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Abstract

This paper explores the interaction of value prediction
with thread-level parallelism techniques, including mul-
tithreading and multiprocessing, where correctness is
defined by a memory consistency model. Value predic
tion subtly interacts with the memory consistency mode
by allowing data dependent instructions to be reordered
We find that predicting a value and later verifying that
the value eventually calculated is the same as the valu
predicted is not always sufficient.

We present an example of a multithreaded pointe
manipulation that can generate a surprising and errone-
ous result when value prediction is implemented withou
considering memory consistency correctness. We sho
that this problem can occur with real software, and we
discuss how to apply existing techniques to eliminate th
problem in both sequentially consistent systems and sy
tems that obey relaxed memory consistency models.

1  Introduction

One prominent trend in micro-architectural researc
is improving system performance by adding predictio
and speculation to a processor’s core. Value predicti
[26] is a type of prediction that has recently emerged fro
the research community, and numerous recent papers h
demonstrated its performance potential. With value pr
diction, a mechanism predicts a complete value (e.g., a
bit integer), in contrast to a one-bit branch outcome resu
ing from branch prediction. In principle, value predictio
can enable program execution in less time than the low
bound determined by the dataflow limit.

Another trend in micro-architectural research exploi
thread-level parallelism (TLP) in the form of simultaneou
multithreading (SMT) [13], coarse-grained multithreadin
(CMT) [2, 6], single-chip multiprocessing (CMP) [5, 11]
or traditional multiprocessing (MP) [10]. From the soft
ware’s perspective, hardware multithreading and multipr
cessing are the same, and we treat them similarly in t
paper. These techniques have been shown to improve
formance substantially for important applications such
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database workloads [4, 14, 27], web workloads [7, 28
and desktop applications [15].

This paper explores the correctness issues that a
from the interaction between these two techniques.
date, most value prediction research has assumed a sin
threaded uniprocessor system and has ignored mu
threading and input/output (I/O) issues. While the corre
implementation of value prediction in the context of a sin
gle-threaded uniprocessor system without coherent I/O
well-understood, we will show that naïve implementation
of value prediction inTLP systems—systems with multi-
threading, multiprocessing, or coherent I/O—can produ
incorrect executions.

What do we mean by correctness? In a system with
single-threaded uniprocessor without coherent I/O, co
rectness is simply defined by program order (i.e., unipr
cessor correctness). In this scenario, value prediction
correct if and only ifsimple verificationsucceeds, i.e., the
value predicted equals the actual value eventua
obtained. However, when multiple threads, processors,
devices concurrently access a logically shared memo
the definition of correctness becomes more complicated

In TLP systems, correctness is defined by thememory
consistency model[1]. The memory consistency model
enforced jointly by the processor and the memory syste
is the interface between the hardware and (low-level) so
ware that defines the legal orderings of loads and stores
different memory locations. For example, the memo
consistency model of the system answers questions s
as: “If a thread writes to two different memory locations
in what order are other threads or devices in the syste
allowed to observe these writes?” and “Will all of the
threads in the system observe these writes in the sa
order?” Memory consistency models are defined as part
the instruction set architecture (ISA), and the hardwa
must obey the consistency model, just as the hardw
must correctly implement all instructions as specified b
the ISA. Thus, TLP system implementations that use val
prediction must ensure that value prediction does n
cause consistency model violations.
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How can value prediction violate the consistency
model? The key insight is thatvalue prediction allows a
processor to relax the ordering between data dependent
operations. Normally these dependencies are enforced by
dataflow in the processor, but value prediction allows the
processor to break the dataflow of a program, allowing
dependent operations to speculatively execute out of pro-
gram order. More generally, any current or future micro-
architectural optimization that allows the relaxation of pro-
gram order between data dependent operations can lead to
consistency violations, but we focus on value prediction in
this paper.

The key result of this paper is that, in systems with
multithreading, multiple processors, or coherent I/O, veri-
fying value prediction by comparing the predicted and
actual values is not always sufficient and can cause errone-
ous behavior. In a TLP system, unlike in a single-threaded
uniprocessor, it is possible for a value prediction to be
incorrect at the time of the prediction but ‘correct’ by the
time the value prediction is to be verified, since another
thread, processor, or I/O device could have modified the
value in the interval between prediction and verification.
With simple verification, value prediction appears correct,
but we will show cases in which the execution is incorrect
because it violates the memory ordering rules of the consis-
tency model. Any possible violation is sufficient to deter-
mine that the implementation is incorrect.

