
Architecting Hierarchical Coherence Protocols for Push-button
Parametric Verification

Opeoluwa Matthews1, 2 Daniel J. Sorin1
Duke University1, University of Michigan2

luwa.matthews/sorin@duke.edu

ABSTRACT
Recent work in formal verification theory and verification-aware
design has sought to bridge the divide between the class of proto-
cols architects want to design and the class of protocols that are
verifiable with state of the art tools. Particularly, the recent Neo
work in formal verification theory, for the first time, formalizes how
to compose flat subprotocols with an arbitrary number of nodes
into a hierarchy while maintaining correct behavior. However, it is
unclear if this theory scales to realistic systems. Moreover, there is
a diversity of systems architects would be interested in, to which it
is not clear if the theory applies.

In this paper, we show how the abstract Neo theory can be
leveraged to design a realistic hierarchical coherence protocol. As
such, we present the first realistic hierarchical coherence protocol
verified with fully-automated (push-button) verification tools for all
scales and tree configurations. We explore the practical limitations
posed by both the theory and the verification tools in designing
this verifiable hierarchical protocol. We experimentally evaluate
our protocol, comparing it to more complex protocols that have
optimizations prohibited by the theory and verification tool. Finally,
we discuss how a variety of system configurations and protocols
architects might be interested in can be adapted to the Neo theory,
which we hope opens up the theory to future work in verification-
aware protocol design.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
• Hardware→ Model checking;

KEYWORDS
cache coherence, formal verification, multicore

ACM Reference format:
Opeoluwa Matthews and Daniel J. Sorin. 2017. Architecting Hierarchical
Coherence Protocols for Push-button Parametric Verification. In Proceedings
of MICRO-50, Cambridge, MA, USA, October 14–18, 2017, 13 pages.
https://doi.org/10.1145/3123939.3123971

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123971

1 INTRODUCTION
Cache coherence protocols are used in shared-memory multicore
systems to ensure proper adherence to the underlying memory con-
sistencymodel [30]. Hence, it is important to verify that a coherence
protocol is devoid of bugs. There are two main approaches to this
verification: simulation and formal verification. Formal verification
is the more desirable approach because, unlike simulation, it pro-
vides a mathematical guarantee that a protocol behaves correctly
in every reachable state.

Generally, formal verification is done with either theorem provers
or model checkers. Theorem provers can theoretically be used to
verify any system, including multiprocessors with complex coher-
ence protocols [35]. However, they typically require significant
expertise and considerable manual effort to operate. The verifica-
tion engineer must also have deep knowledge of the system to be
verified and a formal understanding of why the system is correct.
Altogether, these issues could lead to long and costly design and
verification cycles. Model checkers, on the other hand, offer a fully-
automated (push-button) approach to verification. The engineer
simply expresses a model of the system to the model checker, which
traverses the reachable state space of the system. Themodel checker
can then either certify that the system is correct or provide a trace
to show how an erroneous state was encountered. Whenever possi-
ble, model checkers are the preferred tools, given the simplicity of
use and the push-button automation that they provide.

Unfortunately, model checkers suffer from the state explosion
problem. The state space of systems is often too large for the model
checker to explore before running out of memory. As a result, there
is an overly restrictive class of protocols and system configurations
that can be verified with model checkers. Given that the state space
grows exponentially with the number of nodes, the Murϕ model
checker [15], for example, can only verify a realistic coherence
protocol that has a handful of private caches. Also, model checkers
currently cannot verify non-trivial hierarchical protocols, as hierar-
chies introduce significantly more interactions and, consequently,
larger state spaces.

There has been some prior work in designing coherence proto-
cols specifically to be scalably verifiable in model checkers [4, 5, 36,
40, 41]. Unfortunately, all have significant constraints and limita-
tions. Fractal Coherence [41] proposed designing coherence proto-
cols with hierarchies that have self-similarity on each scale; Fractal
Coherence was limited to binary tree configurations. Voskuilen
et al. showed how to collapse the Fractal Coherence hierarchy
into flat directory protocols [36, 37]. PVCoherence [40] showed
how to design flat directory coherence protocols to fit a paramet-
ric model checking technique. Note that this technique involved
manual, iterative refinement of an over-approximated model of
the protocol [10]. Manager-client Pairing (MCP) [4, 5] proposed

1

https://doi.org/10.1145/3123939.3123971
https://doi.org/10.1145/3123939.3123971

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

composing heterogeneous coherence protocols into a hierarchy
using a permission-checking algorithm that maintains coherence.
Unfortunately, MCP was shown to be theoretically flawed [24] and
did not allow for arbitrary degrees at each node.

In this work, our goal is to design hierarchical protocols to be
automatically verifiable without the overt restrictions of prior work
to specific configurations. Hierarchical coherence protocols are
increasingly important and have been proposed as a way to im-
prove scalability as the number of cores in shared-memory systems
increases [4, 23, 27]. In such systems, it would be desirable for ar-
chitects to be able to pick any specific configuration of a cache tree
hierarchy (number of nodes, arity at each node, depth, etc.) based
on factors such as system scale, workloads, cache sizes, etc. Unfor-
tunately, the coherence protocol loses its mathematical guarantee
of correctness if it is instantiated in a configuration for which it
was not verified [2]. Therefore, we seek to be able to verify that a
hierarchical coherence protocol behaves correctly regardless of the
configuration of the hierarchy, which prior work has yet to provide
support for.

A recent work in formal verification theory shows promise
in enabling parameterized verification of hierarchical protocols.
Matthews et al. present the Neo methodology for automatically
verifying hierarchical protocols in a model checker, for any number
of nodes and any arity at each node [24], which was previously not
possible. The key is the theory allows one to reduce the verification
of an entire hierarchy into the verification of flat subprotocols. The
theory provides novel formal properties that, when successfully
checked in a model checker, guarantee that the flat subprotocols can
be composed into any arbitrarily large hierarchy while maintaining
correctness.

While the Neo theory is formally rigorous, there are multiple
reasons it is quite far from being practically applicable. First, it is
unclear if the theory can be used to verify realistic protocols. To
illustrate their approach, Matthews et al. verify only a coherence
protocol, NeoGerman, derived by composing the German protocol
[13] into a hierarchy. The German protocol is a toy coherence proto-
col with three stable states, no transient states, no data forwarding,
and only a dozen transitions. The simplicity of NeoGerman belies
the actual verification scalability of the Neo methodology. Features
of most realistic protocols, such as transient states and data forward-
ing, enable a significant number of interleavings of transitions that
must be checked by a verification methodology like Neo. Second, it
is not clear what performance penalties are imposed on coherence
protocols that are designed to fit the Neo theory. Third, the theory
is abstract and does not flesh out what system configurations and
architectures it can be applied to.

As our first contribution in this paper, we show how to use the
Neo theory to, for the first time, design and verify realistic hierar-
chical coherence protocols using fully automated tools. Initially, in
using the Neo methodology to verify a simple hierarchical protocol
constructed from a baseline MSI directory protocol [30], the model
checker exhausts over 200GB of RAMwithout terminating. This ob-
servation highlights the fact that the Neo verification methodology,
as is, does not scale well with protocol complexity, which forces
us to modify the methodology to be more efficient. As a result,
we successfully design a specific hierarchical coherence protocol,
NeoMESI, such that it can be verified to be correct regardless of the

number of nodes or arity at each node. NeoMESI is a hierarchical
directory protocol that supports a fully-inclusive cache hierarchy
and provides MESI permissions on each level, with transient states
to still allow for concurrency while requests are pending. Parent
nodes can communicate with children, and nodes on the same level
can communicate among each other for data forwarding.

As our second contribution, we use our process of designing
NeoMESI to explore some protocol optimizations and whether or
not the verification tools and the Neo theory can successfully verify
them. We start from the simpler baseline hierarchical directory pro-
tocol discussed above. Then, we iteratively add features to attain a
protocol beyond which the theory and model checker exhaust hard-
ware resources or time bounds in the verification. This endeavor
is important because, to guarantee correctness as hierarchies are
scaled, Neo provides additional invariants that must be checked
in the model checker. These additional invariants place more bur-
dens on the model checker. Hence, our endeavor seeks to capture a
snapshot of what protocols and features current formal verification
theory and tools can handle.

