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Abstract
We propose and evaluate the use of lazy error detection for a superscalar, out-of-order micro-

processor’s functional units. The key insight is that error detection is off the critical path,
because an instruction’s results are speculative for at least a cycle after being computed. The
time between computing and committing the results can be used to lazily detect errors, and lazi-
ness allows us to use cheaper error detection logic. We show that lazy error detection is feasible,
we develop a low-cost mechanism for detecting errors in adders that exploits laziness, and we
show that an existing error detection scheme for multipliers can exploit laziness. 

1.  Introduction
Our goal is to develop and evaluate error detection mechanisms for a microprocessor’s func-

tional units (FUs), such as adders and multipliers. We want our error detectors to have three fea-
tures: negligible impact on microprocessor performance, low hardware cost, and low power
consumption. It is obviously sufficient to replicate the FUs, but this simple solution is very
costly. Other error detection mechanisms have been developed previously, as we discuss in
Section 2, but we will explain why they either degrade performance or use more hardware and
power than our approach. Our error detection mechanisms can be used in conjunction with error
detection mechanisms for other portions of the microprocessor.

The key to achieving our goal is exploiting laziness. We observe that detecting an error in an
FU is generally not on the critical path in a microprocessor’s execution. In a dynamically sched-
uled (“out-of-order”) microprocessor, such as the Pentium4 [3] or POWER5 [7], an instruction
produces a result that can be consumed immediately by subsequent instructions in program
order. However, the instruction’s results are still speculative for one or more cycles, while the
microprocessor waits for older instructions to commit and checks if the instruction is on a cor-
rectly speculated path (i.e., it does not depend on an incorrectly predicted branch). In this time
window, the microprocessor can lazily detect errors in the instruction’s computation. If an error
is detected, the speculative state created by this instruction and its dependent instructions is
squashed. If no error is detected, the speculative state is committed. In general, performance is
not affected because the critical path—providing the results of each instruction to its dependent
instructions—is not affected. The only potential source of slowdown is that we might extend the
amount of time in which an instruction is speculative and thereby increase contention for
resources that hold speculative state. We make the following three contributions in this paper:

•We quantify the ability of a modern microprocessor to tolerate lazy error detection in its
FUs. We show that we can tolerate several cycles of laziness with little impact on perfor-
mance. This result enables us to trade latency for hardware and power savings. 

•We develop a new lazy error detection mechanism that applies to all types of adders, and
we show that it uses less hardware and power than comparable checkers. 
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•We evaluate the feasibility of using modulo arithmetic to lazily detect errors in multipliers.
The error detection mechanism is not novel, but the sensitivity analysis is new and demon-
strates that lazy checking is not constrained just to adders. 

In Section 2, we present the related research in error detection. In Section 3, we describe the
experimental methodology we use to evaluate the performance and power consumption of our
designs. In Section 4, we quantify the opportunity to use lazy error detection. In Section 5, we
develop and evaluate our lazy adder checker. In Section 6, we evaluate lazy error detection for
multipliers. In Section 7, we conclude. 

2.  Related Work in Error Detection
There is a long history of work in detecting errors in functional units, including checkers for

specific functional units as well as more comprehensive approaches.

2.1.  Functional Unit Checkers
Sellers et al. [15] present a survey of error detection techniques for functional units of all

