
Appears in Design, Automation and Test in Europe (DATE), March 2020

Prospector: Synthesizing Efficient Accelerators via
Statistical Learning

Atefeh Mehrabi1, Aninda Manocha2, Benjamin C. Lee1, Daniel J. Sorin1

1Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
2Department of Computer Science, Princeton University, Princeton, NJ, USA

atefeh.mehrabi@duke.edu, amanocha@princeton.edu, benjamin.c.lee@duke.edu, sorin@ee.duke.edu

Abstract—Accelerator design is expensive due to the effort
required to understand an algorithm and optimize the design.
Architects have embraced two technologies to reduce costs. High-
level synthesis automatically generates hardware from code.
Reconfigurable fabrics instantiate accelerators while avoiding
fabrication costs for custom circuits. We further reduce design
effort with statistical learning. We build an automated frame-
work, called Prospector, that uses Bayesian techniques to optimize
synthesis directives, reducing execution latency and resource
usage in field-programmable gate arrays. We show in a certain
amount of time designs discovered by Prospector are closer to
Pareto-efficient designs compared to prior approaches.

Index Terms—High-level synthesis, design space exploration,
FPGA, Bayesian optimization

I. INTRODUCTION

As Dennard scaling ends, the pursuit of specialized hard-
ware for energy efficiency has become prevalent. Many plat-
forms, including datacenters, instantiate accelerators on field-
programmable gate arrays (FPGAs) to realize their benefits
while avoiding the costs of custom circuits.

The need for accelerators has renewed interest in high-level
synthesis (HLS) [7], a toolflow in which designers specify
functionality in a high-level language and automated tools
produce RTL code. Such toolflows offer large productivity
gains when compared to manually writing RTL, a time-
consuming process that requires expertise in digital design.
But challenges remain because designers must rely on HLS
directives to guide synthesis and produce quality RTL [20].

Directives are hints to the HLS tool, indicating that some
code location could be optimized to improve performance.
Tuning varied directives at different locations defines a vast
design space. The size of the space depends on the number of
lines of code, the choice of directives (e.g., loop unrolling),
and the choice of settings for a given directive (e.g., unrolling
factor). Furthermore, the effects of multiple directives interact
to affect performance in subtle and unexpected ways. Thus,
designers need automated solutions that quickly explore trade-
offs between cost and performance of RTL variants.

We propose Prospector, a framework for synthesizing
efficient accelerators with optimization directives. While
Prospector supports both ASICs and FPGAs, this paper fo-
cuses on FPGAs given the growing interest in reconfigurable
accelerators. The framework coordinates the placement and
configuration of directives, seeking low execution time and
efficient resource usage. Prospector achieves these goals in

two ways. First, it encodes the design space so that statistical
models can capture accelerator performance and FPGA costs
(e.g., flip-flops, lookup tables, block RAMs and digital signal
processors) more effectively. Second, as HLS measurements
are expensive, it samples the design space in order to reveal
optimal designs more efficiently.

Prospector uses Bayesian optimization, a method starting to
find success in digital design [14] [10], to judiciously collect
data, incrementally train models, and efficiently optimize de-
signs. Efficient data collection and analysis is critical because
evaluating each point of the design space involves costly syn-
thesis and place-and-route. We show that Prospector efficiently
reveals design optima by running HLS measurements on a
small percentage (e.g., < 1%) of the whole design space.
Such capabilities reflect Bayesian optimization’s particular
strengths, which are absent in popular search heuristics, such
as genetic algorithms and simulated annealing. The following
summarizes our contributions.
• Effective Search Algorithms. Prospector places and con-

figures optimization directives by modeling their effect
on accelerator performance and FPGA resource usage.
Concise design encodings and intelligent design sampling
permit the use of Bayesian optimization for HLS.

• Efficient Resource Usage. Prospector discovers designs
that meet performance targets using fewer FPGA re-
sources. Classic approaches discover designs that require
up to 2.3× more FPGA resources.

• Broad Pareto Frontiers. Prospector captures high-
dimensional trade-offs between performance and FPGA
cost. Prior approaches reveal Pareto frontiers 1.9×, on
average, more distant from the true frontier than Prospec-
tor’s.

II. THE PROSPECTOR FRAMEWORK

We optimize accelerator design flows that use HLS to target
FPGAs. HLS reduces design effort by compiling behavioral
descriptions into RTL, which allows architects to simulate
performance, estimate resource utilization, and verify func-
tionality. RTL results of synthesis are used for more accurate
resource usage estimates via place and route.

