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Abstract 
Some recent memory technologies, including phase 

change memory (PCM), have lifetime reliabilities that 

are affected by write operations.  We propose the use of 

coset coding to extend the lifetimes of these memories.  

The key idea of coset coding is that it performs a one-to-

many mapping from each dataword to a coset of 

vectors, and having multiple possible vectors provides 

the flexibility to choose the vector to write that 

optimizes lifetime. Our technique, FlipMin, uses coset 

coding and, for each write, selects the vector that 

minimizes the number of bits that must flip. We also 

show how FlipMin can be synergistically combined with 

the ability to tolerate bit erasures. Thus, our techniques 

help to prevent bits from wearing out and can then 

tolerate those bits that do wear out.  

1. Introduction 
Some non-volatile memory technologies, including 

phase change memory (PCM) and Flash, have lifetime 

reliabilities that are affected by write operations.  

Ideally (and unrealistically), we would like to 

completely control the bits being written to memory 

such that we maximize lifetime. That is, regardless of 

what the core wants to write, we would be able to 

choose what we write to memory in order to maximize 

lifetime.   

Clearly, there must be some connection between the 

dataword that the core wants to write and the vector of 

bits that is written to memory.  In current memory 

systems, this connection is highly constrained.  When a 

core wishes to write a dataword to memory, it writes a 

vector that is the dataword plus perhaps some bits for 

error detection or correction.  There is a one-to-one 

mapping between the dataword and the written vector.   

In this paper, we propose using a technique from 

coding theory, called coset coding, to provide flexibility 

in mapping from the dataword to the vector.  Using 

coset coding (for which we provide a brief tutorial in 

Section 3), we enable a one-to-many mapping instead of 

the one-to-one mappings currently used.  Coset coding 

is a general technique that is parameterizable such that 

we can trade off flexibility (i.e., how many possible 

vectors map to the same dataword) versus cost (i.e., how 

many extra bits are required for the written vector 

compared to the dataword).   

The ability to choose a vector from among a set of 

possibilities allows us to choose the newly written 

vector so as to optimize objectives. In this paper, we 

choose the vector so as to minimize the number of bits 

that must change from the vector previously written to 

that location.  This optimization, which we call FlipMin 

(and discuss in Section 4), extends memory lifetime by 

reducing the number of bits flipped during the lifetime 

of the memory.   Conversely, FlipMin can also be used 

to achieve the same lifetime while reducing the cost of 

producing memory by tolerating greater manufacturing 

variances.  

This paper makes three primary contributions:  

1) We show how to use coset coding to prolong the 

time before bits wear out by minimizing the number 

of bits that flip per write. 

2) We present a method to synergistically combine 

FlipMin with the ability to tolerate bit erasures when 

wearout does occur.   

3) For a subset of possible coset codes we can use with 

FlipMin, we evaluate how well the codes extend the 

lifetime of PCM for both random and benchmark 

inputs. For the same coset codes, we provide 

example encoder/decoder hardware and evaluate it in 

terms of energy, area, and performance overheads.  

2. Related Work 
Existing schemes for extending the lifetime of write-

limited memories can be grouped into four broad 

categories.  We list prior schemes in Table 1, and we 

shade schemes that we do not quantitatively compare 

against in Section 7.  

2.1. Postponing Wearout: Bit Flip Reduction 

 All else being equal, if fewer bits flip per write to a 

memory location that location will last for a greater 

number of writes. Bit flip reduction, for the purpose of 

postponing wearout, is the technique we use in this 

paper. To the best of our knowledge, the only other 

work in this area is Flip-N-Write [5]. At each write, 

Flip-N-Write chooses to write the dataword or its 

inverse, depending on which requires fewer bit flips.  

Flip-N-Write adds a single bit per location to indicate 

whether the data is inverted or not. We will show later 
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that Flip-N-Write is a degenerate instance of FlipMin.  

Because Flip-N-Write is the only prior work with the 

same goal as FlipMin, our experiments focus on 

comparing them.  We assume for all schemes that the 

hardware only writes to those bits whose values change 

[26], i.e., there is no wearout incurred by writing a bit if 

the bit’s value does not change. 

One other way to minimize bit flips is to coalesce 

multiple writes [15] before applying them to the PCM.  

Write coalescing is a useful technique that is orthogonal 

to all prior work and to our work. 

2.2. Tolerating Wearout: Error Correction 
The other dominant technique for extending memory 

lifetime is to tolerate bit errors after wearout occurs.   

Tolerating wearout is effective when a minority of cells 

at some location granularity (e.g. byte, line, etc.) fail far 

earlier than average, making the entire location 

unusable. Example schemes include error correcting 

codes (ECC) and some techniques specific to write-

limited memories [9][16][19][23][25][27]. One 

prominent scheme that we compare against 

quantitatively is Error Correcting Pointers (ECP) [23]. 

The ECP scheme tolerates errors in known bit positions 

(i.e., erasures) in memory locations by maintaining 

pointers to these bit positions and adding bits to be used 

as replacements.  For example, ECP6 operates at a 512-

bit location granularity, and it keeps six 9-bit pointers 

(log2(512) = 9) and 6 replacement bits for tolerating up 

to 6 erasures in the 512-bit location.  

 There has been a large amount of work that extends 

and optimizes ECP, including Pay-As-You-Go [19], 

SAFER [25], and RDIS [16].  Rather than compare 

against all of them, we compare to an idealized and un-

implementable ECP12 that has zero cost, which we refer 

to as ECP-ideal.  For our particular experimental 

purposes, ECP-ideal subsumes the work that reduces 

ECP’s costs.  FREE-P [27] and DRM [9] are two other 

techniques for tolerating erasures.  Both of them require 

OS support, which we do not assume in our work.  