As an informal example of how simple value predic-
tion could cause a problem, consider the following sce-
nario, in which a professor plans to post the results of an
exam and an impatient student in the class cannot wait to
see her score. The student, assigned student ID #5 for this
class, predicts that the results might be posted on bulletin
board B. She arrives at bulletin board B and finds that stu-
dent #5’s score is 60. Unbeknownst to her, the results that
she is looking at are old results from another class. Later,
the professor posts the correct results (her actual score is
80) on board B, replacing the results the student had seen,
and announces that the results are posted on board B. Since
that is where the student looked originally, she ‘verifies’
her earlier prediction (of board B) and continues to incor-
rectly assume that her score was 60. Throughout this paper,
we will explore an analogous scenario that arises in multi-
threaded code used for reading and writing a linked list
data structure.

In Section 2, we examine the issues involved in imple-
menting value prediction in the context of sequential con-
sistency, the simplest consistency model. Through an
example, we show that adding simple value prediction to a
TLP system can be insufficient to implement sequential
consistency. We then review techniques used to ensure cor-
rectness in aggressive implementations of sequential con-

sistency, and we show that these existing mechanisms
still sufficient when value prediction is added. In Section
we investigate relaxed consistency models and demonst
that simple implementations of some relaxed consisten
models are insufficient when value prediction is adde
Mechanisms similar to those used in aggressive sequ
tially consistent implementations can be added to ensu
correctness, but these mechanisms are conservative.
then present ideas for less conservative schemes,
detailed evaluation of their relative performances is beyo
the scope of this paper. A potential criticism of this work i
that the value prediction problems we illuminate migh
occur in theory but not in practice. In Section 4, we sho
that the dynamic code sequences necessary to gene
value prediction errors in a relaxed memory model ca
occur in workloads we simulated on a four-processor sym
metric multiprocessor (SMP).

2  Value Prediction & Sequential Consistency

The simplest and most intuitive set of rules governin
the behavior and ordering of memory operations betwe
threads and devices issequential consistency(SC) [24]. In
this section, we describe SC, and we present an exampl
which a simple system (that implements SC without valu
prediction) fails to implement SC when value prediction
added naïvely. We describe two techniques for the dete
tion of ordering violations, and these techniques restore t
simple system to a valid SC implementation. These tw
techniques are the same methods used for the corr
implementation of SC in aggressive out-of-order proce
sors [17]. Thus, adding value prediction to a system th
supports SC with simple processors can result in addition
complexity, while adding value prediction to an alread
dynamically scheduled SC implementation will have min
mal additional design impact due to memory consisten
model considerations.

2.1  SC and a Simple SC System

The memory consistency model of a system specifi
how memory operations appear to the programmer [1
Many programmers would like to view a TLP system as
multi-tasking uniprocessor. Lamport [24] formalized thi
notion when he defined a system to besequentially consis-
tent (SC) if (1) the result of any execution is the same as
the operations of all the processors (or threads) were e
cuted in some sequential order, and (2) the operations
each individual processor (or thread) appear in th
sequence in the order specified by its program. SC is t
most restrictive consistency model that has been imp
mented in commercial systems, including the MIP
R10000 [34] and the HP PA-8000 [23], and it presents th
simplest, most intuitive, and least surprising interface to t
programmer.
2



s
t
e
0).
e-

are
s

t
ile
e
t.

t.
ys-

or
gly
lue

0).

-
ce,
n
d’
as

0
le

as
a
f
ad
has

C
a-

t,
We first consider a simple in-order processor that
implements coarse-grained hardware multithreading in
which multiple hardware contexts share a cache. The pro-
cessor performs all memory operations from each thread in
order, and thus it implements SC. A system without multi-
threaded processors, but with multiple processors and stan-
dard invalidation-based cache coherence, exhibits similar
interactions between value prediction and memory consis-
tency. We will consider more aggressive processor designs
in Section 2.3.

2.2  Simple Value Prediction Can Violate SC

We now show that extending our example system with
simple value prediction (i.e., using only simple verifica-
tion) violates SC.