We develop a statistical framework, called Prospector, for
identifying synthesis directives that best optimize an acceler-
ator design. We leverage Bayesian optimization, which builds
a probabilistic model that approximates an unknown function

1

High-level Synthesis

Place and Route

Performance

Cost

Design Space
Update

High-level Code Describing Accelerator

Encoding

Bayesian Optimization

Translator

Synthesis and
ImplementationSetting Directives

(BOU)

HLS
Directives

RTL

User’s Input

Directions Frequency

Fig. 1: Prospector Framework

and serves as its surrogate [18]. Bayesian techniques are
particularly effective when the function is a black box and
evaluating the function is costly. The technique iteratively
samples parameter values, evaluates the function with those
values, and updates the probabilistic model. Over multiple it-
erations, the optimization approaches optimal parameter values
x̂ = argmaxx∈X f(x) for function f .

We consider the HLS toolflow (i.e., simulate, synthesize,
place-and-route*) an unknown function to be modeled and
optimized. The function’s inputs specify the placement and
configuration of synthesis directives. The function’s outputs
quantify design quality, which include execution time and
multiple measures of FPGA resource utilization. Although we
can invoke the HLS toolflow to evaluate the function for any
possible set of inputs, evaluations are prohibitively expensive
when exploring large, complex design spaces.

Figure 1 summarizes the Prospector framework. Its input
includes high-level source code that describes accelerator
functionality. It outputs RTL implementations that reflect
varied performance and cost trade-offs. Within Prospector, the
Bayesian optimization unit (BOU) explores the design space
iteratively. In each iteration, the BOU controls the choice of
synthesis directives and the HLS toolflow converts source code
to RTL. After multiple iterations, Prospector identifies synthe-
sis directives and accelerator designs that balance execution
time and FPGA resource utilization.

A. Design Space

Architects use directives to specify optimizations and guide
HLS but determining which directives are effective requires
time-consuming simulation. The problem is complicated by
two inter-related questions.
• Placement. Which code locations should be targeted by

an optimization?
• Configuration. What values should an optimization’s

arguments take?
Both placement and configuration heavily influence opti-

mization effectiveness and design quality. The design space
size increases exponentially with the number of loops, arrays,
and functions targeted for acceleration. An architect may need

*Place-and-route is a user option for more accurate reports in Prospector,
and we assume it is chosen in this paper.

to try many directives because interactions between the differ-
ent optimizations are difficult to anticipate. If each trial were
to invoke HLS, the computation for simulation, synthesis, and
place-and-route would require days if not weeks. Prospector
reduces search time by exploring the design space intelligently
via Bayesian optimization.

B. Bayesian Optimization Overview

Statistical Model. The Gaussian process is a statistical
model of an unknown function. For each input, the model
estimates the function’s output and the uncertainty around
that estimate. The model is trained by sampling inputs, eval-
uating the function, and obtaining outputs. These sampled
measurements supply data that refine estimates for unobserved
outputs. Moreover, they reduce uncertainty around estimates
for the corresponding outputs. As data become available, the
Gaussian process updates its model of the function to produce
increasingly accurate and confident estimates.

Figure 2 illustrates the Gaussian process. Suppose we obtain
data {(x1, f1), (x2, f2), (x3, f3)} by evaluating the function.
We model output f∗ for previously unobserved input x∗
using a Gaussian random variable with mean µ∗ and standard
deviation σ∗. Intuitively, µ∗ should be near the outputs for
inputs similar to x∗, and σ∗ should decrease when more
outputs are observed for inputs similar to x∗.

Data Acquisition. Gaussian processes and Bayesian opti-
mization use data sparingly. An acquisition function incre-
mentally selects inputs for which the target function should
be evaluated, producing a sequence of implemented designs
(x, f). Early in the procedure, the acquisition function favors
exploration and selects inputs for which the function’s output
is uncertain. Later, it favors exploitation and selects inputs for
which the function’s output is likely closer to the optimum. As
the acquisition function supplies data to refine the Gaussian
process, predictions become more accurate.

Figure 2 illustrates updates to the Gaussian process and
the acquisition function’s estimate of utility from data. As
we seek to minimize execution time and FPGA resource
utilization—measured in terms of the number of FFs, LUTs,
DSPs, BRAMs—we use the PESMO acquisition function for
multi-objective Bayesian optimization. PESMO selects inputs
to reduce the estimated Pareto frontier’s entropy [6].

