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Abstract—Prior work developed an efficient technique, 
called reduced precision checking, for detecting errors in 
floating point addition.  In this work, we extend reduced 
precision checking (RPC) to multiplication.  Our results show 
that RPC can successfully detect errors in floating point 
multiplication at relatively low cost. 
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I. INTRODUCTION 
One of the primary purposes of computers is to perform 

arithmetic.    In particular, many categories of software 
perform vast amounts of floating point arithmetic.  
Scientific applications—including simulators of all kinds of 
physical phenomena—use floating point arithmetic to 
computationally evaluate models.  Financial applications 
use floating point arithmetic to computationally evaluate 
models of economies and businesses.  Other types of 
applications, including military, avionics, and gaming, use 
floating point arithmetic as well. 

Because floating point arithmetic is critical for many 
applications, there are many situations in which an error in 
a floating point calculation could be problematic or even 
disastrous.   Errors can arise due to physical faults such as 
transient high-energy particle strikes or permanent wearout 
of transistors, and industry projects that faults are likely to 
be more common as future transistor and wire dimensions 
continue to shrink [1].   

In this paper, we focus on detecting errors in floating 
point arithmetic performed by the floating point units 
(FPUs) in processor cores.  In particular, we focus on 
floating point multiplication, and we extend a previously 
developed scheme, called reduced precision checking 
(RPC) [2], that has previously been applied only to 
addition.   

Some other prior work exists detecting errors in floating 
point arithmetic, but it has drawbacks compared to RPC.  
Lipetz and Schwarz at IBM [6] propose residue checking, 
which is complete and cost-efficient, but the paper provides 
insufficient detail for us to reproduce their results. We 
cannot devise a residue checking scheme that handles 
rounding.  Based on an IBM patent [3], we believe that the 

rounding information is passed to the residue checker from 
the checked unit, which then implies that errors in the 
rounding logic are undetected.  Maniatakos et al. [7] 
propose checking the exponents of floating point 
computations, which detects many errors but fewer than if 
one also checks mantissas. 

The contribution of this paper is to demonstrate that 
RPC is a viable option for the important problem of 
detecting errors in floating point multiplication.   In Section 
II, we present the background work on RPC and how it was 
previously applied to addition.  In Section III, we explain 
how to extend RPC to multiplication.  In Section IV, we 
describe our hardware implementation of RPC for 
multiplication.  In Section V, we present our experimental 
evaluation of RPC’s ability to detect injected errors.  In 
Section VI, we evaluate RPC’s area and power overheads.  
In Section VII, we compare RPC for multiplication to RPC 
for addition.  We conclude in Section VIII. 

II. REDUCED PRECISION CHECKING 
In the RPC scheme for addition [2], a 32-bit floating 

point adder is checked by a k-bit (k<32) reduced-precision 
floating point checker adder.  The checker adder has a sign 
bit and the same number of exponent bits, but it has fewer 
mantissa bits.   Comparing the most significant bits of the 
result of the 32-bit adder to the result of the k-bit checker 
adder reveals whether an error occurred.   

RPC offers a tune-able tradeoff of cost versus error 
coverage.   Reducing the checker adder’s mantissa size 
reduces the cost of the checker but increases the likelihood 
of missing an error.   Specifically, a shorter checker adder 
increases the magnitude of an error that can be undetected 
by RPC.    

The design challenge in RPC is that, even in the 
absence of errors, the most significant mantissa bits of the 
checker do not necessarily match the most significant 
mantissa bits of the adder.  This small possible discrepancy 
is due to the checker adder truncating the least significant 
mantissa bits.  The RPC authors added logic to detect when 
discrepancies were possible in the absence of errors and 
thus not signal an error in such situations.  As a result, RPC 
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detects all large errors and some fraction of small errors 
determined by the checker’s mantissa length. 

 RPC is viable, but thus far it has been applied only to 
addition.  Modern processors—including both CPUs and 
GPUs—have hardware support for many floating point 
operations, but numerically sophisticated code generally 
uses only the hardware adder and multiplier (and constructs 
other operations in software, if needed).  Thus processors 
must also be able to check floating point multiplication. 

III.   EXTENDING RPC TO MULTIPLICATION  
At a high level, RPC for multiplication is similar to 

RPC for addition.  As with RPC for addition, the checker 
multiplier has a sign bit and the same number of exponent 
bits as the multiplier being checked, but it has fewer 
mantissa bits. Also similar to RPC for addition, the 
challenge is in determining which discrepancies in results 
are legitimate (i.e., could occur even in the absence of 
faults).  The primary difference between the RPC adder and 
the RPC multiplier is the logic that determines how 
truncation/rounding errors can influence the discrepancy 
between the higher and reduced precision units in the 
absence of faults. 
 