Simple value prediction.When an instruction is value
predicted, the processor predicts the value produced by that
instruction and continues executing instructions from the
same thread (including dependent instructions) specula-
tively. For simplicity, we conservatively assume that our
implementation waits for any value predictions to be veri-
fied before executing any store instructions encountered
while speculating. When the predicted instruction com-
pletes, possibly many cycles later due to cache misses or
other delays, the processor compares the actual value with
the predicted value. If the value matches, the prediction is
determined to have been successful and execution contin-
ues. Otherwise, the processor aborts execution and rolls
back the thread using a mechanism similar to that used in
recovering from a branch misprediction.

Illustrative example. Figure 1 illustrates a problem with
the simple implementation of value prediction, and it will
serve as our illustrative example throughout the paper. The
example is a pointer-based data structure manipulation that
is analogous to our informal example of the professor post-
ing grades and the student checking her grade. One thread
(the professor) is inserting at the front of the list, while the
other thread (the student) is reading the first element of the
list. No further synchronization is necessary if there is only
one writer and one reader. The reader or writer may execute
its code first, or the instructions may occur interleaved.
Under SC, this code segment allows only two possible out-
comes: the read happens before the insert, resulting in the
reader observing the data value 42, or the insert occurs
before the read, and the reader observers the data value 80
(the student’s grade). Because, under SC, the store that
changesB.data from 60 (an old grade from a previous
class) to 80 must occur before the store that changes the
head pointer to point atB, Treader should never observe
the stale value 60.

Example execution.The example code sequence work
correctly with our SC system implementation withou
value prediction (returns only 42 or 80), but simple valu
prediction can generate a surprising result (the value 6
We first examine how value prediction can change the ex
cution of this example.Treader executes first. Assume that
Treader value predicts the result of instructionr1 . Since
any value can be predicted, we assume that the hardw
predicts the valueB. (The student predicts that her grade i
on board B.) Notice that itappearsthat this value predic-
tion will be incorrect, since the value ofHead is actuallyA
and notB at this time.Treader continues executing specu-
latively and instructionr2 reads the value 60. (The studen
sees a score of 60.) Reading an impossible value wh
speculating is allowed, and it is only discarded when th
value prediction is ultimately determined to be incorrec
Before Treader resolves its value prediction, a thread
switch occurs, andTwriter executes instructionsw1-w4,
effectively inserting a new node at the beginning of the lis
(The professor posts grades on board B.) The memory s
tem now processesTreader ’s load for Head and returns
‘B’, the current value.Treader now compares the pre-
dicted value (board B) with the actual value (the profess
announces that results are on board B) and surprisin
decides the value prediction was correct. Since the va
prediction was pronounced correct,Treader continues to
execute. This execution violates SC because instructionr2
reads the value 60 (and the student thinks her score is 6

Intuition. Why was the value prediction ‘correct’ when it
was clearly initially wrong? By the time the value predic
tion was resolved, the thread had the new value. In essen
it predicted the future, and this allowed it to read a locatio
that was not ready to be observed. (The student ‘verifie
that she was looking at the right set of grades, but she w
not actually looking at the right gradeswhen she made the
prediction, so she incorrectly believed that her score was 6
instead of 80.) The key observation is that adding simp
value prediction allows us to perform twodependentopera-
tions (r1 andr2 ) out of program order. By executing these
data dependent memory operations out of order, SC w
violated. Moreover, while this particular example was for
load value prediction, value prediction of other types o
instructions faces the same issues. For instance, if a lo
address is dependent upon an instruction whose output
been value predicted, a similar violation is possible.

Formal explanation of why the value 60 is not valid.For
the above execution to be correct, the definition of S
requires that we construct a total order of memory oper
tions (i.e., loads and stores). Instructionw4 precedesr1 in
the global order, becausew4 writes the value read byr1 .
Instructionr2 precedesw1, becauser2 reads the value 60
beforew1 writes the value 80. SC’s second requiremen
3



BHead

BHead

Figure 1. Example Showing Failure of Simple Value Prediction

Part (a) presents code forTwriter  (left) that racesTreader  (right).Twriter sets elementB’s value to 80 and
links elementB to the beginning of the list.Treader  reads the value of the first element.

Part (b) gives the initial state of memory for a singly-linked list with aHead, currently-linked elementA, and
unlinked elementB. Each element has a data value field and a next pointer.

Part (c) shows the final state, afterTwriter atomically inserts elementB. Treader can execute either before or
after the atomic insert, obtaining 42 fromA or 80 fromB, respectively.