kinds, including different types of adders and multipliers. These techniques include simple repli-
cation of the functional units as well as time redundancy techniques. Physical replication uses at
least 100% extra hardware (including the comparator), and time redundancy techniques con-
sume a considerable amount of extra energy. Pure time redundancy techniques cannot detect
errors due to permanent faults, although clever approaches like re-execution with shifted oper-
ands (RESO) [12, 13] can. Some time redundancy approaches add latency, but this latency can
often be partially hidden by exploiting idle resources. All time redundancy approaches reduce
throughput, because a unit must be used multiple times per operation. Sellers et al. also survey
structure-specific checkers like parity predictors, arithmetic error codes, and dual-rail logic
designs. Most of these techniques strive for near-instantaneous error detection, because they
consider detection to be on the critical path. Achieving such fast detection often leads to more
expensive hardware and/or more power consumption than if we can exploit lazy detection.
Adder Checkers. The most closely related self-checking adder is in the seminal paper by Nico-
laidis [10]. Nicolaidis presents self-checking versions of several types of adders, including carry
lookahead. His approaches use double-rail and parity codes and thus slow down the adder. We
show in our experimental results that our approach has no impact on the adder’s performance.
The key is that our adder checker is distinct from the primary adder and thus does not increase
the primary adder’s wire lengths, fanouts, or capacitance. There are also numerous self-checking
adder schemes that only pertain to specific types of adders. For example, there are self-checking
techniques for lookahead adders [8], carry select adders [17, 18, 20], and there are self-checking
adders that use signed-digit representations [4]. Our approach to designing self-checking adders
applies to any type of adder (e.g., ripple carry, carry lookahead, etc.). Townsend et al. [19]
develop a self-checking and self-correcting adder that combines TMR and time redundancy. For
a 32-bit adder, this scheme has 36% area and 60% delay overhead. Power overhead is not
reported. It is somewhat difficult to compare our work to this scheme because we rely on the
microprocessor’s built-in recovery mechanism to provide error correction.
Multiplier Checkers. We do not claim to innovate in the area of self-checking multipliers. We
instead rely upon modulo arithmetic checking for detecting errors, using a checker that is similar
to that presented recently by Yilmaz et al. [22]. 

2.2.  Comprehensive Error Detection
One approach for comprehensive error detection is redundant multithreading [14, 9, 21]. The

redundant threads exploit time redundancy to detect errors across the microprocessor, including
in its functional units. These schemes suffer a performance opportunity cost: non-redundant
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work that could have been done with those extra thread contexts. The redundant threads can also
interfere with the primary thread and thus degrade its performance; among the published redun-
dant multithreading schemes, we observe as much 30% performance degradation [9]. The hard-
ware cost of redundant multithreading depends on whether one considers the hardware for the
extra thread contexts to have been included for purposes of error detection. The expected power
overhead of redundant multithreading is substantial because each instruction is not only exe-
cuted twice, but also traverses the whole pipeline from the beginning to the end. 

Another general approach is DIVA [2], which detects errors by checking an aggressive out-
of-order core with simple in-order checker cores that sit right before the aggressive core’s com-
mit stage. Because DIVA and our scheme have different features, we try to balance the compari-
son by only considering the DIVA checker’s adder; we do not consider the other aspects of
DIVA, since they are orthogonal. Hardware overheads for the DIVA checker adder and checker
multiplier are both over 100%, because they replicate the FU and also need some comparison
logic. For the adder, including the comparator circuit, the expected area overhead is over 115%.
The expected power overhead is similar. Thus, our scheme has significantly lower error detec-
tion costs than DIVA’s error detection (or error detection with simple FU replication).

3.  Experimental Methodology
We have two goals for our experimental evaluations. First, we want to show that lazy error

checkers do not degrade microprocessor performance. Second, we want to evaluate the hardware
and power costs of lazy checkers and compare them to prior work. 
Microprocessor Performance. We used a modified version of SimpleScalar [1]. Table 1 shows
the details of our configuration, which was chosen to be similar to that of the Intel Pentium4 [5,
3]. One important point is that our configuration models a 14-cycle multiplier (similar to the
multiplier in the Pentium 4), rather than the 4-cycle multiplier we develop in this paper. The 4-
cycle pipeline depth for our transistor-level multiplier was chosen to match the clock period of
our transistor-level adder design, which takes 1 clock cycle to complete. We believe the 14-cycle
multiplier latency is more realistic for microprocessor-level simulation, but a 14-cycle multiplier
would have had a clock frequency higher than what we could achieve for the adder, without an
industrial design team and CAD infrastructure. We will discuss, when necessary, how the 14-
cycle multiplier affects our experimental results. 