Additionally, we evaluate the effects that the optimizations pre-
cluded by the Neo theory and verification tools have on perfor-
mance by comparing the formally verified NeoMESI to protocols
with these precluded optimizations. Since we are unaware of any
other theory that enables push-button parametric hierarchical veri-
fication, we note that these optimized protocols are currently not
amenable to push-button verification. Using the gem5 full-system
simulator [7], we run benchmarks from the PARSEC suite [6] with
multiple cache hierarchy organizations on each protocol. Over-
all, we find that NeoMESI performs statistically on-par with these
optimized protocols.

As our final contribution in this paper, we describe how to model
as Neo Systems multiple types of systems and protocols that do
not seem like obvious fits to the theory. This is useful because
architects might be interested in using Neo to design a wide variety
of protocols beyond tree directory protocols like our NeoMESI.
However, the Neo theory is quite abstract and, for some systems,
it is not intuitive how to directly model them as Neo Systems. We
hope that this contribution and, in general, our work in this paper
can enable future work in verification-aware coherence protocol
design based on the recent Neo theory.

2 THE NEO THEORY
Parametric verification involves verifying a protocol with the num-
ber of nodes expressed as a abstract parameter; this parameter can
then be instantiated to any arbitrary number when the protocol
is implemented [32]. A long-term goal of the formal verification
community has been to develop and improve automated parametric
verification tools. Unfortunately, until recently, automated paramet-
ric verification tools and techniques [12, 16, 32] could only verify
flat (non-hierarchical) protocols. Parametric hierarchical verifica-
tion, in which the arities at all the nodes in a tree are expressed as
independent parameters, consistently led to exhaustion of memory,
even for trivial systems.

The goal of the Neo theory [24] was to extend push-button para-
metric verification to hierarchical protocols. The Neo theory is
abstract and covers different types of protocols (e.g., coherence,

2

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Closed Neo System

LL

…L

Open Neo Systems

I

L

L L

L

… …

I

I

I I

R

L L

I

… LLL

I

Figure 1: Illustration of a Neo Hierarchy.

power management, distributed lock management, etc.). The sys-
tem organization Matthews et al. target is illustrated in Figure 1.
There is one root node (R) and an arbitrary number of leaf (L) and
intermediate nodes (I). These nodes could be, say, cache controllers
in a coherence protocol or compute resources in a power manage-
ment protocol. The hierarchy need not be balanced, as each root
or intermediate node can have any number of children. Communi-
cation is permitted between parents and children (solid lines) and
among siblings nodes (dotted lines).

At the core of the Neo theory is a systematic approach to break-
ing down a 2-dimensional hierarchical verification problem into the
verification of a handful of flat subprotocols. The theory relies on a
number of formal techniques to enable this approach. First, the Neo
theory formulates a novel safety definition that takes a protocol’s
safety invariant and represents it in a hierarchical form. Second,
the Neo theory provides a novel Safe Composition Invariant. This
invariant helps guarantee that any hierarchy satisfying the Neo
safety property can be repeatedly scaled by replacing a leaf with a
subhierarchy while still satisfying the Neo safety property. Hence,
we can construct hierarchies like that in Figure 1 while maintaining
safety. Finally, the theory provides a mechanism for guaranteeing
that the (hierarchical) Neo safety property implies safety for the
particular protocol of interest.

In this section, we seek to provide the reader with an intuitive
summary of the Neo theory in the context of coherence. Given
that the theory is quite robust, we inevitably cannot present in
this paper all the crucial details required for properly applying the
theory. Hence, we refer the more interested reader to the Neo paper
[24] for a more complete account.

In the following sections, we first define Neo Systems. Then, we
discuss the formal techniques the theory employs to reduce the
2-dimensional verification problem to a 1-dimensional problem.
Finally, we discuss how to verify Neo Systems in a fully automated
model checker.

2.1 Defining Neo Systems
The Neo theory formally specifies a class of transition systems to
which Matthews et al.’s parametric verification methodology can

be applied. This class is called Neo Systems. There are 3 building
blocks of Neo Systems such as the one in Figure 1:

(1) identical leaf nodes (L)
(2) multiple, possibly different, internal nodes (I)
(3) a single root node (R)
There are two kinds of Neo Systems: Open Neo Systems and

Closed Neo Systems. Capped by an internal node, an Open Neo
System is any strict subtree in a Neo hierarchy. An Open Neo Sys-
tem can communicate with the parent and siblings of the internal
node. Capped by a root node, a Closed Neo System is a complete
Neo hierarchy and cannot engage in any external communication.
Within any Open (Closed) Neo System, the internal (root) node can
communicate internally with each composed Open Neo System
(illustrated with solid edges). Also, within any Neo System, all com-
posed Open Neo Systems (siblings) can communicate internally
among each other (illustrated with dotted edges).

Defined recursively, a leaf is an Open Neo System. A collection
of an arbitrary number of Open Neo Systems composed with an
internal node is an Open Neo System (the darker shading in Figure
1 highlights a few examples of Open Neo Systems). A Closed Neo
System is constructed by composing an arbitrary number of Open
Neo Systems with a root node (lighter shading in Figure 1). For
nodes or Neo Systems B and D, we denote composing B and D by
B ⊙D. Then, formally, Open (Closed) Neo System Ω = A⊙Ω1 · · · ⊙
Ωn , where A is an internal (root) node and each component Ωi is
an Open Neo System.

This classification of Open and Closed Neo Systems is important
because the Neo theory ultimately relies on proving that within
any Neo System, all Open Neo Systems behave indistinguishably
from a leaf node. The recursive definition is useful because the
Neo theory relies on formulating invariants such that they apply
on each level of the hierarchy. Also, note that a hierarchy can
have multiple “flavors” of Open Neo Systems to allow for different
behaviors in different levels of the hierarchy. This heterogeneity
can be introduced by using different internal nodes to compose with
the leaves (or other Open Neo Systems). We discuss heterogeneity
further in Section 6.

2.2 Neo Safety Property
The Neo theory relies on a recursive safety definition that is formu-
lated from a given protocol’s safety invariant to reflect a hierarchical
structure. We discuss this Neo safety definition here.

In Neo Systems, states capture all variables that can be changed
in a transition. In a coherence protocol, this could include message
buffers, cache data, coherence permissions, and sharer sets.

Cache coherence is typically defined in terms of coherence per-
missions of caches. For example, in a typical MOESI protocol, the
invariant is that if a cache has a block in E orM , then every other
cache must have the block in I [30]. The Neo theory formalizes
safety properties by using sum functions to summarize states of Neo
Systems into their appropriate protocol permissions (e.g., MOESI in
coherence). Defined recursively, these sum functions take in states
of internal or root nodes and summaries of component Open Neo
Systems to summarize the state of the entire subhierarchy.

For a node or Neo System B, let states(B) denote the set of all
states of B. Let P be the set of coherence permissions, including a

3

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

L2 L1

Buffer Buffer

(1) Inv

S
Inv

(1) L2 L1

Buffer Buffer

(2) Inv

S I
(2)

L2

Buffer

(3) L1InvAck

Buffer

I
Inv Ack

(3)
L2

Buffer

(4) L1InvAck

Buffer

IL1 L1

Sharers

L1

Sharers

L1

Sharers

L1

Sharers

(4) L1

A) B)

C) D)

Figure 2: Illustration of Neo System Executions.

special term bad (e.g., {M,O,E, S, I , bad}). For any leaf L,
sumL : states(L) → P is a function that takes in a leaf state S and
returns the coherence permission component of that state.

Let A be a root or internal node and Ω0, . . . ,Ωn−1 be Open
Neo Systems. Then, for any (Open or Closed) Neo System Ω =
A ⊙ Ω0 ⊙ · · · ⊙ Ωn−1, its summary function sumΩ : states(A) ×
sumΩ0 (states(Ω0)) × · · · × sumΩn−1 (states(Ωn−1)) → P takes in a
state of the internal or root node and summaries of states of the
component Open Neo Systems and returns an output from P . The
theory requires the following of sumΩ :

(1) if any of the component Open Neo Systems Ωi summarizes
to bad, then sumΩ must output bad.

(2) if the summaries of the component Open Neo Systems consti-
tute a safety violation, with respect to the protocol’s original
safety property, sumΩ must output bad. For example, in a
MOESI coherence protocol, if sumΩ0 outputs E and sumΩ1
outputs O , then sumΩ must output bad.