Part (d), however, shows that value prediction with simple verification can allowTreader  to obtain the incor-
rect, stale value 60. Technically, this result assumes sequential consistency (SC), but, as we will see, similar
problems exist for other memory consistency models.

AHead

42A.data

nullA.next

60B.data

nullB.next

(b) Initial State

Code for Twriter

w1: store mem[B.data]← 80
w2: load reg0← mem[Head]
w3: store mem[B.next]← reg0
w4: store mem[Head]← B

Code for Treader

r1: load reg1← mem[Head]
r2: load reg2← mem[reg1]

(a) Racing code

(c) Final State

(d) Incorrect Execution

42A.data

nullA.next

80B.data

AB.next

60B.data

nullB.next

prediction
r1: load reg1← mem[Head] //value predict reg1← B
r2: load reg2← mem[reg1] //speculatively load: reg2← 60
w1: store mem[B.data]← 80
w2: load reg0← mem[Head]
w3: store mem[B.next]← reg0
w4: store mem[Head]← B
// Preader verifies reg1=mem[Head]=B
// Preader commits with {reg1,reg2} = {B,60}

42A.data

nullA.next

final
state
4
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called program order, requires thatr1 precedesr2 and
thatw1 precedesw2, w2 precedesw3, andw3 precedesw4.
The instructions cannot be put in a sequential order (SC’s
first requirement), because the required order of instruc-
tions forms a cycle, as shown in Figure 2. Therefore, this
execution does not obey SC, and the example system using
simple value prediction does not correctly enforce SC.

2.3  Restoring Correctness

Several alternatives exist for correctly implementing
value prediction in a sequentially consistent system. These
schemes—which are based on previously developed tech-
niques for implementing dynamically scheduled processors
that support SC—can be used to detect when value predic-
tion has violated SC. These techniques suffice for detecting
ordering violations caused by value prediction and recover-
ing from them, but they add complexity and increase the
cost of the simple processor implementations considered
thus far. We first discuss how both techniques enforce SC
in systems without value prediction, and then we explain
how these mechanisms also detect ordering violations
introduced by value prediction.

Address-based detection.Dynamically scheduled (out-of-
order) processors that implement SC (e.g., the MIPS
R10000 [34]) allow memory operations to occur specula-
tively out of program order and then rollback if a possible
memory ordering violation is detected [17]. To enforce SC,
a processor must detect when another thread, processor, or
device writes to an address that has been speculatively read
from the cache by an unretired instruction. When an order-
ing violation is detected, the processor rolls back the execu-
tion of the speculative thread to a known consistent and
non-speculative state. The R10000 implements this
approach by augmenting the load/store queue to (1) track
the addresses that have been speculatively loaded until the
loads retire and (2) compare the addresses to the addresses
that are written by other processors. These external writes
are revealed through the coherence protocol by the arrival
of invalidation messages for these addresses [34]. Future

multithreaded processors can implement this similarly, b
keeping a per-thread table of speculatively loade
addresses and checking all the stores of the other thre
(from any processor) against this table. We refer to the pr
cess of comparing other threads’ stores and other proc
sors’ invalidations against the set of addresses that a thr
has loaded speculatively asread set tracking. This scheme
is overly conservative in that false squashes can be tr
gered by false sharing (in multiprocessors) or writing th
same value [17] (i.e., a silent store [25]).

In Figure 1, the relaxation of program order betwee
r1 andr2 that is enabled by value prediction is analogou
to the relaxation of program order between load instru
tions that are not data dependent. Since SC requires thatr1
and r2 appear to occur in order in both cases, read s
tracking is sufficient for identifying all ordering violations.
In our example, ifTreader detects thatTwriter writes to
mem[reg1] (detected by comparing the store addre
from Twriter to the address speculatively loaded byr2
in Treader ) between the prediction and retirement,
knows that simple verification of the prediction might b
insufficient. No special check to enforce dependence ord
is needed, since guaranteeing the appearance of prog
order also guarantees the appearance of dependence o

Returning to our running analogy of the student an
her test score, the student must detect if the professor po
grades between her prediction and her verification that b
letin board B was the correct prediction. Thus, the stude
asks a friend to stand by bulletin board B and report if an
one changes the posted grades. In the case where the
fessor posts to board B after the student’s prediction, t
student’s friend would tell her the information on the boar
changed, and thus the student would know to check h
score again. If the friend reports no violation, the grade
known to be correct and no further validation is required.