Furthermore, direct comparisons to FREE-P are difficult 

to make fair because of FREE-P’s added support for 

tolerating soft errors.  

2.3. Bit Flip Reduction + Error Tolerance 

We can combine bit flip reduction schemes with 

error/erasure tolerance schemes to achieve the best of 

both worlds.  For example, FlipMin can be combined 

with ECP.  Such hybrid schemes both postpone wearout 

and tolerate it when it eventually occurs. 

2.4. Adding Memory Cells  

One can extend the lifetime of write-limited 

memories by simply adding more memory cells and 

using these cells for purposes of extending lifetime 

rather than increasing logical capacity. For example, if a 

memory location is logically 64-bits, we can use 128 

physical bits in a scheme we call DoubleMem.  With 

DoubleMem, initially the first 64 bits of the physical 

location are used to store data. When the first 64-bit 

physical location fails, the second 64-bit physical 

location is used to store data. There has been research 

into more sophisticated methods for adding memory 

cells to improve lifetime, including waterfall codes and 

hypercells [14], but they all share the same idea. 

2.5. Wear-leveling 

Intra-location wear-level schemes try to level out the 

wear in a given location more uniformly (e.g., by 

remapping logical bit positions) [12][29].  These 

schemes require state to track the current bit position 

mappings for each location, and they require 

sophisticated heuristics to decide when and how to 

remap bit positions.   

Inter-location wear leveling schemes seek to avoid 

writing to some locations more frequently than others.  

These schemes [12][29][21][24][20] avoid these 

Table 1: PCM lifetime extension schemes.  We quantitatively compare to un-shaded rows. 
Approach Scheme Instantiation Granularity Overhead Why No Quant. Comparison 

bit flip reduction Flip-N-Write (FnW) [5] FnW per-byte 8 bits 1 bit=12.5%  

  FnW per-word 64 bits 1 bit=1.56% subsumed by FnW per-byte 

 Coset Coding discussed in paper 64 bits tunable  

error/erasure  ECC Hamming (72,64) 64 bits 8 bits=12.5%  

correction ECP [23] ECP6 block ~ 512 bits 61 bits=11.9%  

  ECP12 block ~ 512 bits 121 bits=23.6%  

  ECP-ideal block ~ 512 bits 0  

 Pay-As-You-Go [19]  entire memory tunable subsumed by ECP-ideal 

 SAFER [25] SAFER8 block ~ 512 bits 22 bits=4% subsumed by ECP-ideal 

  SAFER32 block ~ 512 bits 55 bits=10.7% subsumed by ECP-ideal 

 RDIS [16] RDIS3 block ~ 512 bits see † subsumed by ECP-ideal 

 FREE-P [27]  block ~ 512 bits 64 bits=12.5% requires OS support 

 DRM [9]  page ~4KB see ǂ requires OS support 

adding cells DoubleMem  64 bits 64 bits*=100%  

 † Overhead is listed as 18%, but RDIS does not account for overheads to track erasures. 

  ǂ  12.5% to track erasures plus 100% for paired pages plus a single 1KB “ready table” 

 * Actual overhead is greater than 64 bits due to extra state bits to track which copy of the location is being used. 
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situations by dynamically mapping from logical 

locations to physical locations, in ways that are similar 

to, but simpler than, virtual memory’s translations from 

virtual pages to physical pages.  This work is 

complementary to our work.  

3. Coset Coding Primer 
The key enabling technology is the use of coset 

coding [6][7].  In this section, we explain coset coding, 

starting with the basic idea (Section 3.1) and a simplistic 

example of a coset coding scheme (Section 3.2).  We 

then present a more realistic coset coding scheme 

(Section 3.3). We defer a discussion of implementation 

issues until Section 6. 

3.1. Basic Idea 

Consider a k-bit dataword.  This dataword can be any 

element of a set of 2
k
 possible strings of zeros and ones.  

We map datawords from the set of 2
k
 possibilities to a 

larger set of 2
n
 possible n-bit vectors (n>k). One well-

known example of a one-to-one mapping is single-bit 

parity.  For example, even parity maps each dataword in 

a 2
k
 set to a vector in a set of size 2

k+1
, such that each of 

the mapped 2
k+1

 vectors has an even number of ones.   

Coset coding extends this basic concept to a one-to-

many mapping, illustrated in Figure 1.  The 2
n
 set of 

vectors is split into non-overlapping, equal-sized cosets.  

A coset is a set that is generated in a very specific way 

such that every coset is disjoint from every other coset 

and the union of the cosets covers a group (e.g., the set 

of all possible n-bit vectors under the XOR operator). 

Formally defining cosets is more likely to confuse than 

enlighten; we instead highlight cosets’ relevant 

properties as needed.    

 In general, if c = n - k (i.e., c is the number of 

additional bits needed for a given vector in a coset 

compared to a dataword), then the 2
n
 set of vectors is 

divided into 2
n-c

 cosets, each with 2
c
 elements.  Now we 

can choose n and c such that k = n - c.  That is, the 

number of cosets (2
n-c

) equals the number of datawords 

(2
k
), and each dataword maps to a single coset.  

The key idea is that, for a given dataword, we can 

dynamically choose which element of that dataword’s 

coset to write.  Because each coset has 2
c
 elements, we 

have 2
c
 options for which vector to write. When we read 

from a location, we obtain an element of a coset, 

determine which coset it belongs to, and perform the 

one-to-one mapping from that coset to the dataword. 