The Neo Safety definition is as follows: A Neo System is said to
be safe if no reachable state summarizes to bad. The above require-
ments force all safety violations anywhere within a subhierarchy to
be captured by the output of the summary function of the Closed
Neo System at the top of the entire hierarchy.

2.3 Safe Composition Invariant
The Neo theory formulates novel properties that enable one to
guarantee that a subhierarchy (Open Neo System) can be used to
scale a Neo System (by replacing a leaf) while still maintaining the
Neo Safety property defined in Section 2.2. The key behind the Safe
Composition Invariant is that it ensures that at “runtime,” for certain
“externally visible” properties of transitions, every transition of an
Open Neo System Ω could be matched by a transition of a leaf node
L, in which case we say Ω implements L.

To formalize the Safe Composition Invariant, we first define exe-
cutions, which capture all possible behaviors that can be exhibited
by a Neo System. Then, we describe how the Neo theory summa-
rizes those executions to capture the essential properties relevant to
maintaining correctness. After that, we can formalize the invariant.

2.3.1 Executions. Let Ω be a Neo system. Then, an execution e
of Ω is a sequence e = s0,a1, s1, . . . , sk−1,ak , sk . Each si is a state
of Ω. s0 is a start state (for coherence, that typically means empty
message buffers and sharer sets and I permissions for cache blocks).

Each tuple t = (si ,ai+1, si+1) forms a transition where Ω moves
from state si to si+1, with action ai+1 on the edge of the transition.
If Ω is sending a message to another node with transition t , then
ai+1 is called an output action and t is an output transition. If it is
receiving a message in transition t , ai+1 is an input action, which
makes t an input transition. Otherwise, ai+1 is an internal action,
in which case t is an internal transition, where Ω “silently” changes
its state from si to si+1.

We illustrate executions in Figure 2. Here, an L2 cache controller
is trivially composed with an L1 controller to form an Open Neo
System Ω = L2⊙L1. Shown in Fig. 2A, L2’s state includes the sharer
set (initially containing only L1) and an incoming message buffer
(initially empty), while L1’s state includes its MOESI coherence
permission (initially S) and an incoming message buffer (initially
empty). At time (1), L2 sends an invalidation to L1. Also at (1),
L1 makes a state transition—it changes its message buffer from
empty to containing the invalidation message. At time (2) (Fig. 2B),
L1 pops the invalidation message from its buffer and changes its
coherence permission from S to I. At time (3) (Fig. 2C), L1 sends an
invalidation ack to L2 and L2 makes a state transition to receive
and buffer the message at the same time (3). At time (4) (Fig. 2D),
L2 makes a final state transition to pop the invalidation ack from
its buffer and remove L1 from its sharer set.

Let the states of L2 be represented in the form
(SharerSet,MessageBuffer) and the states of L1 in the form
(CoherencePermission,MessageBuffer). Let λ represent internal tran-
sitions of L2 and L1. Then, the execution of Ω illustrated in Figure
2 is:
eΩ = (({L1}, []), (S, [])), Inv,
(({L1}, []), (S, [Inv])), λ,
(({L1}, []), (I , [])), InvAck,
(({L1}, [L1InvAck]), (I , [])), λ,
(({}, []), (I , [])).

2.3.2 Execution Summaries. To help define the composition in-
variant, the Neo theory uses sum functions to summarize executions
as follows. Let Ω be any Open Neo System (i.e., a leaf or composite
Open Neo System) and let e = s0,a1, s1, . . . ,ak , sk be an execution
of Ω. Then, sum(e) is a sequence that is generated as follows1:

• substitute each si with sumΩ(si)
• substitute each internal ai with the symbol λ.

Observe that sum(e) now contains precisely the information
about the execution that is pertinent to safety and interactions with
systems Ω is composed with.

2.3.3 Implementation Relation. Now we are ready to formally
state the Safe Composition Invariant, which is as follows. For every
execution eΩ of Open Neo System Ω, there must exist an execution
eL of leaf L such that sum(eL) = sum(eΩ). When this property holds,
Ω is said to implement L.

2.4 Mapping Neo Safety to Coherence
The Neo definition of safety is quite abstract and captures a wide
range of safety invariants. However, we are specifically interested

1Matthews et al. present a more relaxed definition of sum in the Neo theory. However,
they use the stricter definition we present here for their case study because it is more
amenable to model checking.

4

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

in coherence invariants. Hence, we must choose sum functions
such that they output bad whenever there is a coherence violation
anywhere in a subhierarchy. In their case study, Matthews et al.
use a simple summary function which we believe would cover
most coherence protocols, including the NeoMESI protocol that we
design and verify (Section 3).

Let Open Neo System Ω = A ⊙ Ω0 ⊙ · · · ⊙ Ωn−1, where A is
an internal node and each Ωi is an Open Neo system. Keep, as
part of the state of A, a variable, Permission, that ranges over the
permission set P .

Then define the coherence summary function
sumc (Ω) ≡ Permission, where the sumC function always outputs
the value of Permission. For a leaf L, sumc (L) simply returns its
coherence permission.

Additional requirements must be added to guarantee that sumC
catches all coherence violations
(i.e. Permission , bad implies the subhierarchy belowΩ is coherent).
Given the partial ordering < of coherence permissions—I < S,O <
M,E < bad—these properties are as follows:

(1) Permission of Ω must always be greater than or equal to the
summary of each Ωi .

(2) for two distinct Ωi and Ωj , if Ωi summarizes to E orM and
Ωj does not summarize to I , Permission of Ω must return
bad.

2.5 Neo Verification Methodology
The goal of the Neo theory is to verify that every Neo System
satisfies safety. The Neo safety definition and Safe Composition
Invariant above are not much help if we still have to pass full Neo
systems into model checkers to verify them, as model checkers
cannot handle hierarchical protocols. However, the Neo theory was
able to prove that one need only pass flat Neo Systems into a model
checker to verify properties that guarantee safety of any arbitrary
hierarchical Neo System.

Matthews et al. prove that any arbitrary Neo System one con-
structs satisfies Neo safety, given the following two antecedents:

Antecedent 1: Let A be an internal or root node and L be a leaf
node. Then, flat Neo System Ω = A⊙L⊙ · · · ⊙L satisfies Neo safety.

Antecedent 2: Let A be an internal node, L be a leaf node and
flat Open Neo System Ω = A ⊙ L ⊙ · · · ⊙ L. Then, Ω implements L.

If the above two antecedents hold, then one can construct any
Neo system like Figure 1 and it would satisfy Neo safety. Coupled
with proving specific properties that connect Neo safety to a proto-
col’s safety invariant (Section 2.4), that would imply that any Neo
System satisfies the protocol’s safety invariant.

The Neo theory presents a methodology to prove in an auto-
mated parametric model checker that the flat Neo Systems satisfy
the two antecedents above and the additional coherence-specific
properties for the sumC summary function in Section 2.4. Paramet-
rically verifying Neo Systems involves two tasks: verifying that
Neo Safety holds and verifying that the Safe Composition Invariant
holds. We discuss these tasks below.

2.5.1 Verification of Neo Safety. To verify Neo safety of the flat
Neo Systems, one must first model them in a parametric model
checker. It is crucial that the models of the flat Open Neo Systems

C1

C3

C2S S

Inv(1)

(2) (3)

C4

InvAck(6)

C1

C3

C2S

(4) (5)

C4


(2)
(3)

(4)

(5)

(4)
I S

(5)
I C1

C3

C2I

InvAck(6)

S S S I
(6)

I

C4

Inv(1)

S

Permission:
S S I

(6)

L

Permission:
S

Permission:

Time

Figure 3: Illustration of Proof of Implementation Relation.

also contain all input and output transitions, which are used for
communication with other subsystems they are composed with.

Every transition in the model checker must have a unique name,
which corresponds to the actions. One must then have the model
checker verify that, in every transition, Permission (the output
of sumC) never evaluates to bad. One must also have the model
checker verify the coherence-specific properties for the sumC sum-
mary function (specified in Section 2.4).

2.5.2 Verification of Safe Composition Invariant. The second
antecedent in Section 2.5 requires that we prove that a flat Open
Neo System implements a leaf. Intuitively, this proof is done by
modeling a leaf and each Open Neo system in parallel and showing
that, for every transition of the Open Neo system Ω, there exists
a matching leaf L transition. In Section 4.1, we describe Matthews
et al.’s specific approach to this proof and our optimizations to it.
Here, we provide some intuition.