Value-based detection.In this approach, all loads that exe
cute with directly or transitively predicted address ope
ands are replayed when their operands become n

Figure 2. Value Prediction with Simple Verification Violating SC. The example execution
of Figure 1(d) forms a cycle, violating SC.

Code for Twriter

w1: store mem[B.data]← 80

w2: load reg0← mem[Head]

w3: store mem[B.next]← reg0

w4: store mem[Head]← B

Code for Treader

r2: load reg2 ← mem[reg1]

r1: load reg1 ← mem[Head]
5
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speculative (e.g., immediately before retirement) [17]. A
speculative load must wait for its own operands to become
non-speculative, read its value from the cache a second
time, and then compare this non-speculative value with its
earlier speculatively loaded value. If the values match, no
ordering violation has occurred. If the values do not match,
the standard misprediction recovery mechanism is invoked.
This approach avoids false squashes due to either false
sharing or silent stores. However, this approach has a con-
siderable downside in that some loads must execute twice,
thus increasing the contention for cache read ports.

Dynamic verification [3], a recently introduced tech-
nique for tolerating transient and design errors in a micro-
processor, can be used to implement value-based detection
of memory consistency ordering violations. One proposed
implementation of dynamic verification uses separate core
and checker processors, each with a dedicated data cache
[8]. This organization mitigates the cache port pressure
problem and removes verification from the critical path, by
allowing the main processor to proceed with executing and
speculatively retiring instructions. Using this decoupled
approach can reduce the cost/performance penalty associ-
ated with more traditional implementations of value-based
detection.

Value-based detection also fits into our simple analogy.
Once the professor has announced where the scores are
posted, the student (or a friend) must go to bulletin board B
and double-check the score, just in case. In the situation
where the speculatively observed score is 60 and the re-
observed score is 80, the student would know that her pre-
diction was wrong.

Discussion.Some have noted a connection between mem-
ory value prediction and software-directed binding
prefetching. With binding prefetching, data is brought into
registers early under the direction of software. Software
must guarantee high-level language semantics, possibly
with hardware assistance (e.g., IA-64’s ALAT [20]). In
contrast, memory value prediction should be implemented
in hardware without disturbing the low-level memory con-
sistency model.

2.4  Value Prediction & SC Conclusion

Broadly, SC implementations are either simple (i.e.,
coarse-grained multithreading, in-order, and non-specula-
tive) or aggressive (i.e., SMT or out-of-order and highly
speculative). Correctly applying value prediction in a sim-
ple SC system moves the implementation complexity
toward that of an aggressive SC implementation, because
the mechanisms for verifying value prediction are similar
to those that enable aggressive SC implementations. Imple-
menting value prediction in a system that supports dynamic
scheduling and SC is straightforward, because the existing

mechanisms are already sufficient. In the next section,
will explore the ramifications of adding value prediction t
systems that exploit relaxed consistency models.

3 Value Prediction & Relaxed Memory Models

Many common instruction set architectures [18, 1
20, 30, 33] do not require the strict semantics of sequent
consistency. These systems are said to implement rela
memory consistency models. Relaxed memory mode
allow the hardware to potentially employ optimization
such as store queues and write buffers, and they can s
plify the implementation of out-of-order execution. How
ever, relaxed models require the programmer to a
explicit annotations to enforce some memory ordering
Value prediction interacts with relaxed models much like
interacts with SC, and thus similar challenges exist f
value prediction with many relaxed consistency models.

Defining relaxed memory consistency models is com
plex. We refer the reader to Adve and Gharachorloo [1] f
a tutorial on the subject and the references to many prima
sources. Broadly, there are two classes of relaxed mod
that we will address in this section. One class—sometim
calledprocessor consistent (PC) models—is similar to SC,
except that the models allow for FIFO, non-coalescin
store buffers by relaxing the order from a thread’s write
its subsequent reads. The other class, generally referre
asweakly ordered models, allows much more reordering of
reads and writes.

3.1  Processor Consistency

PC models, such as SPARC Total Store Order (TS
[33] and IA-32 [19], allow relaxation of the order from a
thread’s write to its subsequent reads. Since PC models
not allow relaxation of read-to-read program order, simp
implementations must, in our example, executer1 andr2
in program order. If, on the other hand, a more sophis
cated implementation allows reads to be reordered by o
of-order execution, it must guarantee the appearance
program order execution by either of the two method
described in Section 2.3.