The benefits of coset coding derive from the flexibility 

to choose which element to write so as to optimize an 

objective.  For example, if we know the previously 

written vector to be overwritten, we can choose the new 

element to minimize the number of bits that must flip.  

The primary cost of coset coding is its storage 

overhead of c bits per vector.  Compared to simply 

storing the original dataword of k bits, we now store an 

n-bit vector (n=k+c).  There is a fundamental tradeoff 

between the benefit and cost of coset coding.  To 

increase the benefit requires mapping each dataword to 

a coset with more elements in it.  Increasing the number 

of elements per coset requires increasing n, and 

increasing n increases the cost.   

Coset coding also incurs a small computational cost 

for encoding and decoding, which we discuss later. 

3.2. Simplified Coset Coding Example 

To make the idea of coset coding more concrete, we 

provide a simplistic example.  Assume datawords are 2-

bit values (denoted D1 through D4) and that we map 

each dataword to a coset that consists of four 4-bit 

vectors.  We divide the set of all possible 4-bit vectors 

into 4 cosets (denoted S1-S4), as follows: 

 D1=00 maps to S1 = {0000, 0101, 1010, 1111} 

 D2=01 maps to  S2 = {0001, 0100, 1011, 1110} 

 D3=10 maps to  S3 = {0010, 0111, 1000, 1101}  

 D4=11 maps to  S4 = {0011, 0110, 1001, 1100} 

 Thus, if the core wishes to store the value 01 

(dataword D2), it can choose to write any of the 

elements from coset S2.  If the core reads from memory 

and obtains the vector 1001, which is an element in S4, 

the core interprets it as 11, because dataword D4 (11) 

maps to S4.  Notice that the cosets are entirely non-

overlapping; no vector appears in more than one coset.  

This property is crucial for reading from memory, 

because reading requires mapping uniquely from a 

written vector to a dataword.   

Overwriting an existing vector with a new vector 

involves flipping a number of bits that is a function of 

the cosets to which the existing and new vectors belong. 

For example, if the existing written vector is 0101 (in 

coset S1) and the new vector to write is in coset S2, then 

we can minimize the number of the bits flipped by 

choosing vector 0100 from S2. 

3.3. Practical Coset Coding with Block Codes 

The simple coset coding scheme in the previous 

section has two drawbacks. First, its distribution of 

elements within each coset does not actually enable us 

to reduce the number of bits flipped. Second, the 

division of the set of vectors into cosets (called coset 

generation) was done manually, which is infeasible for 

larger sets.  We now describe automatic coset 

generation and how to encode/decode.  
Figure 1.  Coset coding 
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3.3.1  Coset Generation 

 To automate coset generation, we use linear 

algebraic block codes (LABC). There are many possible 

block codes that would serve this purpose, and they 

offer different cost/benefit tradeoffs. LABCs are often 

used for purposes of error detection and correction. One 

such code is the commonly-used Hamming (72,64) code 

that maps 64-bit datawords into 72-bit codewords. In a 

typical use of a Hamming code for error correction 

(Figure 2, left), a codeword is created by multiplying a 

dataword, �� with the code’s generator matrix, G. A 

codeword, ��, is decoded by multiplying the codeword 

with the code’s parity-check matrix, H. If the result of 

H��, which is called the syndrome, equals the zero 

vector, then �� is error-free.
1
 If there was a single bit 

error, the syndrome identifies which bit in the dataword 

is erroneous; flipping that bit corrects the error. 

 For coset generation, we use LABCs differently than 

how they are used in error correcting codes.  Consider 

the Hamming (72,64) code. There is a one-to-one 

mapping between each 64-bit dataword and its 

corresponding (error-free) 72-bit codeword.  We then 

have an 8-bit syndrome that, when it is all-zero, 

indicates the codeword was transmitted correctly. There 

is a many-to-one (e.g., 2
64

-to-one for Hamming(72,64)) 

mapping of vectors that result in the same syndrome. 

The sets of vectors that all map to the same syndrome 

perfectly partition the vector space into cosets. We will 

refer to the coset of codewords (all codewords map to 

the all-zero syndrome) as the zero coset, because it has 

some properties we exploit later.  

 We could use Hamming(72,64) in this way to 

generate 2
8
 cosets, each of which has 2

64
 elements; 

however, we would rather have more cosets and fewer 

elements per coset.  One way to achieve this goal is to 

use the code’s dual code (which is also a block code 

 
1 Hamming(72,64) has a non-zero syndrome for 1-bit or 2 bit-errors. 

with its own zero coset), in which we flip the uses of the 

matrices G and H.  Hamming(72,64)’s dual code maps 

8-bit datawords to 72-bit codewords, and syndromes are 

64-bits.  Its dual code partitions the 72-bit space into 2
64

 

cosets, each with 2
8
 elements. 

Coset generation with block codes has several 

attractive properties, two of which we will exploit in 

this work.  First, the zero coset is a group under bitwise 

addition modulo 2 (i.e., the bit-wise XOR operation).  

That is, if we take any two elements from the zero coset 

and XOR them together then we obtain an element from 

that same coset.  Furthermore, XORing any element 

from the zero coset with any element in coset X 

produces an element in coset X (which is why one of the 

2
c
 elements in the zero coset is all-zero).  We will later 

use the zero coset to generate the elements of a coset 

starting from just one element in the coset, by XORing 

the element from the given coset with every element of 

the zero coset.  Second, we can translate any element 

from a coset X to some element in another coset Y by 

XORing the element from X with any element from 

another coset called the translate coset T.  (Each X,Y 

pair has a corresponding T that is just another coset in 

the same space.  T is the zero coset if Y=X.)  That is, if 

we want to overwrite an element in X with an element in 

Y, we can XOR the element in X with any element in T.  

