
This paper appears in the 19
th

 IEEE International Symposium

on High Performance Computer Architecture

1

Coset Coding to Extend the Lifetime of Memory

Adam N. Jacobvitz Robert Calderbank Daniel J. Sorin

Dept. of ECE Depts. of ECE, Math, and CS Dept. of ECE

Duke University Duke University Duke University

Abstract
Some recent memory technologies, including phase

change memory (PCM), have lifetime reliabilities that

are affected by write operations. We propose the use of

coset coding to extend the lifetimes of these memories.

The key idea of coset coding is that it performs a one-to-

many mapping from each dataword to a coset of

vectors, and having multiple possible vectors provides

the flexibility to choose the vector to write that

optimizes lifetime. Our technique, FlipMin, uses coset

coding and, for each write, selects the vector that

minimizes the number of bits that must flip. We also

show how FlipMin can be synergistically combined with

the ability to tolerate bit erasures. Thus, our techniques

help to prevent bits from wearing out and can then

tolerate those bits that do wear out.

1. Introduction
Some non-volatile memory technologies, including

phase change memory (PCM) and Flash, have lifetime

reliabilities that are affected by write operations.

Ideally (and unrealistically), we would like to

completely control the bits being written to memory

such that we maximize lifetime. That is, regardless of

what the core wants to write, we would be able to

choose what we write to memory in order to maximize

lifetime.

Clearly, there must be some connection between the

dataword that the core wants to write and the vector of

bits that is written to memory. In current memory

systems, this connection is highly constrained. When a

core wishes to write a dataword to memory, it writes a

vector that is the dataword plus perhaps some bits for

error detection or correction. There is a one-to-one

mapping between the dataword and the written vector.

In this paper, we propose using a technique from

coding theory, called coset coding, to provide flexibility

in mapping from the dataword to the vector. Using

coset coding (for which we provide a brief tutorial in

Section 3), we enable a one-to-many mapping instead of

the one-to-one mappings currently used. Coset coding

is a general technique that is parameterizable such that

we can trade off flexibility (i.e., how many possible

vectors map to the same dataword) versus cost (i.e., how

many extra bits are required for the written vector

compared to the dataword).

The ability to choose a vector from among a set of

possibilities allows us to choose the newly written

vector so as to optimize objectives. In this paper, we

choose the vector so as to minimize the number of bits

that must change from the vector previously written to

that location. This optimization, which we call FlipMin

(and discuss in Section 4), extends memory lifetime by

reducing the number of bits flipped during the lifetime

of the memory. Conversely, FlipMin can also be used

to achieve the same lifetime while reducing the cost of

producing memory by tolerating greater manufacturing

variances.

This paper makes three primary contributions:

1) We show how to use coset coding to prolong the

time before bits wear out by minimizing the number

of bits that flip per write.

2) We present a method to synergistically combine

FlipMin with the ability to tolerate bit erasures when

wearout does occur.

3) For a subset of possible coset codes we can use with

FlipMin, we evaluate how well the codes extend the

lifetime of PCM for both random and benchmark

inputs. For the same coset codes, we provide

example encoder/decoder hardware and evaluate it in

terms of energy, area, and performance overheads.

2. Related Work
Existing schemes for extending the lifetime of write-

limited memories can be grouped into four broad

categories. We list prior schemes in Table 1, and we

shade schemes that we do not quantitatively compare

against in Section 7.

2.1. Postponing Wearout: Bit Flip Reduction

 All else being equal, if fewer bits flip per write to a

memory location that location will last for a greater

number of writes. Bit flip reduction, for the purpose of

postponing wearout, is the technique we use in this

paper. To the best of our knowledge, the only other

work in this area is Flip-N-Write [5]. At each write,

Flip-N-Write chooses to write the dataword or its

inverse, depending on which requires fewer bit flips.

Flip-N-Write adds a single bit per location to indicate

whether the data is inverted or not. We will show later

2

that Flip-N-Write is a degenerate instance of FlipMin.

Because Flip-N-Write is the only prior work with the

same goal as FlipMin, our experiments focus on

comparing them. We assume for all schemes that the

hardware only writes to those bits whose values change

[26], i.e., there is no wearout incurred by writing a bit if

the bit’s value does not change.

One other way to minimize bit flips is to coalesce

multiple writes [15] before applying them to the PCM.

Write coalescing is a useful technique that is orthogonal

to all prior work and to our work.

2.2. Tolerating Wearout: Error Correction
The other dominant technique for extending memory

lifetime is to tolerate bit errors after wearout occurs.

Tolerating wearout is effective when a minority of cells

at some location granularity (e.g. byte, line, etc.) fail far

earlier than average, making the entire location

unusable. Example schemes include error correcting

codes (ECC) and some techniques specific to write-

limited memories [9][16][19][23][25][27]. One

prominent scheme that we compare against

quantitatively is Error Correcting Pointers (ECP) [23].

The ECP scheme tolerates errors in known bit positions

(i.e., erasures) in memory locations by maintaining

pointers to these bit positions and adding bits to be used

as replacements. For example, ECP6 operates at a 512-

bit location granularity, and it keeps six 9-bit pointers

(log2(512) = 9) and 6 replacement bits for tolerating up

to 6 erasures in the 512-bit location.

 There has been a large amount of work that extends

and optimizes ECP, including Pay-As-You-Go [19],

SAFER [25], and RDIS [16]. Rather than compare

against all of them, we compare to an idealized and un-

implementable ECP12 that has zero cost, which we refer

to as ECP-ideal. For our particular experimental

purposes, ECP-ideal subsumes the work that reduces

ECP’s costs. FREE-P [27] and DRM [9] are two other

techniques for tolerating erasures. Both of them require

OS support, which we do not assume in our work.

Furthermore, direct comparisons to FREE-P are difficult

to make fair because of FREE-P’s added support for

tolerating soft errors.

2.3. Bit Flip Reduction + Error Tolerance

We can combine bit flip reduction schemes with

error/erasure tolerance schemes to achieve the best of

both worlds. For example, FlipMin can be combined

with ECP. Such hybrid schemes both postpone wearout

and tolerate it when it eventually occurs.