C. Directive Encodings

We incrementally train Gaussian processes by synthesizing
and evaluating a sequence of designs (x, f).

Inputs. We define input x to be a vector of variables, each
of which encode the use of a synthesis directive. First, we
encode directive placement using a binary variable, indicating
whether a directive is applied, for each code location that could
be optimized. Next, we encode directive configuration using
a categorical variable to describe the optimization’s mode
and integer variables to specify the optimization’s tunable
argument.

Outputs. The synthesis of input x produces output f . We
define f to be a vector of metrics relevant to our optimization

2

Fig. 2: Gaussian process with measurements for x1, x2, x3 and prediction for x∗ (left). Bayesian optimization updates model
as data is acquired (center). Acquisition function selects data measurements based on expected benefits (right).

Directive Parameter Values
Loop Unrolling Factor ∀2x | x ∈ [1 : M]
Loop Pipelining Initiation Interval ∀x | x ∈ [1 : 7]
Array Partitioning Factor ∀2x | x ∈ [1 : N]
Function Inlining Setting on/off

Allocation Instance and Limit
instance ∈ [add,mul]
∀x | x ∈ [1 : Nadd]
∀2x | x ∈ [1 : Nmul]

TABLE I: Directives’ ranges that define the design space. The
values of M,N differ across benchmarks. See Table II.

objective. These metrics include execution time and utilization
for each type of FPGA resource including FFs, LUTs, DSPs,
and BRAMs (5 dimensions).

Code Locations. Given high-level source code and the
user’s directions, we specify the number of possible directives
D and the number of code locations L for each directive. Con-
sidering a bitmap for each directive, the map’s length equals
the number of potential locations L. The result is D maps with
L bits each. Each bit indicates whether a directive d∈[1, D]
is active at location l∈[1, L]. We convert each directive’s map
into an integer between zero and 2L − 1. For example, if each
of three loops could be unrolled, we encode the unrolling
strategy with a three-bit map that corresponds to an integer
between zero and seven. Thus, the bitmaps permit Gaussian
processes to model and explore directive placement. Placement
is monitored either via this separate integer parameter or by
considering inactive state as one possible configuration value
for all locations (e.g., unroll factor = 1 means the unrolling
directive is off for that location).

Directive Configurations. We specify the range of possible
values for each directive’s categorical and numerical set-
tings. Prospector explores and samples directive configurations
within these ranges. For example, a loop could be unrolled by a
facor of 2x where x ∈ [1 : 4]. Note that we sample parameters
for directive placement and configuration independently.

III. EXPERIMENTAL METHODS

Benchmarks. We evaluate application kernels from two
benchmark suites, PolyBench [12] and MachSuite [13], which
cover a wide range of functionality and complexity. We
explore design spaces for fdtd-2d, 2mm, and heat-3d from
PolyBench and fft, bbgemm, and stencil-3d from MachSuite.

Benchmark Optimization Targets Range Design Space Size
fdtd-2d 4 loops M=9 6,561
2mm 4 loops, 1 array M=12, N=1 15,625

fft 9 loops, 3 arrays,
3 functions, 2 allocations

M=8, Nadd=10
N=2, Nmul=8 36,000

bbgemm 2 loops, 1 array M=16, N=4 960
stencil-3d 2 loops, 1 array M=16, N=4 960
heat-3d 4 loops M=16 2,304

TABLE II: Design space summary.

Bayesian Optimization Unit (BOU). The BOU gener-
ates new values for target directives at each iteration in the
optimization procedure. The BOU integrates our encoding
and translation mechanisms with Spearmint [1], a software
package that implements Gaussian processes and acquisition
functions. The encoding unit converts a user-defined space of
HLS directives and code locations into input parameters for
Spearmint. Spearmint’s acquisition function, which Prospec-
tor chooses as PESMO, selects parameter values, which the
translation unit converts into a TCL script that describes
how directives are to be located and configured for HLS.
Hardware generated by HLS is used for place-and-route and
performance/cost measurements. Data from the design profile
updates Spearmint’s Gaussian process and influences the ac-
quisition function’s subsequent selections.

High-Level Synthesis and Place-and-Route. We use Xil-
inx Vivado HLS to synthesize RTL from high-level code. The
RTL is fed into Vivado Design Suite to perform place-and-
route and generate the bitstream to program the FPGA.

Directives. HLS tools offer several directives among which
the set in Table I covers those that were found most effective
[15]. Without loss of generality, we focus on this list to gen-
erate our design spaces. Table II reports the number of loops,
arrays, and functions that are targeted by our optimizations,
the range of parameter values that were considered, and the
total size of the design space.

