tha 9" IEEE Pacific Rim International Symposium on Dedatd Computing (PRDC)
Vancouver, BC, Canada, December 2013

Applying Reduced Precision Arithmetic to
Detect Errors in Floating Point Multiplication

Kushal Seetharam, Lance Co Ting Keh, Ralph Nathan, and Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University

Durham, NC USA
{kushal.seetharam, lance.co.ting.keh, ralph.nathan}@duke.edu, sorin@ee.duke.edu

Abstract—Prior work developed an efficient technique,
called reduced precision checking, for detecting eors in
floating point addition. In this work, we extend reduced
precision checking (RPC) to multiplication. Our results show
that RPC can successfully detect errors in floatingpoint
multiplication at relatively low cost.

Keywords—fault tolerance, floating point, error dattion

l. INTRODUCTION

One of the primary purposes of computers is toquerf
arithmetic. In particular, many categories oftware
perform vast amounts of floating point arithmetic.
Scientific applications—including simulators of klhds of
physical phenomena—use floating point arithmetic to
computationally evaluate models. Financial appiice
use floating point arithmetic to computationallyatate
models of economies and businesses.
applications, including military, avionics, and gam use
floating point arithmetic as well.

Because floating point arithmetic is critical forany
applications, there are many situations in whicteaor in
a floating point calculation could be problematic even
disastrous. Errors can arise due to physicatdauch as
transient high-energy particle strikes or permarnesdrout
of transistors, and industry projects that faults l&kely to
be more common as future transistor and wire diiness
continue to shrink [1].

In this paper, we focus on detecting errors intfigp
point arithmetic performed by the floating pointitsn
(FPUs) in processor cores. In particular, we fooms
floating point multiplication, and we extend a posly
developed scheme, calleceduced precision checking
(RPC) [2], that has previously been applied only to
addition.

Some other prior work exists detecting errors dafiing
point arithmetic, but it has drawbacks comparedrEeC.
Lipetz and Schwarz at IBM [6] propose residue chagk
which is complete and cost-efficient, but the pgmewvides
insufficient detail for us to reproduce their resulWe

rounding information is passed to the residue chefiom
the checked unit, which then implies that errorsthie
rounding logic are undetected. Maniatakos et @]. [
propose checking the exponents of floating point
computations, which detects many errors but fewan tif
one also checks mantissas.

The contribution of this paper is to demonstratat th
RPC is a viable option for the important problem of
detecting errors in floating point multiplicationln Section
II, we present the background work on RPC and hovas
previously applied to addition. In Section Ill, ve&plain
how to extend RPC to multiplication. In Section, ive
describe our hardware implementation of RPC for
multiplication. In Section V, we present our experntal
evaluation of RPC’s ability to detect injected esro In

Other types ofection VI, we evaluate RPC’s area and power oweite

In Section VII, we compare RPC for multiplicatiomRPC
for addition. We conclude in Section VIII.

Il. REDUCED PRECISIONCHECKING

In the RPC scheme for addition [2], a 32-bit flogti
point adder is checked bykabit (k<32) reduced-precision
floating point checker adder. The checker addsrahaign
bit and the same number of exponent bits, butstfeaver
mantissa bits. Comparing the most significans bit the
result of the 32-bit adder to the result of #abit checker
adder reveals whether an error occurred.

RPC offers a tune-able tradeoff of cost versusrerro
coverage. Reducing the checker adder's mantigga s
reduces the cost of the checker but increaseskitléhbod
of missing an error. Specifically, a shorter dtexcadder
increases the magnitude of an error that can beteatd
by RPC.

The design challenge in RPC is that, even in the
absence of errors, the most significant mantistadjithe
checker do not necessarily match the most sigmifica
mantissa bits of the adder. This small possibderdpancy
is due to the checker adder truncating the legstifgiant
mantissa bits. The RPC authors added logic tactieteen

cannot devise a residue checking scheme that handlediscrepancies were possible in the absence ofseand

rounding. Based on an IBM patent [3], we belidvat the

thus not signal an error in such situations. Assalt, RPC

Appears in tha 9" IEEE Pacific Rim International Symposium on Dedatd Computing (PRDC)
Vancouver, BC, Canada, December 2013