2.4. Adding Memory Cells

One can extend the lifetime of write-limited

memories by simply adding more memory cells and

using these cells for purposes of extending lifetime

rather than increasing logical capacity. For example, if a

memory location is logically 64-bits, we can use 128

physical bits in a scheme we call DoubleMem. With

DoubleMem, initially the first 64 bits of the physical

location are used to store data. When the first 64-bit

physical location fails, the second 64-bit physical

location is used to store data. There has been research

into more sophisticated methods for adding memory

cells to improve lifetime, including waterfall codes and

hypercells [14], but they all share the same idea.

2.5. Wear-leveling

Intra-location wear-level schemes try to level out the

wear in a given location more uniformly (e.g., by

remapping logical bit positions) [12][29]. These

schemes require state to track the current bit position

mappings for each location, and they require

sophisticated heuristics to decide when and how to

remap bit positions.

Inter-location wear leveling schemes seek to avoid

writing to some locations more frequently than others.

These schemes [12][29][21][24][20] avoid these

Table 1: PCM lifetime extension schemes. We quantitatively compare to un-shaded rows.
Approach Scheme Instantiation Granularity Overhead Why No Quant. Comparison

bit flip reduction Flip-N-Write (FnW) [5] FnW per-byte 8 bits 1 bit=12.5%

 FnW per-word 64 bits 1 bit=1.56% subsumed by FnW per-byte

 Coset Coding discussed in paper 64 bits tunable

error/erasure ECC Hamming (72,64) 64 bits 8 bits=12.5%

correction ECP [23] ECP6 block ~ 512 bits 61 bits=11.9%

 ECP12 block ~ 512 bits 121 bits=23.6%

 ECP-ideal block ~ 512 bits 0

 Pay-As-You-Go [19] entire memory tunable subsumed by ECP-ideal

 SAFER [25] SAFER8 block ~ 512 bits 22 bits=4% subsumed by ECP-ideal

 SAFER32 block ~ 512 bits 55 bits=10.7% subsumed by ECP-ideal

 RDIS [16] RDIS3 block ~ 512 bits see † subsumed by ECP-ideal

 FREE-P [27] block ~ 512 bits 64 bits=12.5% requires OS support

 DRM [9] page ~4KB see ǂ requires OS support

adding cells DoubleMem 64 bits 64 bits*=100%

 † Overhead is listed as 18%, but RDIS does not account for overheads to track erasures.

 ǂ 12.5% to track erasures plus 100% for paired pages plus a single 1KB “ready table”

 * Actual overhead is greater than 64 bits due to extra state bits to track which copy of the location is being used.

3

situations by dynamically mapping from logical

locations to physical locations, in ways that are similar

to, but simpler than, virtual memory’s translations from

virtual pages to physical pages. This work is

complementary to our work.

3. Coset Coding Primer
The key enabling technology is the use of coset

coding [6][7]. In this section, we explain coset coding,

starting with the basic idea (Section 3.1) and a simplistic

example of a coset coding scheme (Section 3.2). We

then present a more realistic coset coding scheme

(Section 3.3). We defer a discussion of implementation

issues until Section 6.

3.1. Basic Idea

Consider a k-bit dataword. This dataword can be any

element of a set of 2
k
 possible strings of zeros and ones.

We map datawords from the set of 2
k
 possibilities to a

larger set of 2
n
 possible n-bit vectors (n>k). One well-

known example of a one-to-one mapping is single-bit

parity. For example, even parity maps each dataword in

a 2
k
 set to a vector in a set of size 2

k+1
, such that each of

the mapped 2
k+1

 vectors has an even number of ones.

Coset coding extends this basic concept to a one-to-

many mapping, illustrated in Figure 1. The 2
n
 set of

vectors is split into non-overlapping, equal-sized cosets.

A coset is a set that is generated in a very specific way

such that every coset is disjoint from every other coset

and the union of the cosets covers a group (e.g., the set

of all possible n-bit vectors under the XOR operator).

Formally defining cosets is more likely to confuse than

enlighten; we instead highlight cosets’ relevant

properties as needed.

 In general, if c = n - k (i.e., c is the number of

additional bits needed for a given vector in a coset

compared to a dataword), then the 2
n
 set of vectors is

divided into 2
n-c

 cosets, each with 2
c
 elements. Now we

can choose n and c such that k = n - c. That is, the

number of cosets (2
n-c

) equals the number of datawords

(2
k
), and each dataword maps to a single coset.

The key idea is that, for a given dataword, we can

dynamically choose which element of that dataword’s

coset to write. Because each coset has 2
c
 elements, we

have 2
c
 options for which vector to write. When we read

from a location, we obtain an element of a coset,

determine which coset it belongs to, and perform the

one-to-one mapping from that coset to the dataword.

The benefits of coset coding derive from the flexibility

to choose which element to write so as to optimize an

objective. For example, if we know the previously

written vector to be overwritten, we can choose the new

element to minimize the number of bits that must flip.

The primary cost of coset coding is its storage

overhead of c bits per vector. Compared to simply

storing the original dataword of k bits, we now store an

n-bit vector (n=k+c). There is a fundamental tradeoff

between the benefit and cost of coset coding. To

increase the benefit requires mapping each dataword to

a coset with more elements in it. Increasing the number

of elements per coset requires increasing n, and

increasing n increases the cost.

Coset coding also incurs a small computational cost

for encoding and decoding, which we discuss later.

3.2. Simplified Coset Coding Example

To make the idea of coset coding more concrete, we

provide a simplistic example. Assume datawords are 2-

bit values (denoted D1 through D4) and that we map

each dataword to a coset that consists of four 4-bit

vectors. We divide the set of all possible 4-bit vectors

into 4 cosets (denoted S1-S4), as follows:

 D1=00 maps to S1 = {0000, 0101, 1010, 1111}

 D2=01 maps to S2 = {0001, 0100, 1011, 1110}

 D3=10 maps to S3 = {0010, 0111, 1000, 1101}

 D4=11 maps to S4 = {0011, 0110, 1001, 1100}

 Thus, if the core wishes to store the value 01

(dataword D2), it can choose to write any of the

elements from coset S2. If the core reads from memory

and obtains the vector 1001, which is an element in S4,

the core interprets it as 11, because dataword D4 (11)

maps to S4. Notice that the cosets are entirely non-

overlapping; no vector appears in more than one coset.