IV. EVALUATION

We evaluate Prospector’s ability to find optimal design
points and reveal the Pareto frontier. We first perform an
exhaustive characterization of the design space by running
every possible design point through HLS and place-and-
route, measuring execution time and FPGA utilization, and

3

0 25 50 75 100 125 150

Number of Iterations

1000

4000

7000

N
u

m
b

er
 o

f
L

U
T

s
LUT Latency

L
a

te
n

cy
(M

 c
y

cl
es

)

1

1.2

1.4

1.6

1.8

2.0

2.2

0 25 50 75 100 125 150

Number of Iterations

1000

3000

5000

7000

9000

N
u

m
b

er
 o

f
L

U
T

s

LUT Latency

L
a

te
n

cy
(M

 c
y

cl
es

)

1

1.2

1.4

1.6

1.8

2.0

2.2

0 25 50 75 100 125 150

Number of Iterations

0.1

0.3

0.5

0.7

0.9

1.1

N
o

rm
a

li
ze

d
 N

u
m

b
er

 o
f

L
U

T
s LUT Latency

N
o

rm
a

li
ze

d
 L

a
te

n
cy

0.1

0.3

0.5

0.7

0.9

1.1

Fig. 3: Latency, LUT usage across iterations of Prospector-1D when minimizing (a) latency, (b) latency-LUT product, (c)
latency-LUT product with normalized, scaled measures. Data for fdtd-2d.

identifying the ”golden” Pareto optima. We then determine
how closely Prospector and alternative heuristics track these
golden optima.

Prospector relies on search. Thus, we compare Prospector
(with both single and multidimensional Bayesian optimiza-
tion), as well as popular search heuristics for design space
exploration. Evaluated methods include:

• Prospector. Models and optimizes one or multiple ob-
jective function(s), including latency and multiple dimen-
sions of FPGA usage, with Gaussian processes. Searches
for Pareto optima based on objective(s). If optimizing
all 5 dimensions of our problem (latency, FFs, LUTs,
DSPs, and BRAMs), we denote it simply as Prospector. If
optimizing k < 5 dimensions, we denote it as Prospector-
kD (e.g., Prospector-2D).

• Random Search. Samples designs uniformly at random
[3].

• Simulated Annealing. Samples designs that are likely to
improve upon prior measurements. Samples are increas-
ingly focused as iterations progress [16].

• Genetic Algorithm. Samples design populations by using
the fittest designs from the previous generation of samples
[5]. Searches for Pareto optima based on latency and cost.

For all methods, each iteration of the exploration algorithm
is composed of parameter selection and synthesis flow for the
selected parameter values, plus evaluation of the performance
and cost. The runtime per iteration is completely dominated
by HLS toolflow delays, which are common to all methods.
Thus, we can fairly compare the different methods by giving
them each the same number of iterations (or search time) and
comparing the quality of the designs produced in that time.

We evaluate the ability of design frameworks to reveal
the Pareto frontier, which is essential to reasoning about
design trade-offs. A good Pareto frontier identifies a broad
spectrum of designs for which no other design improves
one metric without harming another. We find that popular
techniques—simulated annealing, random search, and genetic
algorithms—do not accurately describe the Pareto frontier and
reveal efficient trade-offs. These techniques converge to optima
poorly or slowly, get stuck in local minima, or restrict the
optimization to only parts of the design space.

We find that Prospector can navigate multiple objectives,
producing low-latency designs that use resources efficiently.

A. Visualizing Pareto Efficiency

We start evaluating Prospector by applying Prospector-1D.
Figure 3(a) indicates that Prospector-1D explores the design
space to minimize latency without regard for cost. Prospector-
1D successfully converges toward optimal latency but that does
not guarantee the optimal LUT usage. This outcome arises
from the narrow optimization objective.

Designers often care about more than one objective (i.e. cost
and latency). Architects sometimes account for two metrics
by optimizing their product or putting constraints on one
when optimizing the other [10], but defining constraints is a
burden on user. We also show product optimization is a fragile
solution. Figure 3(b) applies Prospector-1D on the LUT-
latency product. LUT usage is reduced but latency remains
high when minimizing this fused metric. LUT usage dominates
the product and optimization procedure. One could normalize
and re-scale metrics to overcome the range difference between
latency and LUTs, but Figure 3(c) indicates that doing so does
not solve the issue. Latency is reduced but LUT usage remains
high. These challenges increase with the number of dimensions
in the design space. Prospector overcomes this limitation by
modeling and optimizing multiple objectives simultaneously.