For benchmarks, we use the complete SPEC2000 benchmark suite with the reference input
set. To reduce simulation time, we used SimPoint analysis [16] to sample from the execution of

Table 1. Parameters of target system

Feature Value
pipeline stages 20

width: fetch/issue/commit/check 3/6/3/3

branch predictor 2-level GShare, 4K entries

instruction fetch queue 64 entries

reservation stations 32

reorder buffer (ROB) and load-store queue (LSQ) 128-entry ROB, 48-entry LSQ

integer functional units 3 ALUs (1-cycle), 1 mult/div (14-cycle mult, 60-cycle div)

floating point functional units 2 FPUs (1-cycle), 1 mult/div (1-cycle mult, 16-cycle div)

L1 I-Cache and L1 D-Cache 16KB, 8-way, 64B blocks, 2-cycle

L2 cache (unified) 1MB, 8-way, 128B blocks, 7-cycle
3



each benchmark. We warm up the simulator with 100-million instructions of detailed simulation
prior to the sample, and then we simulate the 100-million instruction sample. 
Hardware and Power Costs. We use HSpice to evaluate the delay and power consumption of
our circuits, and we assume a 0.13μm CMOS process. Because we cannot possibly simulate
every possible input transition for the adder and multiplier and because HSpice simulations take
so long, our power results are based on 3000 HSpice simulations with different random input
transitions. The power results are averaged across all of the time for all of the simulations for
each FU, and they include both dynamic and static (leakage) power (although dynamic power
dwarfs static power at 0.13μm). We approximate the hardware cost of a circuit in terms of the
number of transistors in the circuit. 

4.  Opportunity to Use Lazy Checkers
We leverage the opportunity to lazily perform error detection in the time between when an

instruction completes (produces its result) and when it commits. Instruction completion is often
on the critical path, since an instruction’s result is often the input to one or more subsequent
instructions. Instruction commit, however, is only critical if the reorder buffer (ROB) or load-
store queue (LSQ) fills up. To explore the potential to exploit this latency tolerance, we per-
formed the following experiment on the microprocessor described in Section 3). We added C
cycles between when each instruction completed and when it could commit. For each instruc-
tion, some or all of these C cycles could be hidden, because the instruction might not have been
able to commit before then anyway (due to older instructions still waiting to commit). The
results of this experiment, shown in Figure 1, reveal a surprisingly high tolerance to even large
values of C, which indicates that there is plenty of time in which we can perform error detection.
For C=3, the worst slowdown is less than 1.5%, and for C=5, the worst slowdown is less than
4%. Note that increasing C can, in some cases, slightly improve performance. This counter-intu-
itive phenomenon is due to slightly reduced misprediction rates in these scenarios (data not
shown due to space constraints).1 

1.  Sometimes, when a load gets delayed (due to increased C), it just so happens to then get disambiguated correctly
(where it would have mispredicted without the delay). This is a lucky and fairly rare event.

Figure 1. Impact of adding C cycles between instruction completion and commit
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This latency tolerance enables us to use lazy checkers that are slow and can thus use less
hardware and power than the high-performance FUs they are checking. The key is maintaining
checker throughput—the checkers can have long latencies, but they must check computations at
the same bandwidth as they are being produced by the primary FUs. Otherwise, simple queuing
theory shows that the checkers will become a performance bottleneck. Thus, we must have a
dedicated checker for each FU, and our lazy checkers must either by 1-cycle or fully pipelined. 

5.  Lazy Adder Checker
Before we describe the adder checker, we first present the details of the high-performance

primary adder that it is checking. We have implemented both the primary adder and the adder
checker in HSpice using 0.13μm process parameters. 

5.1.  Primary High-Performance Adder
The primary adder is a 32-bit, two-level carry look-ahead (CLA) adder, as illustrated in

Figure 2. We have selected the primary adder to be a CLA adder because it is fast and it is
widely used in commodity microprocessors. The lower level of the structure is comprised of 8-
bit CLA adders, which each include eight full adders (FA) and an 8-bit CLA logic block. At the
higher level, four of these 8-bit adders are connected by a 4-bit CLA logic block.