This property is crucial for reading from memory,

because reading requires mapping uniquely from a

written vector to a dataword.

Overwriting an existing vector with a new vector

involves flipping a number of bits that is a function of

the cosets to which the existing and new vectors belong.

For example, if the existing written vector is 0101 (in

coset S1) and the new vector to write is in coset S2, then

we can minimize the number of the bits flipped by

choosing vector 0100 from S2.

3.3. Practical Coset Coding with Block Codes

The simple coset coding scheme in the previous

section has two drawbacks. First, its distribution of

elements within each coset does not actually enable us

to reduce the number of bits flipped. Second, the

division of the set of vectors into cosets (called coset

generation) was done manually, which is infeasible for

larger sets. We now describe automatic coset

generation and how to encode/decode.
Figure 1. Coset coding

4

3.3.1 Coset Generation

 To automate coset generation, we use linear

algebraic block codes (LABC). There are many possible

block codes that would serve this purpose, and they

offer different cost/benefit tradeoffs. LABCs are often

used for purposes of error detection and correction. One

such code is the commonly-used Hamming (72,64) code

that maps 64-bit datawords into 72-bit codewords. In a

typical use of a Hamming code for error correction

(Figure 2, left), a codeword is created by multiplying a

dataword, �� with the code’s generator matrix, G. A

codeword, ��, is decoded by multiplying the codeword

with the code’s parity-check matrix, H. If the result of

H��, which is called the syndrome, equals the zero

vector, then �� is error-free.
1
 If there was a single bit

error, the syndrome identifies which bit in the dataword

is erroneous; flipping that bit corrects the error.

 For coset generation, we use LABCs differently than

how they are used in error correcting codes. Consider

the Hamming (72,64) code. There is a one-to-one

mapping between each 64-bit dataword and its

corresponding (error-free) 72-bit codeword. We then

have an 8-bit syndrome that, when it is all-zero,

indicates the codeword was transmitted correctly. There

is a many-to-one (e.g., 2
64

-to-one for Hamming(72,64))

mapping of vectors that result in the same syndrome.

The sets of vectors that all map to the same syndrome

perfectly partition the vector space into cosets. We will

refer to the coset of codewords (all codewords map to

the all-zero syndrome) as the zero coset, because it has

some properties we exploit later.

 We could use Hamming(72,64) in this way to

generate 2
8
 cosets, each of which has 2

64
 elements;

however, we would rather have more cosets and fewer

elements per coset. One way to achieve this goal is to

use the code’s dual code (which is also a block code

1 Hamming(72,64) has a non-zero syndrome for 1-bit or 2 bit-errors.

with its own zero coset), in which we flip the uses of the

matrices G and H. Hamming(72,64)’s dual code maps

8-bit datawords to 72-bit codewords, and syndromes are

64-bits. Its dual code partitions the 72-bit space into 2
64

cosets, each with 2
8
 elements.

Coset generation with block codes has several

attractive properties, two of which we will exploit in

this work. First, the zero coset is a group under bitwise

addition modulo 2 (i.e., the bit-wise XOR operation).

That is, if we take any two elements from the zero coset

and XOR them together then we obtain an element from

that same coset. Furthermore, XORing any element

from the zero coset with any element in coset X

produces an element in coset X (which is why one of the

2
c
 elements in the zero coset is all-zero). We will later

use the zero coset to generate the elements of a coset

starting from just one element in the coset, by XORing

the element from the given coset with every element of

the zero coset. Second, we can translate any element

from a coset X to some element in another coset Y by

XORing the element from X with any element from

another coset called the translate coset T. (Each X,Y

pair has a corresponding T that is just another coset in

the same space. T is the zero coset if Y=X.) That is, if

we want to overwrite an element in X with an element in

Y, we can XOR the element in X with any element in T.

We can then choose the element from T to minimize the

number of bits that must flip. If we know the identities

of X and Y and we know the zero coset, we can easily

determine T (explained in more detail in Section 6).

 Let us return to the simplistic coset coding scheme

from Section 3.2. Consider the case in which the

currently written vector is 1010 (an element in coset

S1), and we wish to write dataword D2 (which

corresponds to S2). In the table below, we show the

four options for translating from 1010 to elements in S2.

The four elements in the translate coset are in the

bottom row. We can choose any of these translate

elements, based on the objective we seek to optimize.

For example, we might choose Option #3 (translate

element 0001), because it requires the fewest bits to flip

(i.e., translate element 0001 has the fewest ones).

3.3.2 Writing (Encoding) and Reading (Decoding)

We present the high-level view of how writing

(encoding) and reading (decoding) work, and we defer

the implementation details to Section 6. We illustrate

the processes in Figure 2 (right), and we note that they

are similar to those for typical ECC. The three

differences are: the use of different matrices, the reading

Figure 2. Hamming(72,64) for Error

Correcting (left) and Coset Coding (right)

 Option #1 Option #2 Option #3 Option #4

Vector Written Prev 1010 1010 1010 1010

Elements in S2 0001 0100 1011 1110

Translate Element 1011 1110 0001 0100

5

of the prior vector before writing the new vector, and

the logic to choose a preferred element of a coset.

4. FlipMin: Extending Lifetime by

Reducing Bit Flips
Our application of coset coding, which we call

FlipMin, is to extend the lifetime of memory by

minimizing the number of bit flips per write. The goal

is to choose the new vector to be written that is most

similar to the vector already written to that location.

4.1. How It Works

The key idea of FlipMin is to choose the translate

element within the translate coset T that has the least

weight (i.e., the fewest number of bits that are one); this

element is called the coset leader of T. Some cosets

have multiple coset leaders, in which case we can

choose any of them. To overwrite the currently written

element in X with an element from Y, FlipMin XORs

the element from X with the coset leader of T. Because

the coset leader has the fewest ones of any element in

the translate coset, FlipMin thus flips the fewest

possible bits. The extent to which FlipMin reduces bit

flips depends on the particular code used.