In Figure 1, we illustrate RPC for the multiplication of 
two 32-bit floating point numbers, A and B, each of which 

has 1 sign bit, 7 exponent bits, and 24 mantissa bits.1  We 
decompose the mantissas of both A and B into an X-bit high 
portion (Ahigh and Bhigh) and a Y-bit low portion (Alow and 
Blow), where X+Y=24.  The RPC product’s mantissa is 
AhighBhigh. To detect errors, we compare the RPC product’s 
mantissa, denoted RPCproduct, to the mantissa of the full 
product, AB.  The following four equations help to illustrate 
the relationship between the full mantissa and the RPC 
product’s mantissa. 

 
AB = AhighBhigh + AhighBlow +  AlowBlow + AlowBhigh 

AB = AhighBhigh + ABlow + AlowBhigh 
RPCproduct = AhighBhigh 

AB – RPCproduct = ABlow + AlowBlow 
 
To determine the possible fault-free discrepancies 

between AB and RPCproduct, we must consider their bit 
lengths to see how they overlap.  (Recall that multiplying 
an x-bit number with a y-bit number results in a product 
with x+y bits.)  The pre-rounded mantissa of the full 
product, AB, has 2X+2Y bits, and the pre-rounded mantissa 

                                                           
1 A floating point number is stored with a 23-bit mantissa, and the 

24th bit is an implicit leading one, but all computations operate 
on 24-bit mantissas. 

 
Figure 1.  RPC for Multiplication 
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of RPCproduct, AhighBhigh, has 2X bits.  The length of (AB-
RPCproduct )is (X+2Y+1) bits. 

We now compute the overlap between RPCproduct and 
(AB-RPCproduct). Referring to Figure 1, there is a tall, thin, 
darkly-shaded rectangle that represents this overlap.  To 
compute the width of this rectangle, we first compute the 
width of the non-overlapping portion, labeled “no-overlap” 
in the figure.   

 
width of no-overlap = 2X+2Y-(X+2Y+1) = X-1 
width of overlap = width of truncated RPCproduct  

                                         -  width of no-overlap + 1 
width of overlap = X – (X-1) + 1 = 2 
 
The width of the overlap has what might appear to be 

an extra “1”, but we must account for the discrete point at 
which two widths meet. 

Thus, even in the absence of faults, the RPC product 
can differ from the upper bits of the full product, because of 
this 2-bit overlap.   

With two bits of overlap, the maximum fault-free 
difference between the full mantissa and the RPC mantissa 
is less than three bits. This three-bit discrepancy can 
manifest only in the lowest three bits of the RPC mantissa. 
Consequently, our RPC unit checks that the base-10 value 
of the upper 2X+1 bits of the full product mantissa is 
within 7 (i.e., 23-1) of the base-10 value of the RPC 
mantissa.  Thus, actual faults that cause errors in low-order 
bits will not be detected.  If a fault occurs, the maximum 
undetected error is 7 out of a maximum possible mantissa 
value of 2X-1. For example, if X=7, then the maximum 
undetected error is about 5.5%. Intuitively, increasing X 
decreases the maximum undetected error. 

IV.  IMPLEMENTATION 
We implemented RPC for an open-source VHDL 

floating point multiplier from opencores.org.2  As a sanity 
check, we also (re-)implemented RPC for the adder from 
opencores.org.  Our implementation disables error checking 
when the operands or the product are non-standard floating 
point numbers (e.g., infinity, NaN, or denorm).  This design 
decision leads to possibly undetected errors in these rare 
situations, but it greatly reduces the cost of RPC. 

For both the multiplication checker and the addition 
checker, the checkers use 7-bit mantissas.  This 7-bit 
checker mantissa represents a mid-point in the range of 
possible mantissa sizes.   

V. ERROR DETECTION COVERAGE 

The goal of our experimental evaluation is to determine 
the error detection coverage of RPC.  We evaluate both 
multiplication and, for completeness, addition. 
A. Fault Injection Methodology 

To evaluate the error detection coverage, we ran an 
extensive set of fault injection experiments.  In each 

                                                           
2 http://opencores.org/project,fpu100 

experiment, we forced a single stuck-at fault on a different 
wire in the floating point unit’s flattened netlist.  Note that 
a single stuck-at fault on a wire can often cause multiple 
faults downstream of the injected fault, due to fan-out, and 
thus injecting faults at this low level is far more rigorous 
than injecting faults in a microarchitectural simulator [4].  
We injected thousands of single stuck-at faults throughout 
the multiplier and adder, including in the RPC hardware 
itself. 

We considered injecting transient faults, but a very 
large fraction of transient faults were masked (i.e., had no 
impact on execution).  Masking occurs for a variety of 
reasons and is far more common than one might perhaps 
expect [5].  Transient faults, in particular, are masked with 
very high probability. To obtain statistically significant data 
in a tractable amount of time, we injected permanent stuck-
at faults, which are less likely to be masked. 
B. Results 

We randomly chose 1,000 wires in the multiplier and 
1,000 wires in the adder.  For each chosen wire, we 
performed 48 experiments in which we injected a fault and 
performed the relevant computation (multiplication or 
addition) for a different pair of randomly generated 
operands. For both the multiplier and adder, approximately 
85% of injected faults are masked; this large fraction of 
masked faults is typical of functional units.  It is unlikely 
that any single fault affects the result of a single 
computation. 