We can then choose the element from T to minimize the 

number of bits that must flip. If we know the identities 

of X and Y and we know the zero coset, we can easily 

determine T (explained in more detail in Section 6). 

 Let us return to the simplistic coset coding scheme 

from Section 3.2.  Consider the case in which the 

currently written vector is 1010 (an element in coset 

S1), and we wish to write dataword D2 (which 

corresponds to S2).  In the table below, we show the 

four options for translating from 1010 to elements in S2.  

The four elements in the translate coset are in the 

bottom row.  We can choose any of these translate 

elements, based on the objective we seek to optimize.  

For example, we might choose Option #3 (translate 

element 0001), because it requires the fewest bits to flip 

(i.e., translate element 0001 has the fewest ones).  

3.3.2 Writing (Encoding) and Reading (Decoding) 

We present the high-level view of how writing 

(encoding) and reading (decoding) work, and we defer 

the implementation details to Section 6.  We illustrate 

the processes in Figure 2 (right), and we note that they 

are similar to those for typical ECC.  The three 

differences are: the use of different matrices, the reading  

 
Figure 2. Hamming(72,64) for Error 

Correcting (left) and Coset Coding (right) 

 Option #1 Option #2 Option #3 Option #4 

Vector Written Prev 1010 1010 1010 1010 

Elements in S2 0001 0100 1011 1110 

Translate Element 1011 1110 0001 0100 
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of the prior vector before writing the new vector, and 

the logic to choose a preferred element of a coset. 

4. FlipMin: Extending Lifetime by 

Reducing Bit Flips 
Our application of coset coding, which we call 

FlipMin, is to extend the lifetime of memory by 

minimizing the number of bit flips per write.  The goal 

is to choose the new vector to be written that is most 

similar to the vector already written to that location.   

4.1. How It Works 

The key idea of FlipMin is to choose the translate 

element within the translate coset T that has the least 

weight (i.e., the fewest number of bits that are one); this 

element is called the coset leader of T.  Some cosets 

have multiple coset leaders, in which case we can 

choose any of them. To overwrite the currently written 

element in X with an element from Y, FlipMin XORs 

the element from X with the coset leader of T.  Because 

the coset leader has the fewest ones of any element in 

the translate coset, FlipMin thus flips the fewest 

possible bits.  The extent to which FlipMin reduces bit 

flips depends on the particular code used. 

4.2. Practical Block Codes for Coset Coding 

 There are a vast number of possible block codes that 

can be used for FlipMin.  We have already mentioned 

Hamming(72,64) and its dual. We also looked at the 

simplest code for FlipMin, parity. Parity FlipMin is 

equivalent to an already published scheme, Flip-N-

Write [5]. There are numerous other codes that work 

with FlipMin—including other Hamming codes, BCH 

codes, and Reed-Muller (RM) codes [22]—and they 

represent different trade-offs between storage overhead 

and flexibility.  

 We assume datawords are 64-bits long; for those 

codes that map datawords smaller than 64-bits, we 

divide the dataword into chunks and encode each one 

independently. For example, with Reed-Muller(1,3) 

(also known as Hamming(8,4)), we encode a 64-bit 

dataword by encoding it in 16 4-bit chunks.  In Table 2, 

we list the codes we consider in this paper. We 

evaluated parity coset coding at the 8-bit granularity 

giving it 12.5% overhead. Reed-Muller codes, including 

their dual codes, have codeword lengths that are powers 

of two, so we truncated
2
 the dual of the RM(1,7) code, 

 
2 Truncation is a common technique for modifying a code’s length. 

denoted RM(1,7)T, to reduce the overhead for 64-bit 

datawords from 100% to 12.5%.  

4.3. Analytical Evaluation of FlipMin 

For purposes of this exposition, consider a single 

memory location and 4-bit datawords.   Furthermore, for 

now, assume there is a stream of random datawords to 

be written to this memory location.   

In a system without coding of any kind (i.e., the 

vector written is the dataword itself), an average of half 

of the bits (2) within a memory location will flip per 

write.  Intuitively, for random datawords, each bit is 

equally likely to flip due to a write.  However, it is 

instructive to more thoroughly reason about this 

relationship, because it will help to understand the 

analysis of FlipMin.  In Table 3, the leftmost pair of 

columns shows the histogram of dataword weights, 

where the weight of a word is the number of ones in it.  

Using a weighted average of the dataword weights, we 

obtain: (1×0 + 4×1 + 6×2 + 4×3 + 1×4)/16 = 2.  This 

weighted average is another way to arrive at the average 

number of bits that will flip per write.     

In Table 3, we show FlipMin’s impact, given a 

random stream of inputs, and we show results for 

RM(1,3), which is the simplest to illustrate.  The 

number of bits that flip, on average, is a weighted 

average of the weights of the translate cosets.  The 

results show that, using coset coding, we dramatically 

reduce the average number of bit flips from 2 down to 

1.375, which is a 31% reduction. 

 For block codes other than RM(1,3), it is impractical 

to enumerate all of the translate coset weights.  Instead, 

in Table 2, we simply present the computed reduction in 

bit flips as a function of the block code, once again for a 

random stream of writes.  