4.2. Practical Block Codes for Coset Coding

 There are a vast number of possible block codes that

can be used for FlipMin. We have already mentioned

Hamming(72,64) and its dual. We also looked at the

simplest code for FlipMin, parity. Parity FlipMin is

equivalent to an already published scheme, Flip-N-

Write [5]. There are numerous other codes that work

with FlipMin—including other Hamming codes, BCH

codes, and Reed-Muller (RM) codes [22]—and they

represent different trade-offs between storage overhead

and flexibility.

 We assume datawords are 64-bits long; for those

codes that map datawords smaller than 64-bits, we

divide the dataword into chunks and encode each one

independently. For example, with Reed-Muller(1,3)

(also known as Hamming(8,4)), we encode a 64-bit

dataword by encoding it in 16 4-bit chunks. In Table 2,

we list the codes we consider in this paper. We

evaluated parity coset coding at the 8-bit granularity

giving it 12.5% overhead. Reed-Muller codes, including

their dual codes, have codeword lengths that are powers

of two, so we truncated
2
 the dual of the RM(1,7) code,

2 Truncation is a common technique for modifying a code’s length.

denoted RM(1,7)T, to reduce the overhead for 64-bit

datawords from 100% to 12.5%.

4.3. Analytical Evaluation of FlipMin

For purposes of this exposition, consider a single

memory location and 4-bit datawords. Furthermore, for

now, assume there is a stream of random datawords to

be written to this memory location.

In a system without coding of any kind (i.e., the

vector written is the dataword itself), an average of half

of the bits (2) within a memory location will flip per

write. Intuitively, for random datawords, each bit is

equally likely to flip due to a write. However, it is

instructive to more thoroughly reason about this

relationship, because it will help to understand the

analysis of FlipMin. In Table 3, the leftmost pair of

columns shows the histogram of dataword weights,

where the weight of a word is the number of ones in it.

Using a weighted average of the dataword weights, we

obtain: (1×0 + 4×1 + 6×2 + 4×3 + 1×4)/16 = 2. This

weighted average is another way to arrive at the average

number of bits that will flip per write.

In Table 3, we show FlipMin’s impact, given a

random stream of inputs, and we show results for

RM(1,3), which is the simplest to illustrate. The

number of bits that flip, on average, is a weighted

average of the weights of the translate cosets. The

results show that, using coset coding, we dramatically

reduce the average number of bit flips from 2 down to

1.375, which is a 31% reduction.

 For block codes other than RM(1,3), it is impractical

to enumerate all of the translate coset weights. Instead,

in Table 2, we simply present the computed reduction in

bit flips as a function of the block code, once again for a

random stream of writes.

 From the analytical results, we conclude that FlipMin

can extend memory lifetime by reducing the number of

bit flips. Furthermore, there is great flexibility in this

approach, because we can choose among many different

block codes. These analytical results are a function of

the datawords to be written, which in this case is

Table 2. FlipMin with different block codes
Block Code Storage Overhead

per 64-bit dataword

Bit Flip Reduction

(compared to unencoded)

Comments

dual of Parity(72,64) 8/64 = 12.5% 15.8% Performed on 8-bit chunks

dual of RM(1,7)T 8/64 = 12.5% 24.5%

RM(1,3) 64/64 = 100% 31.2% Performed on 4-bit chunks

Table 3. Average number of bits written
 Unencoded 4-bit dataword FlipMin with RM(1,3)

word weight # of words translate coset weight # of words

0 1 0 1

1 4 1 8
2 6 2 7
3 4 3 0
4 1 4 0

Avg bit writes 2.0 Avg bit writes 1.375

6

assumed to be random. In Section 7, we will

experimentally evaluate FlipMin with both random

traces and traces from benchmarks.

5. Coset Erasure Matching (CEM)
In addition to reducing bit flips, coset coding can also

tolerate erasures (defects in known bit positions). There

has been theoretical research on supporting erasures

using coset coding [13] and more specific theoretical

studies on coset coding showing the feasibility to

tolerate erasures in Flash [10] and PCM [11].

Our particular implementation we call Coset Erasure

Matching (CEM). When it is time to pick which element

of a coset to write, our selection algorithm chooses an

element that accommodates the erasure(s). For example,

assume that a given memory location has bit B stuck-at-

1. When writing to that location, FlipMin can choose to

write an element from the appropriate coset such that

the chosen coset element has a 1 at bit position B. The

erasure is thus tolerated, but at the cost of limiting the

scheme’s flexibility in choosing an element from the

appropriate coset.
3
 To tolerate erasures, we must both

identify the erasures and then maintain state that

identifies the defective bits.

6. Implementation
In this section, we discuss hardware implementations

for writing (encoding) and reading (decoding).

3 CEM tolerates erasures by choosing randomly from among the

elements that are compatible with the erasure(s).

6.1. Encoding

 Assume that the memory location currently holds a

vector xi that is an element in coset X. There are five

steps to encoding. First (Figure 3a), we map �� to a to an

element yj in coset Y. One was to do this mapping is to

use a coset generator matrix, G
#
, with which we

multiply (modulo 2) the dataword. For a block code, we

can form G
#
 by taking the left inverse of the block

code’s generator matrix, G [8]. Other solutions include

a lookup table or using a trellis [4]. Second (Figure 3b),

we perform x����� XOR y	���� to obtain an element t����� from the

translate coset T. Third (Figure 3c), we generate the

rest of T by XORing t����� with every element in the zero

coset. Fourth (Figure 3d), we choose the specific

element within T that optimizes our objective function.

Fifth (Figure 3e), we perform t���� XOR x����� to get the new

element y����� that we then write to memory.

6.2. Decoding

 Decoding is the simpler of the two operations, which

is fortuitous because decoding (reading memory) is

generally more critical to performance than encoding

(writing memory). To decode a written vector, we

multiply it by the block code’s generator matrix, G.