sign and >abi)
Fexpnnent_' «——— 24-bit mantissa ——
X bits Y bits
A " 8 bits . Ahigh . Alow .
X bits Y bits
B e 8 bits » E'high Biow -
F_;;ir;:;?t_} 48-bit mantissa for full unrounded product — 3|
2X+2Y=48 bits pre-rounded = X+Y=24 bits after rounding
AB « 8bits | | X+Y remain o X+Y lost after rounding
RPC 2X bits pre-truncated = X bits after truncating
produet™| gbits | | Xremain I Xlost
Ahigh Bhigh .
no- X+2Y+1 bits {no rounding)
AB-RPCproguct = overlg X+2Y+1

Y

I|':'*B‘Iunw-r + Alothigh —
possible overlap in
fault-free scenario

Figure 1. RPC for Multiplication

detects all large errors and some fraction of srealbrs
determined by the checker’'s mantissa length.

RPC is viable, but thus far it has been appliely tm
addition. Modern processors—including both CPUd an
GPUs—have hardware support for many floating point
operations, but numerically sophisticated code gdiye
uses only the hardware adder and multiplier (antsitacts
other operations in software, if needed). Thusessors
must also be able to check floating point multigtion.

. EXTENDING RPCTO MULTIPLICATION

At a high level, RPC for multiplication is simildp
RPC for addition. As with RPC for addition, theecker
multiplier has a sign bit and the same number gibeent
bits as the multiplier being checked, but it hasvee
mantissa bits. Also similar to RPC for addition,e th
challenge is in determining which discrepanciesesults
are legitimate (i.e., could occur even in the absenf
faults). The primary difference between the RP@eachnd
the RPC multiplier is the logic that determines how
truncation/rounding errors can influence the digarey
between the higher and reduced precision unitshi& t
absence of faults.

In Figure 1, we illustrate RPC for the multiplicati of
two 32-bit floating point numberg\ andB, each of which

has 1 sign bit, 7 exponent bits, and 24 mantista bive
decompose the mantissas of bathndB into anX-bit high
portion Anigh and Brigr) and aY-bit low portion @, and
Bow), Where X+Y=24. The RPC product’'s mantissa is
AvighBrigh. TO detect errors, we compare the RPC product’s
mantissa, denote®PG,oquc, t0 the mantissa of the full
product,AB. The following four equations help to illustrate
the relationship between the full mantissa and RRC
product’s mantissa.

AB = AnighBhigh + AnighBiow + AicuBiow + AlowBhigh
AB = AnignBhigh+ ABiow+ AiguBhigh

RPGoroduct = AnighBhigh

AB — RPdeucF ABiow + AwBiow

To determine the possible fault-free discrepancies
betweenAB and RPGoaues We must consider their bit
lengths to see how they overlap. (Recall that iplylhg
an x-bit number with ay-bit number results in a product
with x+y bits.) The pre-rounded mantissa of the full
product,AB, has2X+2Y bits, and the pre-rounded mantissa

1 A floating point number is stored with a 23-bit rtiasa, and the
24" bit is an implicit leading one, but all computaisooperate
on 24-bit mantissas.

Appears in tha 9" IEEE Pacific Rim International Symposium on Dedatd Computing (PRDC)
Vancouver, BC, Canada, December 2013

of RPGyroducs AnighBhigh, has2X bits. The length ofAB-
RPGroduct)is (X+2Y+1) bits.

We now compute the overlap betweBRGquc and
(AB-RPGoauc). Referring to Figure 1, there is a tall, thin,
darkly-shaded rectangle that represents this qverldo
compute the width of this rectangle, we first comepthe
width of the non-overlapping portion, labeled “needap”
in the figure.

width of no-overlap = 2X+2Y-(X+2Y+1) = X-1

width of overlap = width of truncated RBGuuc
width of no-overlap + 1

width of overlap =X - (X-1) + 1 =2

The width of the overlap has what might appeardo b
an extra “1”, but we must account for the discigbént at
which two widths meet.

experiment, we forced a single stuck-at fault atifeerent
wire in the floating point unit’s flattened netlistNote that
a single stuck-at fault on a wire can often causdtipte
faults downstream of the injected fault, due to-dam, and
thus injecting faults at this low level is far matigorous
than injecting faults in a microarchitectural siatolr [4].
We injected thousands of single stuck-at faulteughout
the multiplier and adder, including in the RPC heace
itself.