 From the analytical results, we conclude that FlipMin 

can extend memory lifetime by reducing the number of 

bit flips.  Furthermore, there is great flexibility in this 

approach, because we can choose among many different 

block codes.  These analytical results are a function of 

the datawords to be written, which in this case is 

Table 2. FlipMin with different block codes 
Block Code Storage Overhead 

per 64-bit dataword 

Bit Flip Reduction 

(compared to unencoded) 

Comments 

dual of Parity(72,64) 8/64 = 12.5% 15.8% Performed on 8-bit chunks 

dual of RM(1,7)T 8/64 = 12.5% 24.5%  

RM(1,3) 64/64 = 100% 31.2% Performed on 4-bit chunks 

Table 3.  Average number of bits written 
 Unencoded 4-bit dataword FlipMin with RM(1,3) 

word weight # of words translate coset weight # of words 

0 1 0 1 

1 4 1 8 
2 6 2 7 
3 4 3 0 
4 1 4 0 

Avg bit writes 2.0 Avg bit writes 1.375 
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assumed to be random.  In Section 7, we will 

experimentally evaluate FlipMin with both random 

traces and traces from benchmarks.  

5. Coset Erasure Matching (CEM) 
In addition to reducing bit flips, coset coding can also 

tolerate erasures (defects in known bit positions). There 

has been theoretical research on supporting erasures 

using coset coding [13] and more specific theoretical 

studies on coset coding showing the feasibility to 

tolerate erasures in Flash [10] and PCM [11].  

Our particular implementation we call Coset Erasure 

Matching (CEM). When it is time to pick which element 

of a coset to write, our selection algorithm chooses an 

element that accommodates the erasure(s). For example, 

assume that a given memory location has bit B stuck-at-

1.  When writing to that location, FlipMin can choose to 

write an element from the appropriate coset such that 

the chosen coset element has a 1 at bit position B.  The 

erasure is thus tolerated, but at the cost of limiting the 

scheme’s flexibility in choosing an element from the 

appropriate coset.
3
  To tolerate erasures, we must both 

identify the erasures and then maintain state that 

identifies the defective bits. 

6. Implementation 
In this section, we discuss hardware implementations 

for writing (encoding) and reading (decoding).  

 
3 CEM tolerates erasures by choosing randomly from among the 

elements that are compatible with the erasure(s). 

6.1. Encoding 

 Assume that the memory location currently holds a 

vector xi that is an element in coset X.  There are five 

steps to encoding. First (Figure 3a), we map �� to a to an 

element yj in coset Y.  One was to do this mapping is to 

use a coset generator matrix, G
#
, with which we 

multiply (modulo 2) the dataword.  For a block code, we 

can form G
#
 by taking the left inverse of the block 

code’s generator matrix, G [8].  Other solutions include 

a lookup table or using a trellis [4].  Second (Figure 3b), 

we perform x����� XOR y	���� to obtain an element t����� from the 

translate coset T.  Third (Figure 3c), we generate the 

rest of T by XORing t����� with every element in the zero 

coset.  Fourth (Figure 3d), we choose the specific 

element within T that optimizes our objective function.  

Fifth (Figure 3e), we perform t����  XOR x����� to get the new 

element y����� that we then write to memory. 

6.2. Decoding 

 Decoding is the simpler of the two operations, which 

is fortuitous because decoding (reading memory) is 

generally more critical to performance than encoding 

(writing memory). To decode a written vector, we 

multiply it by the block code’s generator matrix, G.   

 One possible hardware implementation for this 

multiplication is shown in Figure 4. The written vector 

passes through k bit-masks which are hardwired to 

select wires based on G.  Each n-bit output of each bit-

mask is then bitwise XORed to produce one of the k bits 

of the dataword. 
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Translate Coset Element 1
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Figure 3: Hardware for encoding. 
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6.3.  Overheads 

We used Synopsys Design Compiler and IC Compiler 

to synthesize, layout, and floorplan encoders and 

decoders for different coset codes on top of the Nangate 

45nm semi-custom cell library [18]. For energy 

evaluation we generated 1000 random inputs. We then 

simulated each input using VCS to back annotate a 

SAIF file for the activity factor. We then used Design 

Compiler Topographical for energy evaluation using the 

generated SAIF file. 

Our coset coding encoders take 64-bit inputs and our 

coset coding decoders produce 64-bit outputs. To 

compare to the overhead of the PCM chip [17], which 

has 16-bit I/O width, we multiply the area and power 

overheads from the PCM datasheet by 4. 

6.3.1 Delay 

The maximum delay among the encoders, as shown 

in Table 4, is 12.86ns. The PCM write time is 60-120 

µs. Thus the additional write time imposed by our 

encoder, even in the worst case, is negligible. From the 

same PCM datasheet we have a read time of 115ns + 

25ns per 16-bit entry. Our worst case decode time is 

0.59ns, which again is low enough to be in the noise of 

the read times.  

6.3.2 Energy Consumption 

 The average energy listed in Table 4 and Table 5 is 

the average of the energy values we found for 1000 

simulations. The worst case energy is the maximum of 

the values we simulated.  We found the worst case 

energy consumption to be 63.4 pJ. The typical idle 

current of 4 PCM devices is around 320µA and the 

minimum rail voltage is 1.7V. Thus the minimum idle 

power is about 544µW. If we encode a block every 

60µS, the fastest write time possible for the PCM chip, 

our FM-RM(1,7)T encoder would take 1.06 µW, which 

is negligible compared to the idle power of the PCM 

chip. The decoders for coset coding take much less 

energy than the encoders (the worst case decoder energy 

we found to be 0.4 pJ) and therefore the power 

consumption is also negligible compared to the idle 

power of PCM. 