In Figure 3, we illustrate this proof by showing how L matches
Ω’s transitions in satisfying an invalidation request. Ω is a flat Open
Neo System with internal node (or directory) C3 composed with
leaf nodes (cache controllers) C1 and C2. The leaf L that Ω must
implement is simply a cache controller C4. At time (1), Ω makes
a transition on an input action Inv and L matches the transition.
From times (2) through (5), C3 collects invalidations from its chil-
dren, which all constitute actions internal to Ω. L matches these
transitions by simply stuttering on internal actions (λ) and keeping
its coherence permission the same. Finally, at time (6), Ω sends an
output action InvAck via C3 and changes Permission from S to I,
which is matched by L.

3 NEOMESI: DESIGNING A NEO COHERENCE
PROTOCOL

In designing verification-aware coherence protocols, the role of
the architect is to adhere to the requirements about transitions,
composition, communication, organization of nodes, etc., specified
by the Neo theory. The architect must also bake into the design Neo
properties such as the Safe Composition Invariant and the recursive
Neo Safety property. This then produces a protocol amenable to
fully automated hierarchical parametric verification.

There are many classes of coherence protocols one could design
with the Neo theory. As a contribution of this work, we illustrate
the design process by picking one concrete class of protocols—tree

5

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

directory protocols—and designing and verifying a realistic protocol
from that class. We call our protocol NeoMESI.

There are several limitations that are imposed by both the theory
and the model checker that could prohibit certain features from a
Neo protocol. Specifically, it was not clear how the Neo methodol-
ogy scales with protocol complexity. In fact, we found that using
the Neo verification methodology as is, we could not verify a base-
line MSI tree directory protocol. Hence, as part of our contribution,
we modify the Neo verification methodology to be more scalable,
which we discuss in Section 4.1. Additionally, we employ a system-
atic approach to designing NeoMESI to get some insight into what
features current formal verification theory and tools can handle.
We started from the baseline MSI tree directory protocol and it-
eratively added optimizations until the theory or tools rendered
the protocol unverifiable with the Neo methodology. NeoMESI was
the last verifiable version in this process. We defer the discussion
of this process to Section 4. In this section, we describe the final
NeoMESI protocol.

NeoMESI is an inclusive hierarchical directory cache coherence
protocol where each subtree is rooted by a directory subprotocol
that provides MESI permissions for its children. Each directory may
or may not be collocated with a cache (i.e., L2, L3, etc), depending
on the architects’ preferences. NeoMESI allows nodes sharing the
same directory to forward data to each other. Note that the protocol
does not assume symmetry or balance in the tree hierarchy as it is
verified to be correct in all configurations of the tree.

Aswe designedNeoMESI, we ensured therewas a direct mapping
between each NeoMESI node and nodes in the Neo generic transi-
tion system illustrated in Figure 1. Each private cache controller is
a leaf L, each intermediate directory controller is an internal node
I and each root directory controller is a root node R.

We need to design two subprotocols with which to scale our
hierarchy: a Closed Neo System and an Open Neo System. Note
that for heterogeneous protocols, we would need to design as many
Open Neo Systems as needed. We discuss heterogeneity in Section
6.1.

3.1 Closed Neo System
For our Closed Neo System, we use a 1-levelMESI directory protocol
that has a number of L1 caches composed with a root directory.
The L1 caches can forward data to each other.

3.2 Open Neo System
To get an Open Neo System, we keep the L1 caches the same from
the Closed Neo System but make a number of modifications to
the root directory to make it into a Neo internal node (or internal
directory). We modify the transitions of the root directory such
that, to satisfy certain requests, the intermediate directory is able to
communicatewith a parent directory indistinguishable fromhow an
L1 cache communicates with a directory. The intermediate directory
is also able to forward data to its siblings (L1 cache controllers or
other intermediate directories).

We instantiate in the intermediate directory the variable
Permission that keeps track of what coherence permission appears
to be held by the entire subhierarchy below the intermediate direc-
tory. As discussed in Section 2.4, we enforce the simple principle

that no child of an intermediate directory can have higher coher-
ence permissions than that of the variable Permission according to
the partial ordering: I < S,O < E,M . We will refer to this as the
permission principle.

Before a block is allocated by the intermediate directory,
Permission is initialized to Invalid. Upon receiving a request, the
directory may satisfy it within the subhierarchy if Permission is
high enough. Otherwise, it must relay the request to its parent
directory to avoid violating the permission principle.

Figure 4 helps illustrate how requests are satisfied in NeoMESI.
The illustration starts with L1 cache controllers C1 through C4 in
coherence states I, I, I, and M, respectively. Intermediate controller
C5 has Permission in I and intermediate controller C6 has Permission
in M. Events such as sending messages and changing states are
numbered to indicate the order in which they occur.

At (1), C1 sends a GetShared (GetS) request to its parent directory
C5. Because C5 has Permission in I, it must relay the request to its
parent directory C7 (2). Note that C5 and C7 become blocked to
all requests at (1) and (3), respectively, because NeoMESI assumes
an interconnection network that does not support point-to-point
ordering, as discussed in Section 4 below. The request is forwarded
down the hierarchy until it gets to C4 at (4). At (5), C4 goes from
state M to S and sends the data to its parent controller C6. Since
sibling-sibling communication is allowed, C6 can send the data to
C5 at (6) and C5 can change its variable Permission to S at (7). C5
can finally send the data to C1. At (9) and (10), respectively, C1
and C5 finally send Unblock messages to their parents, which both
unblock the parents and update them with the valid data.

4 THE PROCESS OF DERIVING NEOMESI
Upon embarking on this work, it was not clear how the Neomethod-
ology applies to more realistic protocols than the toy NeoGerman
that Matthews et al. verified. There are two factors that constrain
what features are possible with Neo protocols: the theory itself
and the scalability of verifying Neo protocols in a model checker.
Note that the latter factor depends both on the model checking
tool and the Neo verification methodology. In the course of this
work, we indeed uncover scalability issues with the Neo verification
methodology. Specifically, in attempting to use the Neo method-
ology to verify a baseline tree directory protocol that composes a
simple MSI directory protocol [30] into a hierarchy, we find that
the model checker hangs after exhausting 200GB of memory. As
part of our contribution in this work, we propose modifications to
the verification methodology to improve its scalability (Section 4.1).
Furthermore, we iteratively add features to the tree MSI directory
protocol to see how they affect verifiability (Section 4.2). This helps
provide a snapshot on whether or not current formal verification
theory and tools can handle certain desirable protocol features.

As our parametric model checker, we use Cubicle [11], which
represents the state of the art. We run Cubicle on a 2.4GHz Intel®
Xeon® processor, setting a time bound of 2 days and a memory
bound of 50GB.

6

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

C1

C5

C2

C7

C3

C6

C4

GetS

GetS

I

I I I M

(1)

(2) (3)

(4)

Fwd_GetS

Fwd_GetS

C1

C5

C2 C3

C6

C4

Data
Data

I I I M

(7)
(5)

(6)

S
(8) S

(5)

DataI S
(7)

C1

C5

C2

C7

C3

C6

C4

Unblock

Unblock

S I I S

S S

(9)

(10)

M S
(4)

S

A) B) C)
C7

Figure 4: Illustration of NeoMESI satisfying a coherence request.

C1

C5

C2

C7

C3

C6

C4

GetS

GetS

I

I I I M

(1)

(2) (3)

(4)

Fwd_GetS

Fwd_GetS

C1

C5

C2

C7

C3

C6

C4
I I I M

(5)

(5)

S
(6) S

(5)

Data

C1

C5

C2

C7

C3

C6

C4

Unblock

Unblock

S I I S

I S

(7)

(8)

Data

S
(8)

I S

A) B) C)

M S
(4)

Figure 5: Illustration of NS-MESI satisfying a coherence request.

C1

C5

C2

C7

C3

C6

C4

GetS

GetS

I I I M

(1)

(2) (3)

(4)

Fwd_GetS

Fwd_GetS

C1

C5

C2

C7

C3

C6

C4
I I I M

(5)

S
(6) O

(5)

Data

I S
(2)

SM O
(4)

A) B)

O

Figure 6: Illustration of NS-MOESI satisfying a coherence request.

4.1 Modifying the Neo Verification
Methodology

First, we describe in more detail the Safe Composition Invariant
verification methodology. Then, we discuss its scalability problems.
Finally, we propose modifications to it.