We considered injecting transient faults, but ayver
large fraction of transient faults were masked.,(bad no
impact on execution). Masking occurs for a variefy
reasons and is far more common than one might psrha
expect [5]. Transient faults, in particular, arasked with
very high probability. To obtain statistically sifjoant data
in a tractable amount of time, we injected perméasarck-
at faults, which are less likely to be masked.

Thus, even in the absence of faults, the RPC ptoduc B. Results

can differ from the upper bits of the full produisgcause of
this 2-bit overlap.

With two bits of overlap, the maximum fault-free
difference between the full mantissa and the RPGtissa
is less than three bits. This three-bit discrepanceayn
manifest only in the lowest three bits of the RP@ntrssa.
Consequently, our RPC unit checks that the baseali@e
of the upper2X+1 bits of the full product mantissa is
within 7 (i.e., 2-1) of the base-10 value of the RPC
mantissa. Thus, actual faults that cause errol@arorder
bits will not be detected. If a fault occurs, timaximum
undetected error is 7 out of a maximum possible tissan
value of 2%-1. For example, ifX=7, then the maximum
undetected error is about 5.5%. Intuitively, inciag X
decreases the maximum undetected error.

V. IMPLEMENTATION

We implemented RPC for an open-source VHDL
floating point multiplier from opencores.ofgAs a sanity
check, we also (re-)implemented RPC for the addanf
opencores.org. Our implementation disables efiecking
when the operands or the product are non-stanttzating
point numbers (e.qg., infinity, NaN, or denorm). i tlesign
decision leads to possibly undetected errors isehare
situations, but it greatly reduces the cost of RPC.

For both the multiplication checker and the additio
checker, the checkers use 7-bit mantissas. THt 7-
checker mantissa represents a mid-point in theerasfg
possible mantissa sizes.

V. ERRORDETECTION COVERAGE
The goal of our experimental evaluation is to detae

the error detection coverage of RPC. We evaluath b
multiplication and, for completeness, addition.

A. Fault Injection Methodology

To evaluate the error detection coverage, we ran an

extensive set of fault injection experiments. lacke

2 http://opencores.org/project,fpul00

We randomly chose 1,000 wires in the multiplier and
1,000 wires in the adder. For each chosen wire, we
performed 48 experiments in which we injected dtfand
performed the relevant computation (multiplicatiam
addition) for a different pair of randomly generhte
operands. For both the multiplier and adder, apprately
85% of injected faults are masked; this large foaciof
masked faults is typical of functional units. stunlikely
that any single fault affects the result of a singl
computation.

Of those faults that are unmasked in the multipdied
adder, our Reduced Precision Checkers detect 2@
48.8% of the resulting errors, respectively. Thestection
rates appear quite low, but recall that RPC detidsets/ast
majority of faults with large impact on the resfle., faults
that cause large errors). For all unmasked/untketec
faults, i.e.,silent data corruptions(SDCs), we plot the
percent error in the result for the multiplier aadder in
Figure 2 and Figure 3, respectively. The resuitsasthat
the majority of SDCs have percent errors less thai%,
and more than 90% of the SDCs have percent eresss |
than 1%. Smaller errors are preferable, in genaral they
are often easier to tolerate with numerical algons,
particularly algorithms that iteratively convergen ca
solution. A small error can often be toleratee.(i.not
affect the final result) at the cost of the aldunit taking
more iterations to converge.

These results show that RPC is indeed viable for
multiplication. RPC for multiplication, like RPCoff
addition, detects the vast majority of faults tbatise large
errors.

VI. AREA AND POWER OVERHEADS

We now evaluate the area and power overheads of our
implementation of RPC for multiplication and adliti
Recall that our RPC implementation uses 7-bit nsaat
for the checkers. The area and power overhead#vineu
less (more) for shorter (longer) checker mantissas.

Appears in thd 9" IEEE Pacific RimInternational Symposium on DepetdiaComputin (PRDC)
Vancouver, BC, CanadDecember 2013

Percentage of

Figure 2. RPC foMultiplication

A. Area

We used Synopsys CAD tools to layout cFPU-
consisting of afloating point multiplier and add—uwith
and without RPC, in 45nm technolod§]. The results
show that RPC’s area overhead is 17.8%.