 One possible hardware implementation for this

multiplication is shown in Figure 4. The written vector

passes through k bit-masks which are hardwired to

select wires based on G. Each n-bit output of each bit-

mask is then bitwise XORed to produce one of the k bits

of the dataword.

Translate Coset Leader
Find Minimum

Weight Element

Translate Coset Element 0

Translate Coset Element 1

Translate Coset Element 2

.

.

.

Translate Coset Element

Translate Coset Element 0

Translate Coset Element 1

Translate Coset Element 2

.

.

.

Translate Coset Element

Zero Coset Element 0

Zero Coset Element 1

Zero Coset Element 2

.

.

.

Zero Coset Element

Translate Element

Dataword

Coset Element

Translate Coset Leader

Previously Written Vector

New Vector

Coset Element

Previously Written Vector

Translate Element

Figure 3: Hardware for encoding.

7

6.3. Overheads

We used Synopsys Design Compiler and IC Compiler

to synthesize, layout, and floorplan encoders and

decoders for different coset codes on top of the Nangate

45nm semi-custom cell library [18]. For energy

evaluation we generated 1000 random inputs. We then

simulated each input using VCS to back annotate a

SAIF file for the activity factor. We then used Design

Compiler Topographical for energy evaluation using the

generated SAIF file.

Our coset coding encoders take 64-bit inputs and our

coset coding decoders produce 64-bit outputs. To

compare to the overhead of the PCM chip [17], which

has 16-bit I/O width, we multiply the area and power

overheads from the PCM datasheet by 4.

6.3.1 Delay

The maximum delay among the encoders, as shown

in Table 4, is 12.86ns. The PCM write time is 60-120

µs. Thus the additional write time imposed by our

encoder, even in the worst case, is negligible. From the

same PCM datasheet we have a read time of 115ns +

25ns per 16-bit entry. Our worst case decode time is

0.59ns, which again is low enough to be in the noise of

the read times.

6.3.2 Energy Consumption

 The average energy listed in Table 4 and Table 5 is

the average of the energy values we found for 1000

simulations. The worst case energy is the maximum of

the values we simulated. We found the worst case

energy consumption to be 63.4 pJ. The typical idle

current of 4 PCM devices is around 320µA and the

minimum rail voltage is 1.7V. Thus the minimum idle

power is about 544µW. If we encode a block every

60µS, the fastest write time possible for the PCM chip,

our FM-RM(1,7)T encoder would take 1.06 µW, which

is negligible compared to the idle power of the PCM

chip. The decoders for coset coding take much less

energy than the encoders (the worst case decoder energy

we found to be 0.4 pJ) and therefore the power

consumption is also negligible compared to the idle

power of PCM.

6.3.3 Area
 Our worst case area overheads for encoding and

decoding are 48344 µm
2
 and 344 µm

2
 respectively. We

believe this to be very small given the overall size of the

PCM chips and the size of a typical DIMM.

7. Evaluation
We experimentally evaluated FlipMin to determine

how well it can extend memory lifetime and to compare

it to prior work. The metric we use to compare memory

lifetimes is the number of blocks still usable after a

given number of writes.

7.1. Techniques Compared

We compare several different approaches for

extending memory lifetime. For all techniques, we

consider 64-bit datawords. We evaluate all of the

options at the cache line granularity, where a cache line

is large enough to hold 8 n-bit vectors. For example,

the baseline unprotected system has 8 64-bit datawords

per line. The schemes compared are:

Bit Flip Reduction Schemes. We evaluate Flip-N-

Write [5] on a per-byte granularity—which is equivalent

to FlipMin-Parity(72,64)—as well as FlipMin with the

codes listed in Table 2.

Error/Erasure Correction Schemes. We compare

to schemes that correct errors after they occur. These

schemes include traditional Hamming(71,64) ECC, as

well as several variants of ECP [23].

Hybrids. We also compare to combinations of bit flip

reduction schemes (Flip-N-Write and FlipMin) and

erasure tolerance schemes (ECP). We combine FlipMin

with both ECP and CEM.

A list of all schemes we evaluated is in Table 6. Note

that the three shaded schemes have very similar storage

overheads and thus comparisons between them require

no normalization to be fair.

7.2. System Model Assumptions

We assume that we can write both transitions (0-to-1

and 1-to-0) to each bit individually without requiring an

erase first. Each bit transition has some fixed cost (i.e.,

incremental wearout) associated with it. This model is

known as the Write Efficient Memory (WEM) model

[1], and it has been applied before to PCM [3]. We also

assume, like prior work [5] [9][26][28][29], that we can

Table 4. Coset Coding Encoder Overheads

Coset Code

Area

(µm2)

Delay

(ns)

Avg Energy

(pJ)

Max

Energy (pJ)

FM-RM(1,3) 1,160 4.09 8.4 10.1

FM-RM(1,7)T 48,344 12.86 56.1 63.4

FM-Parity(72,64) 503 0.84 0.4 0.6

Figure 4. Hardware for decoding

Table 5. Coset Coding Decoder Overheads

Coset Code

Area

(µm2)

Delay

(ns)

Avg Energy

(pJ)

Max Energy

(pJ)

FM-RM(1,3) 344 0.38 0.3 0.3

FM-RM(1,7)T 221 0.59 0.3 0.4

FM-Parity(72,64) 141 0.12 0.1 0.2

8

read the memory location before writing it. This is

required because choosing the optimal coset element to

write relies on knowing the coset element at the location

to be written. Fortunately, for the memory technologies

we are most interested in, including PCM, reading is far

less expensive than writing. Due to the physics of the

storage medium, the latency to perform a read and the

energy required to perform a read are both far less than

for a write. Thus, requiring a read before each write,

while not free, has a cost that is dwarfed by the cost of

the write itself.

7.3. Modeling Wear-Out

 A memory location is usable unless it has more

defects than can be tolerated. We consider wearout at

the cache block granularity; a block with too many

worn-out bits may not “borrow” bits from other blocks.