Figure 4 shows how Prospector-2D for latency and LUT
usage reveals the broad latency-LUT Pareto frontier after 50
iterations. One might hypothesize that, while Prospector-1D
is insufficient, perhaps Prospector-2D suffices and there is
little or no need for higher dimensional optimization. However,
although Prospector-2D outperforms Prospector-1D, its results
are pareto sub-optimal and fall short of coordinated analysis
across all dimensions. Neglecting other FPGA resources in
Prospector-2D results in missing sophisticated resource inter-
actions and opportunities to use the FPGA more efficiently.

Table III details these limitations by presenting Prospector-
2D’s ”Pareto optimal” designs, which do not actually satisfy
criteria for optimality and miss interactions between resources
in the 5D space. First, Prospector-2D misses Pareto optima
within the neglected dimensions of the 5D space. We can find
designs that incur the same costs for one resource but lower
costs for another resource. For example, Design 5 is not Pareto
optimal because Design 7 performs equally well, uses the same
number of DSPs, but reduces the number of LUTs and FFs by
25% and 31%, respectively. Design 5 is Pareto dominated yet
Prospector-2D discovers it when optimizing latency and DSP

4

Design 2-D Pareto FFs LUTs DSPs Cycles (M)
1 Latency-DSPs 4,926 7,289 32 1.175
2 Latency-LUTs 2,927 5,048 32 1.185
3 Latency-FFs 3,199 5,151 32 1.180
4 Latency-FFs 2,768 4,808 32 1.204
5 Latency-DSPs 3,810 5,536 20 1.194
6 Latency-LUTs 2,659 4,670 32 1.214
7 Latency-FFs 2,620 4,108 20 1.220

TABLE III: Each design is Pareto optimal in 2D analysis
but, in the 5D space, is actually sub-optimal and obscures
interactions between FPGA resource types. Data for fdtd-2d.

1000 2500 4000 5500 7000 8500

Number of LUTs

1

1.2

1.4

1.6

1.8

2.0

2.2

L
at

en
cy

(M
 c

yc
le

s)

Design Space

Prospector-2D

Fig. 4: Prospector-2D for latency and LUTs (fdtd-2d).

cost while neglecting other resources. Design 7 is truly Pareto
optimal and discovered by Prospector.

Second, Prospector-2D misses opportunities to substitute
and exchange resources in the pursuit of performance. Substi-
tution effects are important for FPGAs, because competition
for shared resources may require flexible resource requests
for an accelerator. For example, Designs 5 and 6 illustrate the
possibility of substituting DSPs for LUTs and FFs. We could
reduce the number of DSPs by 37% and increase the number
of LUTs and FFs by 18% and 43% without affecting latency.
Optimization in higher dimensions is more likely to discover
substitutability, mitigating resource bottlenecks and revealing
multiple paths to the same performance.

Finally, Prospector-2D misses complementary resource de-
mands that require coordinated allocation. Points in the 2D
Pareto frontiers indicate that LUTs and FFs are neither substi-
tutes nor independent. LUTs and FFs are often used in related
proportions such that if LUT usage changes, so does FF usage.
Comparing Design 1 to Designs 2, 3, and 4, we find that LUTs
and FFs are reduced together by 30-40%. Comparing Design
5 to Designs 6 and 7, we find that LUTs and FFs are reduced
together by 16-32%. These conclusions are missing from 2D
analysis and require 5D analysis.

B. Quantifying Pareto Efficiency

We assess goodness by measuring the distance between two
Pareto frontiers. We calculate the Euclidean distance from
every design on the source frontier to the closest point on the
destination frontier, producing a number of distances equal
to the number of design points in the source. Note that each
design point is represented by a five-dimensional vector that
quantifies latency and usage for four FPGA resources. Our
measures build on related work that explored several indicators
to evaluate multi-dimensional Pareto frontiers [4].

Scheme Low Latency Medium Latency High Latency
Prospector 2-D Latency-LUT (0, 43, 42) (0, 10, 5) (0, -12, -11)
Prospector 2-D Latency-FF (0, 3, 5) (0, -2, -4) (0, -12, -11)
Prospector 2-D Latency-DSP (0, 19, 20) (0, -2, -4) (0, 54, 54)
Prospector 1-D (50, 60, 58) (100, 129, 121) (100, 54, 59)
Genetic Algorithms (50, 19, 18) (100, -17, -16) (0, 8, 8)
Simulated Annealing (0, 53, 50) (0, 12, 9) (0, 20, 35)
Random Search (0, 5, 8) (0, 53, 48) (0, 76, 77)

TABLE IV: Optima from other algorithms use more resources
than Prospector, given same target latency and budget for
optimization time. Results shown are percentage increases in
resource usage (%DSP, %FF, %LUT). fdtd-2d benchmark.