4.1.1 Initial Approach. Recall that in order to verify the Safe
Composition Invariant (Section 2.5.2), Matthews et al.’s verification
approach requires us to model the leaf L and Open Neo System Ω
side by side to ensure that L canmatch eachΩ transition. Hence, like
them, we forced the model checker to strictly alternate between an
L transition and an Ω transition, starting with an Ω transition. After
each Ω transition (L transition), we updated a variable Ω_action
(L_action), which represents the action of the transition; the variable
is set to λ if the transition’s action is internal. Also, after each Ω
transition, a variable Ω_just_ran is set. The model checker is made

to verify that the following expression is invariant:

Ω_just_ran →
(Ω_action = L_action ∧ Ω_Permission = L_Permission) (1)

where Ω_Permission represents the Permission variable of Ω and
L_Permission represents the coherence permission of L.

Matthews et al. observe that the model checker could terminate
after reaching an Ω transition after which no L transition can fire
(i.e., all L transitions have their guards evaluate to false). While
this would imply that the Safe Composition Invariant failed, the
model checker would falsely report that all properties passed. To
avoid this situation, they also require one to check that at least one
L transition can fire after an Ω transition. They do this by asking
the model checker to verify as invariant the logical disjunction of
the guards of all L transitions, given that an Ω transition has just
run. Where Ω_just_ran represents a variable that is set after each
Ω transition and L_guardi is the guard expression of L transition i ,

7

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

the invariant would be expressed as follows:

Ω_just_ran → (L_guard1 ∨ L_guard2 ∨ · · · ∨ L_guardn) (2)

4.1.2 Inefficiency of Initial Approach. For several reasons, the
above methodology was not scalable beyond a toy protocol like
NeoGerman. First, forcing the model checker to alternate between
Ω and L transitions leads to a much larger reachable state space
than that of the original subprotocol Ω. Consequently, the memory
consumption required to keep track of visited states is significantly
increased. Having more transitions to explore (the L transitions)
also increases the runtime. Second, observe that the formulation in
(2) will typically be a complex logical expression. Each L_guardi
is already a complex expression that determines when a transition
should fire, and there could be dozens of leaf transitions, unlike the
handful in NeoGerman. For every state to be explored, the model
checker must check if it satisfies the invariants, which is a time
consuming problem for an expression like (2).

4.1.3 Modifications to the Methodology. We observe that, to
enable the model checker to pick the right L transitions at runtime,
the Neo methodology already requires one to statically identify
which L transition shouldmatch eachΩ transition.We grant that we
cannot statically determine if the L transition guards can evaluate to
true in order to match a given Ω transition and we cannot statically
determine what the values of Permission variables will be after each
transition. Nonetheless, we can leverage the static matching to
simplify the invariant (2) and reduce the number of transitions.

First, instead of alternating between Ω and L transitions, we
embed in the body of each Ω transition the corresponding L tran-
sition. The state updates of the L transition are made if the guard
expression of the L transition evaluates to true. Finally, a variable
L_could_fire is updated to the value of the guard expression of
L. These instrumentations are done automatically with a script.
Our approach has similarities with Park et al.’s [26], but we verify
different types of implementation relations, our proofs are in a
parametric setting, and we cannot update L’s state with functions,
as Cubicle does not provide that support. Our setup is illustrated in
the psuedocode below.

t r a n s i t i o n Ω _ a c t i o n (<Ω guard exp r e s s i on >) {
Ω t r a n s i t i o n body {

<Ω s t a t e updates >
i f (<L guard exp r e s s i on >) {

<L s t a t e updates >
}
L _ c o u l d _ f i r e := <L guard exp r e s s i on >

}
}

Second, instead of the complex expression in (2), we ask the model
checker to prove the following is invariant:

L_could_fire = true (3)
To compare our modifications with Matthews et al.’s original

approach, observe that after every Ω transition, we effectively re-
duce (2) to Ω_just_ran → L_guardi (involving only one L guard),
which is, in fact, logically stricter than the original expression. Intu-
itively, our scalability advantage lies in the fact that, before model

checking, we already know which L_guardi would allow the appro-
priate L transition to fire (if one exists). So, we can use a bolder, but
simpler, logical expression for the model checker to verify at each
step. Also, observe that our modification to reduce the number of
transitions updates the states of L in the same way as they would
be updated in a separate transition. L states are updated only if the
guard conditions evaluate to true.

4.2 Iteratively Adding Features
After making these modifications to the Neo verification method-
ology, we were able to successfully verify the tree directory pro-
tocol composed from an MSI directory protocol [30] on each level
(discussed above). This was the first protocol in our iterative de-
sign/verification process. This initial protocol does not support
non-blocking directories or a fully inclusive cache hierarchy (e.g.,
it does not support explicit eviction notifications). We then iter-
atively added features and attempted to verify the protocol with
our modified methodology at each step. In the sections below, we
outline our findings for each feature we sought to add.

4.2.1 Related to Theory. In a hierarchical protocol, a feature
that architects could be interested in is having, say, caches that do
not share a parent directory directly forward data to each other [38].
This direct data forwarding could reduce the latency of satisfying re-
quests and network bandwidth. Unfortunately, all direct non-sibling
communication is explicitly prohibited by the Neo theory. Such
communication significantly complicates the theory and verifica-
tion methodology, so Matthews et al. deferred enabling non-sibling
communication to future work.

4.2.2 Related toModel Checking Scalability. We considered three
features that could affect whether or not the verification of a proto-
col can be completed within reasonable bounds of time and hard-
ware resources: non-blocking directories, explicit eviction notifica-
tion to parent directories, and coherence permissions (specifically,
presence of the E and O states). Note that these features are com-
patible with the Neo theory itself.

Non-blocking Directories:When a directory has a number of
requests buffered, it is preferable for the directory to process the
requests back-to-back by sending data or forwarding the request,
instead of blocking to wait for completion messages from the re-
cipients between requests. It is challenging to design deadlock-free
protocols with non-blocking directories if the underlying intercon-
nection network does not provide the guarantee of point-to-point
ordering [30].

Unfortunately, modeling ordered buffers requires more complex
data structures than what Cubicle supports. This restriction is delib-
erate by the developers because it would otherwise make the model
checking intractable by significantly increasing memory consump-
tion and sabotaging the optimizations in the underlying model
checking algorithm. Such restrictions on complex data structures
are typical among parametric model checkers [16, 32, 40].

Support for Inclusive Cache Hierarchy: To obviate the need
to explicitly represent the coherence state of all blocks in memory,
many protocol designs opt for an inclusive cache hierarchy [23, 30].
Two common optimizations help improve the performance of inclu-
sive protocols. First, before evicting a block, a cache controller first

8

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

evicts the block in all its children that have it cached. Second, upon
evicting a block, cache controllers send explicit eviction notifica-
tions to their parent directories [14, 23]. These optimizations add
additional transitions to the model checker, which both increase
memory consumption and verification time.

Fortunately, we found that we were able to have a successful
verification even with this feature and optimizations present.

Presence of the E and O States:Many modern coherence pro-
tocols have the E(xclusive) and O(wned) states. Unfortunately, these
states add more transitions to the protocol, which increases the
memory consumption and verification time.

While we were able to add the E state and get a successful veri-
fication, we found that the model checker could not handle the O
state.

4.2.3 Summarizing Findings. In summary, we found that, to
keep our protocol verifiable within the time and memory bounds,
were able to add only two optimizations: the E state and support
for fully inclusive hierarchies. Two features the model checker
could not handle were the O state and non-blocking directories. We
were also unable to add non-sibling communication because it is
explicitly prohibited by the Neo theory.

5 EVALUATION
In this section, we experimentally evaluate our formally verified
NeoMESI protocol. While performance is not the focus of this pa-
per, we still want to determine the effects that the optimizations
prohibited by the Neo theory and verification tools have on per-
formance. Hence, we designed two protocols that feature these
optimizations so that we can compare them against our verifiable
NeoMESI. Note that these two protocols are unverifiable with cur-
rent model checking tools, given that we are unaware of any other
theory that enables push-button parametric verification of hierar-
chical protocols. We describe these protocols in Section 5.1, our
experimental methodology in Section 5.2 and our results in Section
5.3.

5.1 Comparison Protocols
In Section 4, we discussed optimizations that we could not add to
NeoMESI because they either violated the Neo theory or made the
model checker exhaust time and memory bounds. In this section,
we describe NS-MESI and NS-MOESI—two protocols we designed
by adding these prohibited optimizations to NeoMESI.