For all schemes compared in this paper, we assume that

a block that has failed can be replaced with a spare

block (e.g., as is done in hardware in FREE-P [27]). If,

instead, a failed block renders the entire page unusable,

the results will be qualitatively the same because all of

the schemes will suffer in a similar fashion.

At time zero, all bit positions in all memory locations

are defect-free and, over time, some of these bit

positions wear out and become unusable. Each bit

position has a lifetime, measured in the number of

writes before it wears out, and we assume that, due to

process variability, these lifetimes follow a Gaussian

distribution. We assume the mean of this distribution is

10
8
 writes, based on published data [30][17]. Assuming

a different mean has no impact on the relative lifetimes

for different lifetime extension schemes. Changing the

mean simply shifts the absolute lifetimes but not the

differences between the lifetimes for different schemes.

We explore different coefficients of variation (CV

equals the mean divided by the standard deviation) in

this distribution, in order to determine how the results

are impacted by differing amounts of process

variability. In particular we looked at a CV of 0.05

which models memory with a tight distribution of

lifetimes around the mean, and a CV of 0.2 which

models memory cell lifetimes that are farther spread

from the mean.

7.4. Results for Random Input Streams

In this section, we compare the various lifetime

extension schemes when the memory is subjected to a

stream of random writes. On average, half of the

dataword bits flip for each write. In the following

figures, we plot the results for both values of the

coefficient of variation of the cell lifetime.

The y-axis in each graph is the number of blocks that

are still usable. The number of blocks at time zero is

normalized to a value of N for the schemes with the

highest storage overhead at time zero, which are

DoubleMem and FM-RM(1,3) and their 100%

overhead. The baseline thus starts at 2N, and all other

schemes start between N and 2N. We say a memory

fails when only 0.9N locations remain. Section 7.4.1

compares schemes for bit flip reduction (i.e., FlipMin

and Flip-N-Write), which is the primary focus of this

work. Section 7.4.2 compares FlipMin to error/erasure

tolerance schemes; even though these schemes have

different goals (wearout prevention versus wearout

tolerance), they both seek to extend lifetime and thus it

is natural to compare them. In Section 7.4.3, we

evaluate the intuitively appealing combination of bit flip

reduction and erasure tolerance. Finally, Section 7.4.4

looks at a FlipMin code for when much longer memory

lifetimes are needed.

7.4.1 Comparison of Bit Flip Reduction Schemes

 Figure 5 shows the results when we compare Flip-N-

Write and FlipMin. For random inputs, FlipMin with the

two RM codes does significantly better than Flip-N-

Write at reducing the number of bit flips in the input

(recall the data from Table 2) and therefore does better

at extending memory lifetime over the baseline. FM-

RM(1,7)T achieves a bit flip reduction of 24.5%, which

translates into a 46% and 41% improvement over

baseline lifetime for CVs of 0.05 and 0.2, respectively.

FM-RM(1,3) has a bit flip reduction of 31.2%, which is

far better than the other two schemes, but this bit flip

reduction comes at the cost of much greater storage

overhead. Overall, FM-RM(1,7)T performs better than

Flip-N-Write at the same overhead, while FM-RM(1,3)

does the best overall, but at higher overheads.

7.4.2 FlipMin vs. Error/Erasure Tolerance

 We compared FlipMin to two error/erasure correction

schemes: ECC-Hamming(71,64) and ECP. As shown in

Figure 6, for a CV of 0.05, ECC-Hamming(71,64) and

all variants of ECP (including ECP12-ideal) achieve

lifetimes only slightly better than baseline. This is

because there are few weak cells, and all cells tend to

fail around the same time. FlipMin does well, with FM-

RM(1,7)T showing a 46% improvement over baseline.

Table 6. Schemes to extend memory lifetime
Scheme Storage

overhead

Bit Flip

Reduction

Error/Erasure

correction

ECC-Hamming(71,64) 10.9% 0% 8 bits

ECP6 11.9% 0% 6 bits

ECP12 19.7% 0% 12 bits

ECP12-ideal 0% 0% 12 bits

Flip-N-Write 12.5% 15.8% 0 bits

Flip-N-Write + ECP6 25.6% 15.8% 6 bits

FM-RM(1,7)T 12.5% 24.5% 0 bits

FM-RM(1,7)T + ECP6 25.6% 24.5% 6 bits

FM-RM(1,7)T + CEM 24.4% 24.5% 6 bits

FM-RM(1,3) 100% 31.2% 0 bits

9

 If the cell lifetime distribution is grouped together

tightly, FlipMin is much better than error/erasure

correction schemes. However, for a large CV of 0.2,

ECP is far more helpful than before, because it can

tolerate the weak cells that are outliers in the lifetime

distribution. This is the scenario that ECP targets. FM-

RM(1,7)T is still slightly more effective than ECP6 yet

slightly less effective than ECP12.

7.4.3 Bit Flip Reduction + Erasure Tolerance
 The previous two sections have shown how well

FlipMin can do if the lifetimes of the memory cells are

relatively uniform. We have also shown that for higher

variations in cell lifetime, we probably want some sort

of erasure tolerance to deal with early cell failures. To

get both of these benefits, we combined bit flip

reduction with erasure tolerance. The properties of the

hybrid schemes we consider are listed in Table 6. The

results are shown in Figure 7. If the cell lifetime CV is

low, adding erasure tolerance is not that helpful.