6.3.3 Area 
 Our worst case area overheads for encoding and 

decoding are 48344 µm
2
 and 344 µm

2
 respectively. We 

believe this to be very small given the overall size of the 

PCM chips and the size of a typical DIMM.    

7. Evaluation 
We experimentally evaluated FlipMin to determine 

how well it can extend memory lifetime and to compare 

it to prior work.  The metric we use to compare memory 

lifetimes is the number of blocks still usable after a 

given number of writes.   

7.1. Techniques Compared 

We compare several different approaches for 

extending memory lifetime.  For all techniques, we 

consider 64-bit datawords.   We evaluate all of the 

options at the cache line granularity, where a cache line 

is large enough to hold 8 n-bit vectors.  For example, 

the baseline unprotected system has 8 64-bit datawords 

per line.  The schemes compared are: 

Bit Flip Reduction Schemes. We evaluate Flip-N-

Write [5] on a per-byte granularity—which is equivalent 

to FlipMin-Parity(72,64)—as well as FlipMin with the 

codes listed in Table 2.   

Error/Erasure Correction Schemes.  We compare 

to schemes that correct errors after they occur. These 

schemes include traditional Hamming(71,64) ECC, as 

well as several variants of ECP [23].   

Hybrids. We also compare to combinations of bit flip 

reduction schemes (Flip-N-Write and FlipMin) and 

erasure tolerance schemes (ECP).  We combine FlipMin 

with both ECP and CEM. 

A list of all schemes we evaluated is in Table 6. Note 

that the three shaded schemes have very similar storage 

overheads and thus comparisons between them require 

no normalization to be fair. 

7.2. System Model Assumptions 

We assume that we can write both transitions (0-to-1 

and 1-to-0) to each bit individually without requiring an 

erase first. Each bit transition has some fixed cost (i.e., 

incremental wearout) associated with it. This model is 

known as the Write Efficient Memory (WEM) model 

[1], and it has been applied before to PCM [3].  We also 

assume, like prior work  [5] [9][26][28][29], that we can 

Table 4. Coset Coding Encoder Overheads 

Coset Code 

Area 

(µm2) 

Delay 

(ns) 

Avg Energy 

(pJ) 

Max 

Energy (pJ) 

FM-RM(1,3) 1,160 4.09 8.4 10.1 

FM-RM(1,7)T 48,344 12.86 56.1 63.4 

FM-Parity(72,64) 503 0.84 0.4 0.6 

 
Figure 4.  Hardware for decoding 

Table 5. Coset Coding Decoder Overheads 

Coset Code 

Area 

(µm2) 

Delay 

(ns) 

Avg Energy 

(pJ) 

Max Energy 

(pJ) 

FM-RM(1,3) 344 0.38 0.3 0.3 

FM-RM(1,7)T 221 0.59 0.3 0.4 

FM-Parity(72,64) 141 0.12 0.1 0.2 
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read the memory location before writing it. This is 

required because choosing the optimal coset element to 

write relies on knowing the coset element at the location 

to be written.  Fortunately, for the memory technologies 

we are most interested in, including PCM, reading is far 

less expensive than writing.  Due to the physics of the 

storage medium, the latency to perform a read and the 

energy required to perform a read are both far less than 

for a write.  Thus, requiring a read before each write, 

while not free, has a cost that is dwarfed by the cost of 

the write itself. 
 

7.3. Modeling Wear-Out 

 A memory location is usable unless it has more 

defects than can be tolerated.  We consider wearout at 

the cache block granularity; a block with too many 

worn-out bits may not “borrow” bits from other blocks. 

For all schemes compared in this paper, we assume that 

a block that has failed can be replaced with a spare 

block (e.g., as is done in hardware in FREE-P [27]). If, 

instead, a failed block renders the entire page unusable, 

the results will be qualitatively the same because all of 

the schemes will suffer in a similar fashion. 

At time zero, all bit positions in all memory locations 

are defect-free and, over time, some of these bit 

positions wear out and become unusable.  Each bit 

position has a lifetime, measured in the number of 

writes before it wears out, and we assume that, due to 

process variability, these lifetimes follow a Gaussian 

distribution.  We assume the mean of this distribution is 

10
8
 writes, based on published data [30][17]. Assuming 

a different mean has no impact on the relative lifetimes 

for different lifetime extension schemes.  Changing the 

mean simply shifts the absolute lifetimes but not the 

differences between the lifetimes for different schemes. 

We explore different coefficients of variation (CV 

equals the mean divided by the standard deviation) in 

this distribution, in order to determine how the results 

are impacted by differing amounts of process 

variability. In particular we looked at a CV of 0.05 

which models memory with a tight distribution of 

lifetimes around the mean, and a CV of 0.2 which 

models memory cell lifetimes that are farther spread 

from the mean.   

7.4. Results for Random Input Streams 

In this section, we compare the various lifetime 

extension schemes when the memory is subjected to a 

stream of random writes.  On average, half of the 

dataword bits flip for each write.  In the following 

figures, we plot the results for both values of the 

coefficient of variation of the cell lifetime.   

The y-axis in each graph is the number of blocks that 

are still usable.  The number of blocks at time zero is 

normalized to a value of N for the schemes with the 

highest storage overhead at time zero, which are 

DoubleMem and FM-RM(1,3) and their 100% 

overhead. The baseline thus starts at 2N, and all other 

schemes start between N and 2N. We say a memory 

fails when only 0.9N locations remain. Section 7.4.1 

compares schemes for bit flip reduction (i.e., FlipMin 

and Flip-N-Write), which is the primary focus of this 

work.  Section 7.4.2 compares FlipMin to error/erasure 

tolerance schemes; even though these schemes have 

different goals (wearout prevention versus wearout 

tolerance), they both seek to extend lifetime and thus it 

is natural to compare them.  In Section 7.4.3, we 

evaluate the intuitively appealing combination of bit flip 

reduction and erasure tolerance.  Finally, Section 7.4.4 

looks at a FlipMin code for when much longer memory 

lifetimes are needed. 