5.2.  Adder Checker and Operation
Our adder checker, shown in Figure 3, detects all single errors. It takes the two addends (A

and B), carry-in, and sum from the primary adder and determines whether the primary adder’s
sum is correct. The checker is modular, in that it is composed of 32 1-bit adder checker cells.
Each cell produces an error signal, and all of these error signals are ORed together to determine
if there is an error in the 32-bit addition. For each cell, Cin and Cout are the carries computed by
the checker, except for bit zero where Cin0 is the carry-in to the primary adder. 

Figure 2. Primary Adder
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The ith checker cell first determines the carry-in bit used to compute the ith sum bit during the
primary addition by comparing the sum of bits Ai and Bi to the corresponding bit sumi. This
observed carry-in (Cin-obsi) bit, which is computed as Ai xor Bi xor sumi, is used to compute the
carry-out bit Couti. It is also compared to cell i’s carry-in bit Cini, which is the carry-out bit of
the i-1th checker cell, Couti-1, to detect errors. If the sum computed by the primary adder is error-
free, Cin-obsi and Cini will be equal. If at least one bit in the sum is incorrect and the least signif-
icant sum bit with an error is j, then checker cell j will detect an error. For all less significant bits
0...j-1, the observed carry-in bits (Cin-obs0...Cin-obsj-1) are correct (i.e., are equal to the carry-in
bits used during a correct computation of the sum) and therefore the carry-out bits Cout0...Coutj-
1 are correct (assuming a correct checker). Thus, Cinj, which equals Coutj-1, will also be correct.
Because bit j of the sum is incorrect, the jth observed carry-in bit, Cin-obsj, is incorrect and will
not equal Cinj. This mismatch causes an error to be signalled. The carry-out bit of cell j (Coutj)
and all more significant cells are no longer guaranteed to be correct, because they are computed
from incorrect Cin-obs bits. This, however, does not matter, because an error has already been
signalled. Note that our error detection mechanism detects all errors in the primary adder, not
just errors in its carry computation circuitry. If full adder i in the primary adder computes an
incorrect sum, then checker cell i will see an incorrect Cin-obsi.

Couti is computed from Cin-obsi using a circuit that is commonly used for computing carries
in full adders. If Ai and Bi are equal (Ai xor Bi = 0), there will be a carry-out iff Ai = 1 (or Bi = 1,
but because they are equal it does not matter). If Ai and Bi are not equal (Ai xor Bi = 1), there will
be a carry-out iff there is a carry-in. The mux is used to distinguish these two cases. Because Cini
is not used to compute Couti, there is no dependence chain between cells, although the middle
portion of Figure 3 might imply this.

Because there is no dependence chain between cells, the adder checker’s computation of the
Error signal requires only one additional cycle beyond that required for the primary adder. It
actually takes less than a full cycle, but the clock period is the minimum granularity. The adder
checker’s delay (0.65ns) is significantly less than that of the primary adder (1.08ns), which is a
1-cycle unit. Thus, we do not have to pipeline the adder checker. Most of the 0.65ns is consumed
by ORing together the outputs of each checker cell. The cells themselves have short critical
paths, and there is no dependence between cells. 

5.3.  Experimental Evaluation
To study the impact of lazy error detection for adders, we added C cycles between when an

instruction that used an integer adder (add, sub, load, store, branch) completed and when it can
commit. Our particular adder checker uses one extra cycle between complete and commit (i.e.,
C=1), but we explored other values of C to determine the sensitivity. Across the benchmarks, 3-
40% of all dynamic instructions used an integer adder. In Figure 4, we show the error-free per-
formance impact of lazy adder checkers, and we observe that, for C=1, there is no noticeable
performance impact. There is also an opportunity to exploit at least two more cycles without per-
formance loss, but we have not found an adder checker that can make use of that opportunity.