 However, at a high CV of 0.2, the combination of

FM-RM(1,7)T and erasure tolerance (either CEM or

ECP6) results in a lifetime gain of 95%, which is far

greater than either FM-RM(1,7)T or ECP12 alone. This

result highlights the synergistic effects of FlipMin and

CV 0.05

CV 0.2

 CV 0.05 CV 0.2

Scheme Writes Before

0.9N

% Improvement

Over Baseline

Writes Before 0.9N % Improvement Over Baseline

Baseline 1.70e8 0% 8.20e7 0%

Flip-N-Write 1.91e8 12% 1.01e8 23%

FM-RM(1,7)T 2.49e8 46% 1.16e8 41%

FM-RM(1,3) 4.72e8 178% 1.49e8 82%

Figure 5. Bit flip reduction schemes compared

CV 0.05

CV 0.2

 CV 0.05 CV 0.2

Scheme Writes Before

0.9N

% Improvement

Over Baseline

Writes Before 0.9N % Improvement Over Baseline

Baseline 1.70e8 0% 8.20e7 0%

ECC-Hamming(71,64) 1.75e8 3% 1.01e8 23%

ECP6 1.78e8 5% 1.11e8 35%

ECP12 1.80e8 6% 1.20e8 46%

ECP12-ideal 1.80e8 6% 1.21e8 48%

FM-RM(1,7)T 2.49e8 46% 1.16e8 41%

Figure 6. FlipMin compared to error/erasure tolerance schemes

10

erasure tolerance at high CVs: if we take the lifetime

gains for both ECP6 and FM-RM(1,7)T individually

from Figure 6, the total is 35% + 41% = 76%, which is

less than the 95% of the combined scheme. Combining

Flip-N-Write with ECP6 does strictly worse than

FlipMin with ECP6.

7.4.4 FlipMin for Longer Memory Lifetimes

 We have shown that FM-RM(1,7)T provides superior

lifetime gains when compared to existing erasure

tolerance schemes at the same area overhead. We have

also shown that we can combine FlipMin and erasure

tolerance to combat high memory cell lifetime variation.

There may be cases where even larger lifetime gains are

required. For these cases, FM-RM(1,3) provides

substantial lifetime gains, but at the cost of 100% area

overhead at time zero. Since we could just as easily use

two memory locations with the same overhead, we use

that as our point of comparison. Specifically we use a

technique we call DoubleMem that we described in

Section 2.4. We ignore the overhead required to track

which lines are being used by DoubleMem, thus giving

it an unrealistic advantage.

As shown in Figure 8, at both CV points, FM-

RM(1,3) easily outperforms DoubleMem. FM-RM(1,3)

gives 178% additional lifetime at a CV of 0.05 while

DoubleMem gives only 95% lifetime gains over

baseline. For a CV of 0.2, lifetime gains are 82% for

FM-RM(1,3) and 56% for DoubleMem due to the

CV 0.05

CV 0.2

 CV 0.05 CV 0.2

Scheme Writes Before

0.9N

% Improvement

Over Baseline

Writes Before 0.9N % Improvement Over Baseline

Baseline 1.70e8 0% 8.20e7 0%

ECP12-ideal 1.80e8 6% 1.21e8 48%

Flip-N-Write + ECP6 2.02e8 19% 1.40e8 71%

FM-RM(1,7)T + ECP6 2.60e8 53% 1.60e8 95%

FM-RM(1,7)T + CEM 2.60e8 53% 1.60e8 95%

Figure 7. Bit flip reduction + erasure tolerance compared to error/erasure tolerance alone

CV 0.05

CV 0.2

 CV 0.05 CV 0.2

Scheme Writes Before

0.9N

% Improvement

Over Baseline

Writes Before 0.9N % Improvement Over Baseline

Baseline 1.70e8 0% 8.20e7 0%

DoubleMem 3.31e8 95% 1.28e8 56%

FM-RM(1,3) 4.72e8 178% 1.49e8 82%

Figure 8. FM-RM(1,3) coset coding compared to DoubleMem

11

increased number of weak cells. The results show that

adding memory cells can increase lifetime and that it is

important how we use those extra memory cells, as

shown by FM-RM(1,3)’s advantage over DoubleMem.

Because DoubleMem does worse than FM-RM(1,3) for

all benchmarks we do not consider it further.

7.5. Results for Benchmarks

We now show how FlipMin performs when the

system runs benchmarks. We used the Gem5 simulator

[2] to simulate a single core configured as shown in

Table 7. For benchmarks, we used the Hadoop

benchmarks that come with the Hadoop distribution.

One challenge was obtaining a large number of writes to

a large number of lines in a reasonable amount of time.

We solved this problem by dumping traces of writes to

every line, then projecting these traces onto one target

page of memory with lines numbered from 1 to B. The

projection is done by mapping line X to line X modulus

B. The trace of writes to the target page’s first line is the

concatenation of the traces for lines 1, B+1, 2B+1, etc.

 Our results for Hadoop are in Figure 9 and 10. The

y-axis is the gain in lifetime, where lifetime is measured

as the number of writes until 0.9N locations remain. All

FlipMin schemes do significantly better than both

baseline and the error correcting schemes, including

ECP6, at a CV of 0.05. On average, ECP6 produces a

9.2% improvement in lifetime over baseline, while FM-

RM(1,7)T produces a 22% lifetime improvement over

baseline. For the higher CV of 0.2, ECP6 alone does

well with a 33% lifetime gain over baseline, but when

combined with FlipMin it does even better with an

overall lifetime improvement over baseline of 64%. The

larger overhead code of FM-RM(1,3) does very well at

all CVs with a lifetime gain over baseline of 106% for a

CV of 0.05 and 66% for a CV of 0.2.

On some, but not all benchmarks, Flip-N-Write

outperforms FM-RM(1,7)T, even though FM-RM(1,7)T

outperforms Flip-N-Write on random inputs. This

discrepancy highlights how lifetime results depend on

the inputs. In particular, if fewer bits flip per dataword

(e.g., in benchmarks like WordCount), then shorter

codes, like Flip-N-Write and RM(1,3), do better than

longer codes like RM(1,7)T. This discrepancy also

highlights the tunability of FlipMin, by showing the

range of results achievable with a variety of codes.

8. Conclusions
We have shown that coset coding enables us to

optimize writing memory structures. In particular, we

Figure 9. Lifetime extension schemes compared using Hadoop inputs. CV 0.05

Figure 10. Lifetime extension schemes compared using Hadoop inputs. CV 0.2

CPU x86-64 in-order core at 2.0GHz

L1 D-Cache 64kB, 2-way associative, 64B Line Size

L1 I-Cache 32kB, 2-way associative, 64B Line Size

L2 Cache 2MB, 8-way associative, 64B Line Size

Memory 128MB, 2GB swap

Table 7. System configuration

12

have shown how to use coset coding to avoid wearout—

by reducing bit flips—and to then tolerate the bits that

do eventually wear out. Furthermore, we have by no

means exhausted the possible coset coding techniques

that we can use. There are more possible codes and

metrics, which we hope to explore in future work.