7.4.1 Comparison of Bit Flip Reduction Schemes 

 Figure 5 shows the results when we compare Flip-N-

Write and FlipMin. For random inputs, FlipMin with the 

two RM codes does significantly better than Flip-N-

Write at reducing the number of bit flips in the input 

(recall the data from Table 2) and therefore does better 

at extending memory lifetime over the baseline.  FM-

RM(1,7)T achieves a bit flip reduction of 24.5%, which 

translates into a 46% and 41% improvement over 

baseline lifetime for CVs of 0.05 and 0.2, respectively. 

FM-RM(1,3) has a bit flip reduction of 31.2%, which is 

far better than the other two schemes, but this bit flip 

reduction comes at the cost of much greater storage 

overhead.  Overall, FM-RM(1,7)T performs better than 

Flip-N-Write at the same overhead, while FM-RM(1,3) 

does the best overall, but at higher overheads. 

7.4.2 FlipMin vs. Error/Erasure Tolerance 

 We compared FlipMin to two error/erasure correction 

schemes: ECC-Hamming(71,64) and ECP. As shown in  

Figure 6, for a CV of 0.05, ECC-Hamming(71,64) and 

all variants of ECP (including ECP12-ideal) achieve 

lifetimes only slightly better than baseline.  This is 

because there are few weak cells, and all cells tend to 

fail around the same time. FlipMin does well, with FM-

RM(1,7)T showing a 46% improvement over baseline. 

Table 6. Schemes to extend memory lifetime 
Scheme Storage 

overhead 

Bit Flip 

Reduction 

Error/Erasure 

correction 

ECC-Hamming(71,64) 10.9% 0% 8 bits 

ECP6 11.9% 0% 6 bits 

ECP12 19.7% 0% 12 bits 

ECP12-ideal 0% 0% 12 bits 

Flip-N-Write 12.5% 15.8% 0 bits 

Flip-N-Write + ECP6 25.6% 15.8% 6 bits 

FM-RM(1,7)T 12.5% 24.5% 0 bits 

FM-RM(1,7)T + ECP6 25.6% 24.5% 6 bits 

FM-RM(1,7)T + CEM 24.4% 24.5% 6 bits 

FM-RM(1,3) 100% 31.2% 0 bits 
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 If the cell lifetime distribution is grouped together 

tightly, FlipMin is much better than error/erasure 

correction schemes. However, for a large CV of 0.2, 

ECP is far more helpful than before, because it can 

tolerate the weak cells that are outliers in the lifetime 

distribution. This is the scenario that ECP targets. FM-

RM(1,7)T is still slightly more effective than ECP6 yet 

slightly less effective than ECP12.  

7.4.3 Bit Flip Reduction + Erasure Tolerance 
 The previous two sections have shown how well 

FlipMin can do if the lifetimes of the memory cells are 

relatively uniform. We have also shown that for higher 

variations in cell lifetime, we probably want some sort 

of erasure tolerance to deal with early cell failures. To 

get both of these benefits, we combined bit flip 

reduction with erasure tolerance. The properties of the 

hybrid schemes we consider are listed in Table 6. The 

results are shown in Figure 7. If the cell lifetime CV is 

low, adding erasure tolerance is not that helpful. 

 However, at a high CV of 0.2, the combination of 

FM-RM(1,7)T and erasure tolerance (either CEM or 

ECP6) results in a lifetime gain of 95%, which is far 

greater than either FM-RM(1,7)T or ECP12 alone.  This 

result highlights the synergistic effects of FlipMin and 

CV 0.05 

 

CV 0.2 

 

 CV 0.05 CV 0.2 

Scheme Writes Before 

0.9N 

% Improvement 

Over Baseline 

Writes Before 0.9N % Improvement Over Baseline 

Baseline 1.70e8 0% 8.20e7 0% 

Flip-N-Write 1.91e8 12% 1.01e8 23% 

FM-RM(1,7)T 2.49e8 46% 1.16e8 41% 

FM-RM(1,3) 4.72e8 178% 1.49e8 82% 

Figure 5. Bit flip reduction schemes compared 

CV 0.05 

 

CV 0.2 

 CV 0.05 CV 0.2 

Scheme Writes Before 

0.9N 

% Improvement 

Over Baseline 

Writes Before 0.9N % Improvement Over Baseline 

Baseline 1.70e8 0% 8.20e7 0% 

ECC-Hamming(71,64) 1.75e8 3% 1.01e8 23% 

ECP6 1.78e8 5% 1.11e8 35% 

ECP12 1.80e8 6% 1.20e8 46% 

ECP12-ideal 1.80e8 6% 1.21e8 48% 

FM-RM(1,7)T 2.49e8 46% 1.16e8 41% 

Figure 6. FlipMin compared to error/erasure tolerance schemes 



 

 

10 

 

erasure tolerance at high CVs: if we take the lifetime 

gains for both ECP6 and FM-RM(1,7)T individually 

from Figure 6, the total is 35% + 41% = 76%, which is 

less than the 95% of the combined scheme.  Combining 

Flip-N-Write with ECP6 does strictly worse than 

FlipMin with ECP6. 