Table 2. Hardware and Power Overheads for Adder

module
size 

(#transistors)
percentage of 

primary adder average power
percentage of 

primary adder

primary adder 3488 100% 2.38mW 100%

adder checker 1108 32% 0.97mW (error-free) 41%

1.04mW (worst-case errors) 44%
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As can be seen in Table 2, the adder checker is inexpensive. In total, it uses 1108 transistors,
which is 32% the size of the primary adder and far less than replication. Of these transistors, 960
are used to compute the 32 1-bit checks, and 148 comprise the logical OR-tree to detect if any of
the bit checks detect an error. Power overhead is somewhat greater than hardware overhead.

6.  Lazy Multiplier Checker
As another case study, we evaluate the feasibility of using lazy error detection for multipliers.

Because Yilmaz et al. [22] already presented a study of a self-checking multiplier, we present
this section for completeness rather than as a brand new contribution. We want to confirm that
lazy error detection does not only apply to adders. One contribution of this section is that we
present an analysis of how sensitive performance is to C. Another contribution is that we are
studying a Booth encoded primary multiplier instead of the recursive design of Yilmaz et al. 

6.1.  Primary High-Performance Multiplier
The primary multiplier is a pipelined 32-bit modified Booth encoded integer multiplier. We

have selected the primary multiplier to be a Booth encoded multiplier because, due to its fast
operation, it is widely used in commodity microprocessors [6, 11]. This multiplier is divided into
4 pipeline stages, and it thus calculates a multiplication result in 4 clock cycles.

6.2.  Multiplier Checker
We refer the interested reader to Yilmaz et al. [22] for details on modulo checking of a multi-

plier in a microprocessor. Due to the different primary multiplier designs, the error coverage for
our checker is somewhat different than Yilmaz’s coverage. For our Booth encoded multiplier and
a modulus of 3, the probability of not detecting an error is 2.2%. For a modulus of 7, this proba-
bility is 1.4%. 

6.3.  Experimental Evaluation
In Figure 5, we show the error-free performance impact of lazy multiplier checkers for vari-

ous values of C. Our multiplier checker has a value of C=1 for the 4-cycle primary multiplier,
but it is likely to be 2 or 3 cycles for a 14-cycle primary multiplier (in a system with a faster
clock), since computing (A*B)%3 and comparing it to [(A%3)*(B%3)]%3 will take more than a

Figure 4. Error-Free Performance Impact of Lazy Adder Checkers
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single cycle. We observe that, even for C=3, there is negligible performance impact. In fact, for
most benchmarks, we could tolerate even lazier checkers with little impact, but some floating
point benchmarks see non-trivial performance loss once C reaches 10.

As can be seen in Table 3, the modulo checker is only one-tenth the size of the primary 4-
cycle multiplier. This shows that the checker itself is low-cost in terms of hardware. The power
overhead numbers correspond very closely to the area overhead numbers. 

If we had implemented a 14-cycle multiplier at the transistor-level, as in the Pentium 4-like
processor that we simulate at the microprocessor level, it would have changed the overhead
results slightly in our favor. A deeper pipeline for the primary multiplier requires more buffering
of partial products, which typically have higher bit-width than operands. Implementing the mod-
ulo checker with a deeper pipeline (currently, the modulo operation finishes in one cycle) would
also require pipeline buffers. However, the partial modulo results have lower bit-width than the
operands. As a result, a deeper primary multiplier pipeline will make the primary multiplier
larger with respect to the multiplier checker. Thus, the area and power overheads of the multi-
plier checker would be lower than in Table 3.

7.  Conclusions
We have developed low-cost mechanisms for detecting errors in functional units. Lazy error

checkers exploit the opportunity to perform error detection during the time between when an
instruction completes and when it commits. We believe that the low costs—in terms of hard-
ware, power, and performance—make our approach viable for this important problem. In the
future, we would like to extend this approach to other parts of the microprocessor. 

Figure 5. Error-Free Performance Impact of Lazy Multiplier Checker 

Table 3. Hardware and Power Overheads for Multiplier

module
size 

(# of transistors)
percentage of 
primary mult. average power

percentage of 
primary mult.

primary multiplier 32633 100% 42.1mW 100%

modulo checker 3868 11.8% 5.1mW 12%
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