Acknowledgments
 This material is based on work supported by the

National Science Foundation under grant CCF-111-

5367.

References
[1] R. Ahlswede and Z. Zhang, “Coding for Write-Efficient

Memory,” Information and Computation, vol. 83, no. 1,

pp. 80–97, Oct. 1989.

[2] N. Binkert et al., “The Gem5 Simulator,” Computer

Architecture News, 39(1), Aug. 2011.

[3] G. W. Burr et al., “Phase change memory technology,”

Journal of Vacuum Science & Technology B:

Microelectronics and Nanometer Structures, 28(2), 2010.

[4] A. R. Calderbank and N. J. A. Sloane, “New Trellis

Codes Based on Lattices and Cosets,” IEEE Trans. Info.

Theory, vol. 33, 1987.

[5] S. Cho and H. Lee, “Flip-N-Write: A Simple

Deterministic Technique to Improve PRAM Write

Performance, Energy and Endurance,” in Proceedings of

the 42nd Annual Int'l Symp. on Microarchitecture, 2009.

[6] G. D. Forney, “Coset Codes. I. Introduction and

Geometrical Classification,” IEEE Trans. Information

Theory, 34(5), Sep. 1988.

[7] G. D. Forney, “Coset Codes. II. Binary Lattices and

Related Codes,” IEEE Trans. Information Theory, 34(5),

Sep. 1988.

[8] G. D. Forney, “Trellis Shaping,” Information Theory,

IEEE Transactions on, vol. 38, no. 2, Mar. 1992.

[9] E. Ipek et al., “Dynamically Replicated Memory:

Building Reliable Systems from Nanoscale Resistive

Memories,” in Proc. of the Int'l Conf. on Architectural

Support for Programming Languages and Operating

Systems, 2010.

[10] A. Jagmohan, M. Franceschini, and L. Lastras, “Write

Amplification Reduction in NAND Flash Through Multi-

Write Coding,” in IEEE 26th Symp on Mass Storage

Systems and Technologies (MSST), 2010.

[11] A. Jagmohan et al., “Coding for Multilevel

Heterogeneous Memories,” in IEEE Int'l Conference on

Communications, 2010.

[12] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie,

“Energy- and Endurance-Aware Design of Phase Change

Memory Caches,” in Proc. of Conf. on Design,

Automation & Test in Europe, 2010.

[13] G. Keshet, Y. Steinberg, and N. Merhav, “Channel

Coding in the Presence of Side Information,” Found.

Trends Commun. Inf. Theory, vol. 4, no. 6, Jun. 2008.

[14] L. A. Lastras-Montaño et al., “On the Lifetime of

Multilevel Memories,” in Proc. of the IEEE Int'l

Symposium on Information Theory - Volume 2, 2009.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,

“Architecting Phase Change Memory as a Scalable

DRAM Alternative,” in Proceedings of the 36th Int'l

Symposium on Computer Architecture, 2009.

[16] R. Melhem, R. Maddah, and S. Cho, “RDIS: A

Recursively Defined Invertible Set Scheme to Tolerate

Multiple Stuck-At Faults in Resistive Memory,” in 42nd

Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN).

[17] Micron Technology, Inc., “P8P Parallel Phase Change

Memory (PCM) NP8P128A13B1760E.” Micron, 2005.

[18] Nangate Development Team, “Nangate 45nm Open Cell

Library.” 2012.

[19] M. K. Qureshi, “Pay-As-You-Go: Low-Overhead Hard-

Error Correction for Phase Change Memories,” in

Proceedings of the 44th Annual International Symposium

on Microarchitecture, 2011.

[20] M. K. Qureshi et al., “Enhancing Lifetime and Security

of PCM-Based Main Memory with Start-Gap Wear

Leveling,” in Proceedings of the 42nd Annual Int'l

Symposium on Microarchitecture, 2009.

[21] M. K. Qureshi, V. Srinivasan, and J. A. Rivers,

“Scalable High Performance Main Memory System

Using Phase-Change Memory Technology,” in

Proceedings of the 36th Annual International Symposium

on Computer Architecture, 2009.

[22] I. Reed, “A Class of Multiple-Error-Correcting Codes

and the Decoding Scheme,” IRE Professional Group on

Information Theory, vol. 4, no. 4, pp. 38–49, Sep. 1954.

[23] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use

ECP, Not ECC, for Hard Failures in Resistive

Memories,” in Proc. of the 37th Annual Int'l Symposium

on Computer Architecture, 2010.

[24] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security

Refresh: Prevent Malicious Wear-Out and Increase

Durability for Phase-Change Memory with Dynamically

Randomized Address Mapping,” in Proc. 37th Int'l Symp.

on Computer Architecture, 2010.

[25] N. H. Seong et al., “SAFER: Stuck-At-Fault Error

Recovery for Memories,” in 43rd Annual International

Symposium on Microarchitecture, 2010.

[26] B.-D. Yang et al., “A Low Power Phase-Change

Random Access Memory using a Data-Comparison Write

Scheme,” in Proc. of the IEEE International Symposium

on Circuits and Systems, 2007.

[27] D. H. Yoon et al., “FREE-p: Protecting Non-Volatile

Memory Against Both Hard and Soft Errors,” in Proc. of

the International Symposium on High-Performance

Computer Architecture, 2011.

[28] W. Zhang and T. Li, “Characterizing and Mitigating the

Impact of Process Variations on Phase Change Based

Memory Systems,” in Proc. of the 42nd Annua Int'l

Symposium on Microarchitecture.

[29] P. Zhou et al., “A Durable and Energy Efficient Main

Memory Using Phase Change Memory Technology,” in

Proc. 36th Int'l Symp. on Computer Architecture, 2009.

[30] International Technology Roadmap for Semiconductors,

2007 Edition, Process Integration, Devices, and

Structures. 2007.

