

1

Coset Coding to Extend the Lifetime of Non-Volatile Memory

Adam N. Jacobvitz, Robert Calderbank, and Daniel J. Sorin
Department of Electrical and Computer Engineering

Duke University

Abstract—In this paper, we show how to apply coset
coding to extend the lifetime of non-volatile memories,
including phase change memory and Flash.

1. Introduction

 Non-volatile memory (NVM), such as phase change
memory (PCM) and Flash memory, is attractive for a
variety of purposes and it has become widely used in a
variety of platforms. One challenge with using several
types of NVM is that the NVM cells can be degraded
by being written or erased. Eventually, the
accumulated wear on an NVM cell can render that cell
unusable.

In this project, we explore how error-correcting
codes can be used to record data in a way that reduces
wear on NVM cells, thereby extending the life of the
memory. Specifically, we use endurance coding based
on coset coding [1][2] to minimize the number of writes
and/or erases, depending on the characteristics of the
particular NVM.

2. Coset Coding

The key enabling technology that we use is coset
coding. Coset coding differs from traditionally used
codes in how it maps from a dataword to a codeword.
With standard error correction, such as a Hamming
error correcting code (ECC), there exists a one-to-one
mapping from a k-bit dataword to an n-bit codeword,
where n≥k. The n-k extra bits in the codeword provide
features such as error correction.

With coset coding, there is a one-to-one mapping
from a k-bit dataword to a coset of n-bit codewords.
The set of all possible 2n n-bit strings is partitioned into
equal-size, non-overlapping cosets. In a coset coding,
every n-bit string in a particular coset can be used to
represent the single dataword that maps to that coset.

The appeal of coset coding is that it provides
multiple options for mapping a dataword to a
codeword. That flexibility enables us to choose the
codeword so as to optimize an objective. We show
later in this paper how utilize this flexibility for both
PCM and Flash.

There are many possible coset codes that can be used
to partition a space into cosets. These codes offer
differing trade-offs between cost (the n-k bits of storage
overhead required to store alternative coset

representatives) and benefit (how many options are in
each coset). Coset codes are also compatible with error
correcting codes; we can embed a coset code inside of
an error correcting code such that we get the benefits of
both coset coding and error correction.

Many coset codes lend themselves to efficient
encoding (from dataword to coset) and decoding (from
codeword in a coset to dataword). The potentially
challenging aspect of coset coding is dynamically
searching a coset for the element in that coset that
optimizes the desired objective, but we have shown that
there are efficient schemes for this search.

3. Application to Phase Change Memory

Our first use of coset coding was to extend the
lifetime of PCM [4]. PCM cells suffer wear when their
values change, and thus our goal is to minimize bit
flips. Because we cannot change the number of writes
to the PCM, we are constrained to minimize the number
of bits that flip per write.

Our approach, which we call FlipMin, chooses the
codeword to write based on its Hamming distance from
the existing codeword in the memory location. By
minimizing the Hamming distance between the
previous memory contents and what we then write to
that location, we minimize the number of bit flips.
One cost of FlipMin is that each write now requires a
preceding read to discover the previous codeword in the
memory location; this cost is minimal, however,
because reads are so much faster than writes.

We have experimentally evaluated FlipMin, and our
results show that FlipMin can greatly extend the
lifetime of PCM. We compare FlipMin to ECC and
other previous approaches, and we equalize the
comparisons by starting each simulation at time zero
with the same number of PCM cells. At time zero,
FlipMin has fewer usable memory locations than prior
work, because of its coding overhead. For example,
with a rate ½ coset code, FlipMin’s coding overhead is
100% and thus it has only half the usable memory
locations of a memory with no protection. However,
despite its time-zero disadvantage, FlipMin provides far
greater lifetimes. In Figure 1, we provide an illustration
that is representative of the actual results but omits the
details (e.g., which ECC we use and which coset code
we use) and the exact numbers.

2

Figure 1. FlipMin’s lifetime benefit compared to ECC

4. Application to Flash

Our second use of coset coding was to extend the
lifetime of Flash [3]. Flash is similar to PCM in that it
wears out, but its wearout phenomenon is different.
Flash does not degrade as a result of writes but rather as
a result of erases. Thus our goal is to use coset coding
to minimize the number of erases per write.

Flash is organized into blocks, each of which has
many pages. A page is the granularity at which Flash
can be read/written, and a block is the granularity at
which it can be erased. A block is erased to make
room for new page writes.

Typically, each Flash page is written once before
needing to be erased, when its block is erased, so that
the page can be re-written. The underlying reason that
each page can be written only once is that Flash only
permits charge to be added to a cell, but not removed
(until erase). Thus, re-writing an already written page
would require that the write would only increase the
amount of charge required in each cell. With pages
containing on the order of 1024 cells, the likelihood of
every cell being compatible with a re-write (i.e., the
write only requires charge to be added to every cell) is
virtually zero.

With coset coding, we can write each page multiple
times before needing to erase it. The key to re-writing
is that coset coding provides us with options for what to
write. We can choose to write an n-bit string that is
compatible with the previous contents of the page and
that will maximize the number of additional writes that
are possible. We developed a set of heuristics for
choosing codewords. The heuristics prioritize
compatibility first and then, if we have multi-level cells
(MLCs), choose the codeword that minimizes how
many MLCs are saturated by writing that codeword.

We have simulated a Flash SSD with coset coding,
and the experimental results show that coset coding can
greatly increase the lifetime of the SSD. The lifetime

benefits are particularly pronounced for Flash cells with
at least four levels. We have also implemented coset
coding in a Flash SSD hardware prototype [5], and we
are currently using this prototype for further
experimentation.

5. Conclusions and Future Directions

 Our work thus far demonstrates that we can use
coset coding to extend the lifetime of PCM and Flash.
The work is promising, yet we believe coset coding’s
potential is actually greater than what we have
demonstrated thus far. First, we have used coset codes
that are sub-optimal, in particular the short block codes
used in the PCM work. We have since shown that, in
theory, there is benefit to being able to optimize over
longer blocks. Second, our heuristics for choosing
codewords within cosets are ad hoc; they work well, but
we believe there are opportunities to improve them.
Third, our composition of coset coding with error
coding has assumed equal likelihood of any error, both
in terms of error location (i.e., errors are not spatially
correlated) and type of error (i.e., a 0-to1 bit flip is as
likely as a 1-to-0 bit flip). Other researchers have
shown that real NVM exhibits error types and error
locations that are not equally likely. By leveraging a
priori knowledge of error likelihoods, we believe we
can design codes that are more effective.

6. References
[1] G. D. Forney, “Coset Codes. I. Introduction and

Geometrical Classification,” Information Theory, IEEE
Transactions on, vol. 34, no. 5, pp. 1123–1151, Sep.
1988.

[2] G. D. Forney, “Coset Codes. II. Binary Lattices and
Related Codes,” Information Theory, IEEE
Transactions on, vol. 34, no. 5, pp. 1152–1187, Sep.
1988.

[3] A. N. Jacobvitz, A. R. Calderbank, and D. J. Sorin,
“Writing Cosets of a Convolutional Code to Increase
the Lifetime of Flash Memory,” in Proceedings of the
50th Annual Allerton Conference on Communication,
Control, and Computing, 2012.

[4] A. N. Jacobvitz, A. R. Calderbank, and D. J. Sorin,
“Coset Coding to Improve the Lifetime of Memory,”
in Proceedings of the 19th International Symposium on
High Performance Computer Architecture, 2013.

[5] “Jasmine OpenSSD Platform.” [Online]. Available:
http://www.openssd-
project.org/wiki/Jasmine_OpenSSD_Platform.