Although PC relaxes write-to-read order, the resu
from Figure 1(d) is not valid under PC models. Going bac
to Figure 2 from the SC example, the only difference fo
PC is that, since PC relaxes write-to-read ordering, the a
from w1 to w2 is not present. Nevertheless, the arc fromw1
to w3 is still part of a cycle. Therefore, as with SC, correc
implementations of value prediction for PC models mu
not return the surprising result from Figure 1(d).

The issues for correctly implementing value predictio
under PC models are substantially similar to those issu
for SC discussed in Section 2, because PC models and
6
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both enforce read-to-read ordering. A mechanism which
guarantees the appearance of read-to-read program order
suffices to guarantee the appearance of read-to-read depen-
dence order, since two loads serialized by dependence
order are also serialized by program order. Thus, as with
SC, adding value prediction to a simple processor that sup-
ports PC would require an additional mechanism to detect
violations introduced by value prediction. Adding value
prediction to a more complicated processor—one that
already speculatively relaxes read-to-read order and con-
tains a mechanism to detect violations—would not require
an additional mechanism.

3.2  Weakly Ordered Models

This section concentrates on the other class of relaxed
memory consistency models, including weak ordering and
release consistency, that allows a processor to reorder reads
and writes, provided that a processor sees its own reads and
writes in order. Commercial models in this class include
Alpha [30], PowerPC [9, 18], IA-64 [20], and SPARC
Relaxed Memory Order (RMO) [33]. These models differ
in subtle ways, but they all require that the programmer
insert one or morememory barriers(a.k.a.,MBs, barriers,
membars, fences, or syncs) or annotations to assert required
orderings.

Unlike with SC and PC, dynamically scheduled pro-
cessors that support most weaker models do not need to
implement memory ordering detection mechanisms like
those described in Section 2.3. Processors can allow mem-
ory operations to speculatively execute out of order without
requiring additional inter-thread detection mechanisms.
These re-orderings are no longer violations but rather cor-
rect semantics allowed by the memory model.

However, these processors must enforce ordering
across memory barriers. For simplicity, when a thread
encounters a memory barrier in our examples, order is
enforced by stalling the execution of all instructions fol-
lowing the memory barrier until it retires.1 The thread only
continues execution when all speculative instructions
(including any value predicted instructions) have com-
pleted. This implementation is perhaps conservative, but it
is similar to that of the Alpha 21264 [12, 22].

One subtle difference among weak memory models,
which affects their interaction with value prediction, is
whether they establish order between two data dependent
reads from the same processor. Some models do not require
a memory barrier between data dependent operations (e.g.,

through a register, as in Figure 2’sr1 andr2 ), while other
models always require a memory barrier to enforce t
ordering of two reads (even if the reads are data depe
dent). We say that the former models enforcedata depen-
dence order. We now discuss both alternatives in turn.

Models that enforce data dependence.We first discuss
models, including SPARC RMO [33], PowerPC [9, 18]
and IA-64 [20], that require a memory barrier to orde
independent reads but not dependent reads. In the la
case, hardware is required to preserve the depende
order. Even without considering value prediction, program
mers that want the linked list code to allow only the tw
expected outcomes of Figure 1 must add a memory barr
before instructionw4, as shown in Figure 3. The memory
barrier beforew4 asserts that instructionsw1, w2, andw3
(initializing element B) should be ordered before instruc
tion w4 (which inserts element B at the head of the list
Without the memory barrier,w4 could be ordered before
any of the other three operations, resulting in the additio
of a (partially) uninitialized node to the head of the linke
list.

To extend the informal analogy of the professor pos
ing grades, consider a different situation in which the pr
fessor is too busy to post the results, but instead send
teaching assistant (TA). Assume that the professor giv
the results to the TA to post and then immediately sends
e-mail to the class. If the TA is delayed in posting th
results, the student might see the e-mail, go to check h
score, and once again believe erroneously (despite
using value prediction) that her score was 60. The profes
can prevent this problem by waiting for the TA to repor
back—acknowledging that the results have been posted
before sending the e-mail. Waiting for the TA to return i
analogous to inserting a memory barrier betweenw3 and
w4 (which is required of all weak models, regardless o
whether they enforce data dependence order).