5.1.1 NS-MESI: Adding Non-sibling Communication. As discussed
earlier, the Neo theory explicitly prohibits non-sibling communica-
tion, which precludes data forwarding between cache controllers
that do not share a parent. We make modifications to NeoMESI that
violate this principle and call the new version NS-MESI.

Figure 5 illustrates how requests are satisfied in NS-MESI and we
compare against NeoMESI (Figure 4). Events at times (1) through
(4) are identical for NeoMESI and NS-MESI. However, in NS-MESI,
upon receiving the forwarded GetS, C4 directly sends the data both
to its parent (the new owner) and C1. This saves a hop. As with
NeoMESI, Unblock messages are sent after C1 receives the Data,
updating C5 and C7 with the valid data. However, observe that C5

Table 1: Simulation System Configurations

Cores and ISA 32 in-order x86 cores

Frequency 2GHz

OS Linux

Inclusivity Fully Inclusive Hierarchy

Cache Block Size 64 Bytes

L1 I&D Caches 32KB, 2-way, 2-cycle

L2 Cache 4MB, 8-way, 6-cycle, Unbanked

L3 Cache 64MB, 16-way, 16-cycle, Unbanked

DRAM 2GB, 160-cycle

Link Bandwidth 32GB/s

Link Latency 1-cycle

Processor and OS

Memory Hierarchy

Network

now changes Permission from I to S after an Unblock message from
C1 at (8), instead of after a Data reply from C6.

5.1.2 NS-MOESI: Adding the O State and Eliminating Blocking.
Next, we add to NS-MESI the optimizations that we could not verify
NeoMESI with within reasonable time and memory bounds. Those
optimizations are the O state and eliminating blocking in directories.
We call this version NS-MOESI.

Figure 6 illustrates how requests are satisfied in NS-MOESI.
Events from time (1) through (4) are identical between NS-MESI
and NS-MOESI, except for the fact that, upon receiving the for-
warded GetS at time (4), C6 can immediately change Permission
to the newly added O state, without blocking. Upon receiving the
forwarded GetS, C4 can transition to O and directly forward the
data to C1. Observe that C4 need not send the data to its parent C6,
since C4 remains the owner of the data.

5.2 Experimental Methodology
Given that NeoMESI is verified for all tree configurations, we sought
to evaluate all the protocols across three cache hierarchy organi-
zations to see if the organizations expose some trends. Across all
organizations, illustrated in Figure 7, there are 3 levels of caches:
L1, L2, and L3. The L2 and L3 caches are collocated with directories
that maintain tags for their children. The Skewed organization (Fig.
7A) features an asymmetric hierarchy, where there is a unified L3
cache, 16 cores have private L1 and L2 caches and the other 16 cores
share an L2 cache. The 2 Cores per L2 organization (Fig. 7B) has
a unified L3 cache and 16 L2 caches, each shared by 2 cores with
private L1 caches. The 8 Cores per L2 (Fig. 7C) organization has a
unified L3 cache and 4 L2 caches, each shared by 8 cores.

We implemented NeoMESI, NS-MESI, and NS-MOESI in the
gem5 full-system simulator [7]. Other than the cache hierarchy
organization, we maintained the same system configurations for all
experiments, summarized in Table 1. We ran 7 benchmarks from
the PARSEC suite [6] with each protocol and each cache organiza-
tion, for a total of 63 experiments. Each experiment was run multi-
ple times to account for the expected variability in multithreaded

9

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

Skewed 2 Cores per L2 8 Cores per L2

L1

L2

L1

L3

L1

L2

L1L1

L2

L1

…
1

2 16

L1

L2

L1

L3

…

1

1 2 3 4
31 32

L1

…

L1

L2

L1

…

4

L1
1 2 8 3225 26

B) C)

L2 L2L2
…

1
2 16

L1 1 L1 2 L1 16

L2 17

L3

L1 17 L1 18 L1 32

…

A)

Figure 7: Cache organizations.

Blackscholes

Bodytrack
Canneal

Dedup
Facesim

Swaptions
x264

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

R
un

tim
e

(N
or

m
al

iz
ed

 to
 N

S
-M

O
E

S
I)

NeoMESI
NS-MESI
NS-MOESI

Figure 8: Runtime with 2 Cores per L2 Organization.

Blackscholes

Bodytrack
Canneal

Dedup
Facesim

Swaptions
x264

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

R
un

tim
e

(N
or

m
al

iz
ed

 to
 N

S
-M

O
E

S
I)

NeoMESI
NS-MESI
NS-MOESI

Figure 9: Runtime with 8 Cores per L2 Organization.

workloads [1]. The data we present represents the average of each
experiment, with error bars showing plus or minus a standard
deviation.

5.3 Results
The runtimes of the experiments are grouped by cache hierarchy
organization and shown in Figures 8, 9, and 10. Comparing the
protocols while holding benchmark and cache organization con-
stant, we find that NeoMESI generally appears to be edged out by

Blackscholes

Bodytrack
Canneal

Dedup
Facesim

Swaptions
x264

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

R
un

tim
e

(N
or

m
al

iz
ed

 to
 N

S
-M

O
E

S
I)

NeoMESI
NS-MESI
NS-MOESI

Figure 10: Runtime with Skewed Organization.

both NS-MESI and NS-MOESI. However, these advantages are not
statistically significant. In fact, for some benchmarks and cache
organizations, NeoMESI outperforms NS-MOESI (e.g., Canneal and
Swaptions with 2 Cores per L2 in Figure 8) and outperforms NS-
MESI (e.g., Bodytrack and Facesim with Skewed in Figure 10). How-
ever, in these situations, the advantages are also not statistically
significant.

To investigate why the optimizations in NS-MESI and NS-MOESI
seem to have little effect on the performance, we study how fre-
quently these optimizations are utilized across all the benchmarks.
We would expect non-sibling communication to reduce the latency
of satisfying requests. However, we find that, for NS-MESI, the
fraction of requests that missed in the L1 and are satisfied using
non-sibling communication is only 1.5%. Presumably, because the
O state enables L1 caches to retain ownership longer, that fraction
increases in NS-MOESI, but to only 2%.

Additionally, we would expect the relaxation of blocking in the
L2 and L3 to improve the performance of NS-MOESI over both
NeoMESI and NS-MESI. However, we find that, among requests
arriving at the L2, the fraction of blocked requests is only 0.4% and,
for those arriving at the L3, that fraction is 0.7%.

We note that we can discuss only results with respect to the
specific benchmarks and system configurations with which we ex-
perimented. However, we recognize that with different benchmarks
and systems, the prohibited optimizations could potentially incur
more significant performance penalties.

10

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

6 BROADER APPLICABILITY OF NEO
The Neo theory focused on solving the challenging problem of
automated verification of hierarchical protocols. To leverage the
Neo methodology, one must design a protocol to fit the Neo class
of transition systems. While hierarchical directory protocols such
as NeoMESI seem a natural fit, the theory provides little insight on
how a variety of system configurations and architectures can be
modeled as Neo Systems. For our final contribution in this work, we
examine different types of coherence protocols, network topologies,
and cache organizations that architects might be interested in and
discuss how they can be modeled as Neo Systems.

6.1 Heterogeneous Protocols
In large shared-memory systems, architects might be interested in
employing heterogeneous coherence protocols to enable scalability
and design simplicity [4, 5, 19]. In multi-chip processors, for exam-
ple, coherence protocols on each chip have been integrated into
larger inter-chip coherence protocols [3, 18, 22].

Observe that heterogeneous protocols would have cache con-
trollers from different subprotocols that potentially behave dif-
ferently. However, the Neo theory requires leaves to be identical.
Within the bounds of the Neo theory, we present a solution to this
apparent disparity. One can simply model each leaf as containing
the behavior of all possible leaves. Upon initializing the protocol,
the directories (which are allowed to be different internal nodes)
initialize the leaves to which they are composed so as to make the
leaves behave as is appropriate for that subprotocol. Note that this
solution does not affect the scalability of verification of safety or the
implementation relation. This is because the model checker would,
at runtime, not traverse the superfluous states and transitions of
leaves after the leaves have been initialized by their intermediate
or root nodes to the partition of state transitions that is needed for
the appropriate subprotocol.