B. Power

As with the area analysis, we used Synopsys tao
determine the dynamic and stapiower overheads (RPC.
After laying out the circuitry we obtained the parasi
resistances and capacitances and -annotated the
circuits with them.

To determine hte dynamic power, v provided the
multiplier and adder with a sequence BhD00 randomly
generated floating point number inputBhe results for thi:
experiment are shown in Table 1.

RPC’s total power overheadncluding both dynami
and static power, is 28%lts dynamic power overhead
35% and its static power overhead is 1€

Table 1. FPU Power. RPpercent overhead in parenthe

Baseline RPQoverheac
Dynamic Power 0.155mW 0.2tV (35%)
Static Power 0.098mW 0.1V (16%)
Total Power 0.253mW| 0.3 (28%)
VII. COMPARING MULTIPLICATION TO ADDITION

Having developed RPC for both addition ¢
multiplication, we now present a comparison baseaar
experiences.

In RPC for addition, the RPC mantissa is vin 2
(base-10) of the full-precision mantissa.[&F explained in
Section 1ll, in RPC for multiplicationhe RPC mantissis
within 7 (base-10) of the fulprecision mantissa. Tt
reduced sensitivity in RPC fonultiplicatior led to about
three timesmore SDCs with magnitudes greater 1 1%,
compared to RPC for additiomg shown i Figure 2 and
Figure 3). Nevertheles®90.8% of the SDCs in RPfor
multiplication wereless than 1%, thus showing that R
for multiplication can still detat the vast majorit of large
errors.

Figure 3. RPC foAddition/Subtractio

Despite the error sensitivity differences betwed?Cl
for multiplication and addition, the hardware costshoth
RPC implementations araiige similar

VIII. CONCLUSIONS

The goal of this research was evaluate whether
reduced precision checking could be successfullgrelec
from addition to multiplication. Our experiences in
developing RPC for multiplication revealed it isn-trivial
to extendbut viable. The experimental results show
RPC for multiplication detects the vast majority faults
that causédarge errors and is thus a practical technology
fault tolerant FPUs.

ACKNOWLEDGMENTS
This material is based on work supported by
National Science Foundation under grant +~111-5367.
We thank Pat Eibl for hiteedback on this work and pa.

REFERENCE!

[1] S. Borkar, “Designing Reliable Systems from Undak
Components: The Challenges of Transistor Varigbiland
Degradation,IEEE Micro, vol. 25, no. 6, pp. =16, Dec. 2005.

[2] P. J. Eibl, A. D. Cook, and D. J. Sorin, “Reduceckdion
Checking for a Floating Point Adder,” Proceedings of the 24th
IEEE International Symposium on Defect and Faulefiance in
VLSI System£009.

[3] S. lacobovici, “United States Patent: 7795 - End-to-end
residuebased protection of an execution pipeline that etig
floating point operations,” U.S. Patent 77697¢<-Aug-2010.

[4] M.-L. Li, P. Ramachandran, R. U. Karpuzcu, S. K. Si,Had S.
Adve, “Accurate Microarchitectu-level Fault Modeling for
Studying Hardware Faults,” ifProceedings of the Fourteer
International Symposium on Hi-Performance Computer
Architecture 2009.

[5] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. Adve, \WeAdinc
Y. Zhou, “Understanding the Propagation Hard Errors to
Software and Implications for Resilient System Dasi in
Proceedings of the Thirteenth International Confee on
Architectural Support for Programming Languages &ykrating
Systems2008.

[6] D. Lipetz and E. Schwarz, “Self Checkinn Current Floating-
Paint Units,” in20th IEEE Symposium on Computer Arithr,
2011, pp. 73-76.

[7] M. Maniatakos, Y. Makris, P. Kudva, and B. Fleiscl
“Exponent Monitoring for Low€ost Concurrent Error Detectit
in FPU Control Logic,” inlEEE VLSI Tet Symposium2011, pp.
235-240.

[8] Nangate Development Team, “Nangate 45nm Open Qwmthty.”
2012.