Weak models allow the relaxation of most read-to-rea
ordering, so it would appear that our example shou
require the insertion of an additional memory barrie
betweenr1 andr2 to enforce order between these read

1. To simplify the discussion, we assume one type of memory barrier that
enforces all orderings. In reality, most relaxed models have multiple fla-
vors of barriers or annotations with different ordering requirements.

Figure 3. Correct Code for Weak Ordering with
Data Dependence Enforced

Code for Twriter

w1: store mem[B.data]← 80

w2: load reg0← mem[Head]

w3: store mem[B.next]← reg0

w3b:memory barrier

Code for Treader

r2: load reg2 ← mem[reg1]

r1: load reg1 ← mem[Head]

w4: store mem[Head]← B
7
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However, we are now only considering those models that
enforce data dependence order. Our example does not
require a memory barrier between instructionsr1 andr2
because the data dependence betweenr1 and r2 orders
the instructions in dependence order in RMO [33, page
260], PowerPC [18, page 106], and IA-64 [20, section
13.2.1.7].

While the addition of the memory barrier betweenw3
and w4 ensures correctnesswithout value prediction, it
does nothing to prevent incorrect execution with naïve
value prediction. (The student can still predict that her
grade is on board B, see that her score is 60, later verify
that board B was the correct location, and still erroneously
believe that her grade was 60 and not 80.) Thus, this simple
implementation of value prediction violates weak memory
models that enforce data dependence order.

One approach to restoring correctness is to change the
memory consistency model by removing the enforcement
of data dependence order. This change requires program-
mers to insert a memory barrier between dependent instruc-
tions (such asr1 andr2 ). A memory barrier will explicitly
order these instructions, ensuring that only the expected
two outcomes of our example can occur. (The student can
predict that she should look on board B, but she cannot act
on her prediction until she observes the professor’s
announcement) This approach, however, breaks backward
compatibility, since changing the memory model definition
of an architecture to require additional memory barriers
may break programs written for the old definition. For this
reason, we do not consider this to be a practical solution.

A conservative solution is to use the same approach
described earlier for aggressive SC and PC implementa-
tions: enforce all read-to-read program order by specula-
tively executing and explicitly detecting possible
violations. As in the SC and PC cases, this technique is suf-
ficient to avoid the subtle correctness issues induced by
value prediction. However, this solution can reduce perfor-
mance due to false squashes, and it faces the same imple-
mentation issues described in Section 2.3.

Alternatively, a more aggressive strategy could per-
haps selectively enforce read-to-read ordering only for
dependent operations or only while a value prediction is
active in the processor, reducing unnecessary squashes. We
leave a detailed description, proof of correctness, and per-
formance evaluation of more aggressive techniques for
future work.

Models that do not enforce data dependence.The other
class of weak memory models, which includes Alpha [30],
requires a memory barrier to order two reads, regardless of
whether they are dependent. For example, Alpha program-
mers that want our linked list example to allow only the

two expected outcomes of Figure 1 must insert two mem
ory barriers (shown in Figure 4). First, just as for mode
that do enforce data dependence, a memory barrier mus
inserted before instructionw4. Second, Alpha also requires
a memory barrier between instructionsr1 andr2 , because
the Alpha model does not enforce data dependence ord
Without this second barrier, the surprising result of Figu
1(d) is valid under the Alpha memory consistency mode2

By adding the second barrier, this result is disallowed.

One advantage of not enforcing dependence order
that naïve value prediction does not violate the consisten
model. A straightforward implementation would not allow
value prediction across a memory barrier, preventing sub
reorderings due to value prediction. A side effect of adop
ing a memory model that does not enforce dependen
order is that the programmer must insert a memory barr
to explicitly enforce data dependence order (e.g., betwe
r1 and r2) . Requiring these additional memory barrier
increases the frequency of memory barriers, possib
reducing performance, and it adds an extra burden on
programmer by requiring barriers in “non-intuitive” loca
tions [20, section 13.2.1.7].