Of those faults that are unmasked in the multiplier and 
adder, our Reduced Precision Checkers detect 26.5% and 
48.8% of the resulting errors, respectively.  These detection 
rates appear quite low, but recall that RPC detects the vast 
majority of faults with large impact on the result (i.e., faults 
that cause large errors).  For all unmasked/undetected 
faults, i.e., silent data corruptions (SDCs), we plot the 
percent error in the result for the multiplier and adder in 
Figure 2 and Figure 3, respectively.  The results show that 
the majority of SDCs have percent errors less than 0.01%, 
and more than 90% of the SDCs have percent errors less 
than 1%.  Smaller errors are preferable, in general, and they 
are often easier to tolerate with numerical algorithms, 
particularly algorithms that iteratively converge on a 
solution.  A small error can often be tolerated (i.e., not 
affect the final result) at the cost of the algorithm taking 
more iterations to converge. 

These results show that RPC is indeed viable for 
multiplication.  RPC for multiplication, like RPC for 
addition, detects the vast majority of faults that cause large 
errors. 

VI.  AREA AND POWER OVERHEADS 
We now evaluate the area and power overheads of our 

implementation of RPC for multiplication and addition.  
Recall that our RPC implementation uses 7-bit mantissas 
for the checkers.  The area and power overheads would be 
less (more) for shorter (longer) checker mantissas. 
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A. Area 
We used Synopsys CAD tools to layout our 

consisting of a floating point multiplier and adder
and without RPC, in 45nm technology [8]
show that RPC’s area overhead is 17.8%.   
B. Power 

As with the area analysis, we used Synopsys tools to 
determine the dynamic and static power overheads of 
After laying out the circuitry, we obtained the parasitic 
resistances and capacitances and back
circuits with them.   

To determine the dynamic power, we
multiplier and adder with a sequence of 
generated floating point number inputs.  The results for this 
experiment are shown in Table 1.  

RPC’s total power overhead, including both dynamic 
and static power, is 28%.  Its dynamic power overhead is 
35% and its static power overhead is 16%.  

 
Table 1.  FPU Power.  RPC’s percent overhead in parentheses.
 Baseline RPC (overhead)
Dynamic Power 0.155mW 0.210mW

Static Power 0.098mW 0.114mW

Total Power 0.253mW 0.324mW

 
VII.  COMPARING MULTIPLICATION TO 

Having developed RPC for both addition and 
multiplication, we now present a comparison based on our 
experiences.   

In RPC for addition, the RPC mantissa is with
(base-10) of the full-precision mantissa [2]. As 
Section III, in RPC for multiplication, the RPC mantissa 
within 7 (base-10) of the full-precision mantissa. The 
reduced sensitivity in RPC for multiplication
three times more SDCs with magnitudes greater than
compared to RPC for addition (as shown in
Figure 3). Nevertheless, 90.8% of the SDCs in RPC 
multiplication were less than 1%, thus showing that RPC 
for multiplication can still detect the vast majority
errors. 

Figure 2. RPC for Multiplication
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We used Synopsys CAD tools to layout our FPU–
floating point multiplier and adder—with 

[8]. The results 
 

As with the area analysis, we used Synopsys tools to 
power overheads of RPC.  

, we obtained the parasitic 
resistances and capacitances and back-annotated the 

he dynamic power, we provided the 
multiplier and adder with a sequence of 1,000 randomly 

The results for this 

, including both dynamic 
Its dynamic power overhead is 

35% and its static power overhead is 16%.   

’s percent overhead in parentheses. 
(overhead) 
mW (35%) 

mW (16%) 

mW (28%) 

ULTIPLICATION TO ADDITION 
Having developed RPC for both addition and 

multiplication, we now present a comparison based on our 

addition, the RPC mantissa is within 2 
. As explained in 

he RPC mantissa is 
precision mantissa. The 

multiplication led to about 
more SDCs with magnitudes greater than 1%, 

as shown in Figure 2 and 
, 90.8% of the SDCs in RPC for 

less than 1%, thus showing that RPC 
ct the vast majority of large 

Despite the error sensitivity differences between RPC 
for multiplication and addition, the hardware costs of both 
RPC implementations are quite similar.

VIII.  CONCLUSION

The goal of this research was to
reduced precision checking could be successfully extended 
from addition to multiplication. 
developing RPC for multiplication revealed it is non
to extend but viable.  The experimental results show that 
RPC for multiplication detects the vast majority of 
that cause large errors and is thus a practical technology for 
fault tolerant FPUs. 
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