
1

1 Introduction
A major problem facing the computer and semicon-

ductor industries is the increasing amount of CMOS
process variability [1, 3]. Variability in low-level circuit
parameters, such as transistor gate length and gate oxide
thickness, complicates system design by introducing
uncertainty about how a fabricated system will perform.
Although a circuit or chip is designed to run at a nomi-
nal clock frequency, the fabricated implementation may
vary far from this expected performance.

We have developed architectural techniques for miti-
gating the impact of process variability. We make the
following three contributions:

•We mitigate the impact of having some L1I and
L1D cache frames that are slower than others, by
using small L0I and L0D caches and prefetching.

•We reduce the impact of slow functional units by
giving critical instructions priority for the fast
functional units.

•We alleviate the impact of having slow access
latencies for some registers in the register file, by
renaming the destinations of critical instructions
to fast registers.

All three of our approaches enable us to aggressively
clock the processor with only minor degradation in IPC
(instructions per cycle), thus achieving an overall per-
formance improvement. Our work combines several
ideas—prefetching, L0 caching, and criticality—that
were previously developed for other purposes. Our con-
tributions are using and combining these ideas to over-
come the effects of process variability.

2 Variability in L1I & L1D Cache Latency
We use small L0I and L0D caches (e.g., 2-16

entries) to mitigate the effects of process variability. We
deconfigure slow L1 frames and use the fast L0 frames
for holding the data. By combining the fast L0 with
prefetching, we overcome the loss of the slow L1

frames. We guarantee that the L0 caches have only fast
frames, despite variability, by deconfiguring slow L0
frames.

3 Variability in Functional Unit Latency
We allow a functional unit that is substantially

slower than other identical functional units to take an
additional cycle. To do so, we must address two issues.
First, we must avoid putting slow functional units on the
critical path of a program’s execution. Second, the
instruction scheduler must accommodate variable laten-
cies. Our scheme is criticality-based functional unit
allocation (CFUA). We borrow the previously devel-
oped instruction criticality predictor from Fields et al.
[2] to identify critical instructions.

4 Variability in Register File Latency
Our approach, criticality-based register allocation

(CRA), steers critical instructions to the fast (1-cycle)
registers. When a critical instruction reaches the
Rename stage of the pipeline, its destination register is
renamed to a free fast register, if one is available. CRA
does not ensure that critical instructions will read from
fast registers, because we do not control which registers
are read. However, by having a critical instruction, A,
write to a fast register, we enable instructions dependent
on A to read A’s output from a fast register or the oper-
and bypass network.

References

[1] S. Borkar. Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation. IEEE Micro, 25(6):10–
16, Nov/Dec 2005.

[2] B. Fields et al. Focusing Processor Policies via
Critical-Path Prediction. In Proc. 28th Int’l Symp. on
Computer Architecture, pages 74–85, July 2001.

[3] International Technology Roadmap for
Semiconductors, 2003.

Reducing the Impact of Process Variability with
Prefetching and Criticality-Based Resource Allocation

Bogdan F. Romanescu, Michael E. Bauer, Daniel J. Sorin, and Sule Ozev
Department of Electrical and Computer Engineering

Duke University
{bfr2, meb26, sorin, sule}@ee.duke.edu

Appears in the International Conference on Parallel Architectures and Compilation Techniques (PACT)
Brasov, Romania, September, 2007