3.3  VP & Relaxed Memory ModelsConclusion

Value prediction can complicate some implement
tions of relaxed memory models that enforce read-to-re
ordering of dependent operations. Examples of the
relaxed models include SPARC TSO, IA-32, SPAR
RMO, PowerPC, and IA-64. However, memory mode
that do not enforce data dependence order (e.g., Alph
allow for simple implementations of value prediction, a
long as prediction across memory barriers is not allowed

4  Could Violations Occur in Real Code?

The correctness issues described above are va
regardless of the frequency with which these errors m
occur. Nevertheless, the issues might seem less importan

2.  At least one Alpha implementation leverages the relaxation of data
dependence order and thus could produce undesired results if the mem
barrier betweenr1  andr2  is omitted [16].

Figure 4. Correct Code for Weak Ordering
without Data Dependence

Code for Twriter

w1: store mem[B.data]← 80

w2: load reg0← mem[Head]

w3: store mem[B.next]← reg0

w3b:memory barrier

Code for Treader

r1b:memory barrier

r1: load reg1 ← mem[Head]

w4: store mem[Head]← B

r2: load reg2 ← mem[reg1]
8
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they occurred only for contrived code sequences instead of
real ones. In this section, we quantify the dynamic fre-
quency of code sequences similar to the relaxed consis-
tency code illustrated in Figure 3, while simulating a set of
five multithreaded workloads on a 4-processor PowerPC
system. We show that the error potential is real, as two of
the five workloads contain code sequences in which simple
verification of a value prediction could be incorrect.

We simulate the user and system level instructions of
all workloads using the SimOS-PPC full system simulator
[27], augmented with a detailed memory hierarchy model-
ing an IBM RS/6000 S80 server. The workloads chosen are
representative of a wide array of applications, each running
on the AIX 4.3 operating system. TPC-W [32] is an e-com-
merce benchmark using IBM’s DB2 database and the Zeus
Web Server. Raytrace is a parallel image rendering applica-
tion from the SPLASH benchmark suite [29]. We also use
three SPEC benchmarks [31]. SPECjbb2000 is a multi-
threaded transaction processing application written in Java.
SPECint_rate95 uses multiple threads to concurrently exe-
cute the SPEC95 integer benchmarks. SPECweb99 is a
web serving benchmark using the Zeus web server.

We detect potential consistency model violations using
two 100-entry FIFO queues per processor, one for loads
and one for stores. The store FIFO associated with each
processor tracks dynamic store and memory barrier
instances. The load FIFO tracks dynamic load instances,
the dependences among them, and whether or not depen-
dent loads were separated by memory barriers. For each
execution of a load that is dependent upon another load
during this 100 instruction window, without being sepa-
rated by a memory barrier or other ordering instruction, we
scan the store FIFO of all other processors. During this
scan, we search for two store instructions which overlap the
memory locations read by the dependent loads, where the
store instructions are separated by a memory barrier. A
match is a potential consistency violation.

As shown in Table 1, potential consistency model vio
lations occur in two of the five applications. Although the
occur infrequently, any occurrence indicates a potent
system failure, which is not acceptable. We have examin
the code surrounding a few of these violations, and we ha
found that many occur in locking routines called from th
operating system task dispatcher. We have found that ma
of the loads and stores involved are normal load and sto
operations, and they are not restricted to load and sto
conditional synchronization operations for which valu
prediction could be selectively disabled.

5  Conclusions

We have shown that micro-architects must consid
system correctness, as defined by the architecture’s me
ory consistency model, if they are implementing value pr
diction in microprocessors that are to be used in syste
with thread level parallelism (TLP). Value prediction ca
induce violations of read-to-read dependence ordering, a
these violations can cause incorrect executions of mu
threaded workloads. This issue exists in many common
applied consistency models—including sequential cons
tency, processor consistency, and some flavors of wea
ordered models—and thus pertains to many commerc
architectures.

For each class of consistency models with which valu
prediction can induce violations, we have presented so
tions that are sufficient to eliminate consistency model vi
lations due to value prediction. For the relaxed mode
including processor consistency and weak ordering, o
viable solution is to borrow the mechanisms that are us
in aggressive implementations of sequential consistency
detect violations of read-to-read program order. This sol
tion, however, has potential drawbacks in terms of perfo
mance and complexity. Alternate solutions may allevia
these drawbacks, but an evaluation of their relative perfo
mances is beyond the scope of this paper.
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Table 1. Frequency of Consistency Model Violations
Caused by Value Prediction

Application

Instructions
Executed
(millions)

Possible
Violations

TPC-W 3,688 161

Raytrace 979 0

SPECjbb2000 4,559 0

SPECint_rate95 729 0

SPECweb99 1,651 5
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