6.2 Snooping Protocols
Snooping protocols are a class of coherence protocols that rely on
an ordered broadcast network, typically a bus, as the ordering point
for coherence requests [9, 29]. In typical snooping protocols, cache
controllers broadcast requests to all controllers via a shared bus.
The bus produces an total ordering of all requests for each cache
block and is snooped on by all controllers. This ordering, observed
by all controllers, determines the coherence permissions that each
controller has.

Architects might be interested in using the Neo theory to com-
pose snooping subprotocols into larger, verifiable hierarchies [39].
In order to verify the Neo properties for each flat subprotocol, as
is required by the theory, one must model broadcast and snooping
behaviors in Neo Systems. At a first glance, Neo Systems seem
to only support unicast communication occurring in single transi-
tions. We provide an approach for modeling snooping within the
bounds of the theory. The key is to model the behaviors of the
broadcast network in internal and root nodes. The internal or root
node would collect all requests from the controllers (via input tran-
sitions), order and buffer the requests, then send messages to each
controller through a string of output transitions, thus completing a
broadcast/snoop cycle.

6.3 Ring Protocols
Ring interconnection networks appear in several processors such
as IBM Power 4 [33] and Intel’s Larrabee Microarchitecture [28]
because they are often cost-effective and simple to implement. Co-
herence protocols built on such interconnects can leverage the
ordering properties that ring topologies naturally provide. For ex-
ample, in unidirectional rings where two requests for a block cannot
bypass each other, one node can simply be made the ordering point
at which a total ordering of requests is made. That node would be
responsible for marking requests as active.

Architects might be interested in composing flat rings into a
hierarchy of rings or a ring of rings as in KSR1 [8]. Recall that in
Neo Systems, leaf nodes are identical and communication is sym-
metric among all siblings. However, coherence protocols in rings
typically require unidirectional communication, where each node
sends messages only to the left or right node. This unidirectional
communication can be modeled in Neo Systems by storing, as part
of the leaf state, a variable that holds the index of the next node in
the ring and a Boolean that indicates if a leaf is the ordering point.
These variables would determine which node each leaf communi-
cates with and which node is responsible for marking requests as
active. Also, encoded in the initial state of the internal nodes would
be the values of these variables for every leaf. The initial transition
of the internal node would then be to send messages to each leaf to
instantiate these variables appropriately.

6.4 Non-inclusive Cache Hierarchies
While NeoMESI featured an inclusive cache hierarchy, several pro-
cessors have used non-inclusive cache hierarchies to maximize the
total cache capacity [17, 20]. In non-inclusive cache hierarchies, it
is not required that a block cached in an upper level cache (say,
L1) be also cached in a lower level cache (say, L2). The Neo the-
ory, on the other hand, requires that each subhierarchy (Open Neo
System) implement an L1 (leaf), which might appear to necessitate
an inclusive hierarchy. We argue that non-inclusive hierarchies
are also permitted by the Neo theory. Observe that, to maintain
the Neo Safety property and the Safe Composition Invariant, one
only needs to keep track of permissions and indices of sharers and
owners in subhierarchies, i.e., the directory state. The actual data
of the cache blocks in the states of internal nodes and leaves do not
factor into the maintenance of these properties. So, while metadata
(the directory state) still needs to be inclusive to maintain the Neo
properties, cache data management and evictions will be based on
the underlying cache properties such as cache size, associativity,
and replacement policies.

6.5 Banked Shared Caches
In a many-core processor with large shared caches, splitting the
shared caches into banks can be useful for reducing the data access
latency and alleviating the bottleneck that one centralized cache
controller could otherwise cause. Typically, the address space is
statically partitioned and each bank services requests from only one
partition. We believe there is no theoretical limitation in modeling
as a Neo System a coherence protocol that supports banking. One
can simply think of the protocol as a collection of multiple indepen-
dent Neo Hierarchies, one for each bank. These independent Neo

11

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Opeoluwa Matthews and Daniel J. Sorin

hierarchies would not interact with each other. As long as each one
is verified, the system can have an arbitrary number of them.

Nonetheless, one could imagine a system configuration that
would allow addresses to dynamically change partitions and be
cached in different banks. It is not clear if the Neo theory supports
such systems. Fortunately, we are not aware of any systems that
allow this behavior.

7 RELATEDWORK
In Fractal Coherence [41], Zhang et al. propose designing coherence
protocols with self-similarity imposed in the logical organization of
the nodes. Then, one can model check the protocol for only a small
number of nodes but, by induction, guarantee correctness for an
arbitrary number of nodes. Voskuilen et al. propose optimizations
to the protocol implemented in Fractal Coherence [36, 37]. They
provide flat, directory implementations of Fractal Coherence that
allow optimizations such as request forwarding and parallel invali-
dations. In PVCoherence, Zhang et al. show how one can design
realistic flat coherence protocols to fit a mostly-automated para-
metric verification method [40]. Finally, Matthews and Sorin et al.
adapt the Fractal approach to designing verifiable dynamic power
management protocols [25, 31]. However, none of these works sat-
isfy our goal of designing realistic hierarchical coherence protocols
to be formally verifiable for all tree configurations.

The Manager-Client Pairing (MCP) framework sought to enable
the composition of pre-verified heterogeneous coherence protocols
into a unified hierarchy [4, 5]. Manager agents that manage coher-
ence permissions (e.g., directories) are paired with client agents
(e.g., private caches) of a higher tier in the hierarchy. Coherence
is maintained across the hierarchy through a permission-checking
interface with which managers and clients must communicate to
satisfy requests. However, MCP is theoretically flawed [24]. MCP
assumes that one need only verify each subprotocol to guarantee
the correctness of the hierarchy. However, each subprotocol is pre-
verified without any interactions with the permission-checking
interface. Hence, there is no formal guarantee about their behavior
when they are composed together and forced to interact with the
permission-checking interface. Moreover, the MCP framework does
not enable integrating protocols that could each have an arbitrary
number of nodes, which would be required to support arbitrary
tree configurations.

Ros et al. explore ways of reducing the complexity in hierar-
chical coherence protocols [27]. Their approach is to eliminate
complex operations such as recursive invalidations in favor of self-
invalidations and write-throughs within a cluster. Unlike them,
our focus is on designing hierarchical protocols specifically to be
verifiable. While design simplicity generally improves verifiability,
hierarchical protocols such as theirs are still well beyond the reach
of current automated verification tools.

Ladan-Mozes et al. present Hierarchical Cache Consistency (HCC)
[21], which embeds a coherence protocol on a fat-tree intercon-
nection network. HCC guarantees forward progress by enforcing
properties that coordinate coherence permissions between parents
and children and ensures that a tree hierarchy is adhered to in all
communication between cores and any memory bank. HCC was

verified manually and its proof applies to only one protocol. How-
ever, our focus is on showing how one can architect a wide range
of coherence protocols to enable their push-button verification.

Vijayaraghavan et al. [34, 35] use a theorem prover to verify a
specific coherence protocol for arbitrary tree configurations. They
concede that theorem proving requires tremendous manual effort
and time by verification experts. But they argue that this disad-
vantage is offset by the fact that, at the time of their work, model
checkers could not support parametric verification of hierarchical
protocols. Their protocol was much simpler than our NeoMESI,
with only MSI permissions and no data forwarding allowed among
sibling nodes, among other simplifications. Nonetheless, their pro-
tocol required 12,000 lines of theorem prover code to be verified.
Moreover, future theorem proving based approaches are still likely
to require grueling manual effort. On the other hand, our work
seeks to enable the design of future hierarchical coherence proto-
cols to be amenable to fully-automated (push-button) parametric
verification for arbitrary configurations of the hierarchy.

8 CONCLUSION
In this work, we showed how the recent Neo theory can be used to
design realistic hierarchical coherence protocols specifically to be
verifiable with fully automated formal verification tools. As such,
we presented NeoMESI—the first realistic hierarchical coherence
protocol to have these highly desirable properties. In designing and
verifying NeoMESI, we found that certain desirable optimizations
render protocols unverifiable with the Neo theory and current
verification tools. We evaluated NeoMESI to determine the effects
of these optimizations, comparing it to protocols that have these
optimizations. We found that our verifiable NeoMESI performs
statistically on-par with these protocols. Finally, we showed how
the Neo theory can be used to model other kinds of protocols that
may not appear as natural a fit as NeoMESI. We hope that our work
in this paper can enable futurework in verification-aware coherence
protocol design using the recent theoretical developments of the
Neo theory.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation under
grant CCF-142-1167. Additionally, this work was supported in part
by the Center for Future Architectures Research (C-FAR), one of six
centers of STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA. We thank Jesse Bingham
for his input and advice on this work.