7.4.4 FlipMin for  Longer Memory Lifetimes 

 We have shown that FM-RM(1,7)T provides superior 

lifetime gains when compared to existing erasure 

tolerance schemes at the same area overhead. We have 

also shown that we can combine FlipMin and erasure 

tolerance to combat high memory cell lifetime variation.  

There may be cases where even larger lifetime gains are 

required. For these cases, FM-RM(1,3) provides 

substantial lifetime gains, but at the cost of 100% area 

overhead at time zero. Since we could just as easily use 

two memory locations with the same overhead, we use 

that as our point of comparison. Specifically we use a 

technique we call DoubleMem that we described in 

Section 2.4. We ignore the overhead required to track 

which lines are being used by DoubleMem, thus giving 

it an unrealistic advantage. 

As shown in Figure 8, at both CV points, FM-

RM(1,3) easily outperforms DoubleMem. FM-RM(1,3) 

gives 178% additional lifetime at a CV of 0.05 while 

DoubleMem gives only 95% lifetime gains over 

baseline. For a CV of 0.2, lifetime gains are 82% for 

FM-RM(1,3) and 56% for DoubleMem due to the 

CV 0.05 

 

CV 0.2 

 
 CV 0.05 CV 0.2 

Scheme Writes Before 

0.9N 

% Improvement 

Over Baseline 

Writes Before 0.9N % Improvement Over Baseline 

Baseline 1.70e8 0% 8.20e7 0% 

ECP12-ideal 1.80e8 6% 1.21e8 48% 

Flip-N-Write + ECP6 2.02e8 19% 1.40e8 71% 

FM-RM(1,7)T + ECP6 2.60e8 53% 1.60e8 95% 

FM-RM(1,7)T + CEM 2.60e8 53% 1.60e8 95% 

Figure 7. Bit flip reduction + erasure tolerance compared to error/erasure tolerance alone 

CV 0.05 

 

CV 0.2 

 
 CV 0.05 CV 0.2 

Scheme Writes Before 

0.9N 

% Improvement 

Over Baseline 

Writes Before 0.9N % Improvement Over Baseline 

Baseline 1.70e8 0% 8.20e7 0% 

DoubleMem 3.31e8 95% 1.28e8 56% 

FM-RM(1,3) 4.72e8 178% 1.49e8 82% 

Figure 8. FM-RM(1,3) coset coding compared to DoubleMem 
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increased number of weak cells.  The results show that 

adding memory cells can increase lifetime and that it is 

important how we use those extra memory cells, as 

shown by FM-RM(1,3)’s advantage over DoubleMem. 

Because DoubleMem does worse than FM-RM(1,3) for 

all benchmarks we do not consider it further. 

7.5. Results for Benchmarks 

We now show how FlipMin performs when the 

system runs benchmarks. We used the Gem5 simulator 

[2] to simulate a single core configured as shown in 

Table 7. For benchmarks, we used the Hadoop 

benchmarks that come with the Hadoop distribution.  

One challenge was obtaining a large number of writes to 

a large number of lines in a reasonable amount of time.  

We solved this problem by dumping traces of writes to 

every line, then projecting these traces onto one target 

page of memory with lines numbered from 1 to B.  The 

projection is done by mapping line X to line X modulus 

B. The trace of writes to the target page’s first line is the 

concatenation of the traces for lines 1, B+1, 2B+1, etc.  

 Our results for Hadoop are in Figure 9 and 10. The 

y-axis is the gain in lifetime, where lifetime is measured 

as the number of writes until 0.9N locations remain.  All 

FlipMin schemes do significantly better than both 

baseline and the error correcting schemes, including 

ECP6, at a CV of 0.05. On average, ECP6 produces a 

9.2% improvement in lifetime over baseline, while FM-

RM(1,7)T produces a 22% lifetime improvement over 

baseline. For the higher CV of 0.2, ECP6 alone does 

well with a 33% lifetime gain over baseline, but when 

combined with FlipMin it does even better with an 

overall lifetime improvement over baseline of 64%. The 

larger overhead code of FM-RM(1,3) does very well at 

all CVs with a lifetime gain over baseline of 106% for a 

CV of 0.05 and 66% for a CV of 0.2. 

On some, but not all benchmarks, Flip-N-Write 

outperforms FM-RM(1,7)T, even though FM-RM(1,7)T 

outperforms Flip-N-Write on random inputs.  This 

discrepancy highlights how lifetime results depend on 

the inputs.  In particular, if fewer bits flip per dataword 

(e.g., in benchmarks like WordCount), then shorter 

codes, like Flip-N-Write and RM(1,3), do better than 

longer codes like RM(1,7)T. This discrepancy also 

highlights the tunability of FlipMin, by showing the 

range of results achievable with a variety of codes.  

8. Conclusions 
We have shown that coset coding enables us to 

optimize writing memory structures. In particular, we 

 
Figure 9. Lifetime extension schemes compared using Hadoop inputs. CV 0.05 

 

 
Figure 10. Lifetime extension schemes compared using Hadoop inputs. CV 0.2 

CPU x86-64 in-order core at 2.0GHz 

L1 D-Cache 64kB, 2-way associative, 64B Line Size 

L1 I-Cache 32kB, 2-way associative, 64B Line Size 

L2 Cache 2MB, 8-way associative, 64B Line Size 

Memory 128MB, 2GB swap 

Table 7.  System configuration 
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have shown how to use coset coding to avoid wearout—

by reducing bit flips—and to then tolerate the bits that 

do eventually wear out. Furthermore, we have by no 

means exhausted the possible coset coding techniques 

that we can use. There are more possible codes and 

metrics, which we hope to explore in future work. 
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