REFERENCES
[1] Alaa R Alameldeen and David A Wood. 2003. Variability in architectural simula-

tions of multi-threaded workloads. In International Symposium On High Perfor-
mance Computer Architecture (HPCA).

[2] Arvind, Nirav Dave, and Michael Katelman. 2008. Getting formal verification
into design flow. In International Symposium on Formal Methods.

[3] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas
Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Vergh-
ese. 2000. Piranha: A scalable architecture based on single-chip multiprocessing.
In ACM SIGARCH Computer Architecture News.

[4] Jesse G. Beu, Jason A. Poovey, Eric R. Hein, and Thomas M. Conte. 2013. High-
speed formal verification of heterogeneous coherence hierarchies. In International
Symposium On High Performance Computer Architecture (HPCA).

12

Designing Parametrically Verifiable Hierarchical Coherence Protocols MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[5] Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte. 2011. Manager-client
pairing: A framework for implementing coherence hierarchies. In International
Symposium on Microarchitecture (MICRO).

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT).

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark
Hill, and David Wood. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2.

[8] Henry Burkhardt, Steven Frank, Bruce Knobe, and James Rothnie. 1992. Overview
of the KSR1 computer system. Technical Report KSR-TR-9202001, Kendall Square
Research, Boston.

[9] Alan Charlesworth. 2001. The Sun Fireplane system interconnect. In ACM/IEEE
Supercomputing Conference.

[10] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. 2004. A simple
method for parameterized verification of cache coherence protocols. In Interna-
tional Conference on Formal Methods in Computer-Aided Design (FMCAD).

[11] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaidi. 2013.
Invariants for finite instances and beyond. In International Conference on Formal
Methods in Computer-Aided Design (FMCAD).

[12] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha ZaÄśdi.
2012. Cubicle: A parallel SMT-based model checker for parameterized systems.
In International Conference on Computer-Aided Verification (CAV).

[13] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha ZaÄśdi.
2012. German’s Protocol. http://cubicle.lri.fr/examples/german.ctc.cub.html.

[14] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill
Hughes. 2010. Cache hierarchy and memory subsystem of the AMD Opteron
processor. IEEE Micro.

[15] David L Dill, Andreas J Drexler, Alan J Hu, and C Han Yang. 1992. Protocol
Verification as a Hardware Design Aid. In International Conference on Computer
Design (ICCD).

[16] Silvio Ghilardi and Silvio Ranise. 2010. MCMT: A model checker modulo theories.
In International Joint Conference on Automated Reasoning (IJCAR).

[17] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika Kurts, Alon
Naveh, Ali Saeed, Zeev Sperber, and Robert C Valentine. 2003. The Intel Pentium
M Processor: Microarchitecture and Performance. Intel Technology Journal 7, 2.

[18] Gary Gostin, Jean-Francois Collard, and Kirby Collins. 2005. The architecture of
the HP Superdome shared-memory multiprocessor. In International Conference
on Supercomputing (ICS).

[19] Erik Hagersten and Michael Koster. 1999. WildFire: A scalable path for SMPs. In
International Symposium On High Performance Computer Architecture (HPCA).

[20] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan
Kyker, and Patrice Roussel. 2001. The microarchitecture of the Pentium® 4
processor. In Intel Technology Journal.

[21] Edya Ladan-Mozes and Charles E Leiserson. 2008. A consistency architecture
for hierarchical shared caches. In Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[22] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,W-DWeber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica S. Lam. 1992. The Stanford DASH
multiprocessor. Computer 25, 3.

[23] Milo MK Martin, Mark D Hill, and Daniel J Sorin. 2012. Why on-chip cache
coherence is here to stay. Commun. ACM 55, 7.

[24] Opeoluwa Matthews, Jesse Bingham, and Daniel Sorin. 2016. Verifiable Hierar-
chical Protocols with Network Invariants on Parametric Systems. In International
Conference on Formal Methods in Computer-Aided Design (FMCAD).

[25] Opeoluwa Matthews, Meng Zhang, and Daniel J Sorin. 2014. Scalably verifiable
dynamic power management. In International Symposium on High Performance
Computer Architecture (HPCA).

[26] Seungjoon Park, Satyaki Das, and David L. Dill. 2000. Automatic checking of
aggregation abstractions through state enumeration. In Computer-Aided Design
of Integrated Circuits and Systems.

[27] Alberto Ros, Mahdad Davari, and Stefanos Kaxiras. 2015. Hierarchical pri-
vate/shared classification: The key to simple and efficient coherence for clustered
cache hierarchies. In International Symposium On High Performance Computer
Architecture (HPCA).

[28] Larry Seiler, DougCarmean, Eric Sprangle, Tom Forsyth,Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger
Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. 2008. Larrabee: a many-
core x86 architecture for visual computing. In ACM Transactions on Graphics
(TOG).

[29] Balaram Sinharoy, Ronald N Kalla, Joel M Tendler, Richard J Eickemeyer, and
Jody B Joyner. 2005. POWER5 system microarchitecture. IBM Journal of Research
and Development 49, 4.5.

[30] Daniel J Sorin, Mark D Hill, and David A Wood. 2011. A primer on memory
consistency and cache coherence. Synthesis Lectures on Computer Architecture

(2011).
[31] Daniel J Sorin, Opeoluwa Matthews, and Meng Zhang. 2014. Architecting dy-

namic power management to be formally verifiable. In Design Automation Con-
ference (DAC).

[32] Murali Talupur and Mark R. Tuttle. 2008. Going with the Flow: Parameterized
Verification Using Message Flows. In International Conference on Formal Methods
in Computer-Aided Design (FMCAD).

[33] Joel M Tendler, J Steve Dodson, JS Fields, Hung Le, and Balaram Sinharoy. 2002.
POWER4 system microarchitecture. IBM Journal of Research and Development
46, 1.

[34] Muralidaran Vijayaraghavan. 2016. Modular verification of hardware systems.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[35] Muralidaran Vijayaraghavan, Adam Chlipala, and Nirav Dave. 2015. Modu-
lar deductive verification of multiprocessor hardware designs. In International
Conference on Computer Aided Verification (CAV).

[36] Gwendolyn Voskuilen and TN Vijaykumar. 2014. Fractal++: Closing the perfor-
mance gap between fractal and conventional coherence. In International Sympo-
sium on Computer Architecture (ISCA).

[37] Gwendolyn Voskuilen and T. N. Vijaykumar. 2014. High-performance Fractal
Coherence. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[38] Deborah A Wallach. 1992. PHD: A hierarchical cache coherent protocol. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[39] Andrew W Wilson Jr. 1987. Hierarchical cache/bus architecture for shared
memory multiprocessors. In International Symposium on Computer Architecture
(ISCA).

[40] Meng Zhang, Jesse D. Bingham, John Erickson, andDaniel J. Sorin. 2014. PVCoher-
ence: Designing flat coherence protocols for scalable verification. In International
Symposium On High Performance Computer Architecture (HPCA).

[41] Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. 2010. Fractal coherence: Scal-
ably verifiable cache coherence. In International Symposium on Microarchitecture
(MICRO).

13

http://cubicle.lri.fr/examples/german.ctc.cub.html

	Abstract
	1 Introduction
	2 The Neo Theory
	2.1 Defining Neo Systems
	2.2 Neo Safety Property
	2.3 Safe Composition Invariant
	2.4 Mapping Neo Safety to Coherence
	2.5 Neo Verification Methodology

	3 NEOMESI: Designing a Neo Coherence Protocol
	3.1 Closed Neo System
	3.2 Open Neo System

	4 The Process of Deriving NEOMESI
	4.1 Modifying the Neo Verification Methodology
	4.2 Iteratively Adding Features

	5 Evaluation
	5.1 Comparison Protocols
	5.2 Experimental Methodology
	5.3 Results

	6 Broader Applicability of Neo
	6.1 Heterogeneous Protocols
	6.2 Snooping Protocols
	6.3 Ring Protocols
	6.4 Non-inclusive Cache Hierarchies
	6.5 Banked Shared Caches

	7 Related Work
	8 Conclusion
	References