When measuring distances, the source is the golden frontier
identified by exhaustive evaluation of the design space, and the
destination is an estimated frontier identified by Prospector or
other heuristics. For each point on the golden frontier, we
measure the shortest distance to any point on the estimated
frontier. We mitigate the inconsistency between ranges mea-
sured for latency and FPGA resource usage by normalizing
values so that they are in [0,1].

Figure 5 reports average distances, normalized to the dis-
tance between the golden and Prospector frontiers †. Prospec-
tor most accurately reveals the Pareto frontier and reports the
shortest distances to the golden frontier. Optimization in fewer
dimensions or using alternative heuristics are less accurate and
report greater distance to the golden pareto frontier.

Even though distances are the most important metric, they
can be difficult to interpret. For another perspective, Table IV
shows how Prospector often identifies designs that use far
fewer FPGA resources than those identified by other methods.
The table compares resource usage for three performance
targets (low, medium, high) that correspond to the 25th,
50th, and 75th percentiles in the golden frontier’s latency
distribution. For example, Prospector-1D’s designs require 50-
129% more resources than Prospector’s.

V. RELATED WORK

Statistical learning constructs surrogate models for unwieldy
design flows [8], [9], [17]. These methods sample the param-
eter space, evaluate those design samples, and learn models
for design quality. Creating a training dataset for HLS pragma
optimization and constructing models for multiple figures of
merit is challenging. Pre-RTL frameworks support early-stage
accelerator design (e.g., Aladdin [19]), but the architect must
still perform design space exploration, relying on expert design
or tuned directives to identify efficient implementations.

Heuristics search the design space defined by tunable knobs.
Random search samples designs randomly [3]. Simulated
annealing (SA) [16] and gradient descent judiciously sample
designs likely to improve upon prior measurements but may
discover local minima [14]. Genetic algorithms (GA) use the
fittest designs in a population of samples to produce the next
generation of samples [2], [11]. Prospector outperforms these
heuristics for HLS and FPGAs’ large parameter spaces.

†HLS automatically allocates FFs and BRAMs, sometimes using only
FFs. The BRAM-latency bar is shown only for fft, which required BRAMs.

5

fdtd-2d 2mm bbgemm sencil-3d heat-3d fft

Benchmark

0.0

1.0

2.0

3.0

4.0

5.0

N
o

rm
a

li
ze

d
 A

v
er

a
g

e
D

is
ta

n
ce

Random Search
Simulated Annealing
Genetic Algorithms
Prospector-1D on Latency
Prospector-2D (DSP, Latency)
Prospector-2D (FF, Latency)
Prospector-2D (LUT, Latency)
Prospector-2D (BRAM, Latency)
Prospector

11.7

Fig. 5: Distances between golden and estimated Pareto frontiers, normalized to that from Prospector.

Bayesian optimization can tune directives to minimize de-
sign latency [10]. This work explores only the placement, but
not configuration, of HLS directives due to its limits in its
design encoding. Furthermore, it suggests fusing metrics into
a single objective (i.e., latency-LUT product), which we show
is problematic, to leverage standard data collection proce-
dures. Bayesian optimization has also tuned neural networks,
optimizing both hyperparameters and continuous hardware
parameters such as operand bit width [14]. This study does
not consider HLS directives needed to instantiate accelerators
on reconfigurable hardware.

Analytical models explore simpler parameter spaces and
do not extend easily to directive placement and configuration
for multiple interdependent code targets. Some models study
directives for a single code target [22] or optimize directives
to reduce usage for specific FPGA resource types such as
BRAMs and DSPs [21]. None of these approaches model
directive placement and configuration for multiple HLS code
targets and comprehensive FPGA design spaces.

VI. CONCLUSION

Prospector uses multi-dimensional Bayesian optimization to
efficiently search large accelerator design spaces defined by
HLS directives. Despite the plethora of possible HLS directive
placements and configurations and multiple metrics optimized,
Prospector efficiently finds Pareto optimal designs. Prospector
is much more effective than alternative search heuristics.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
grants CCF-1149252, CCF-1337215, SHF-1527610, and AF-
1408784. This work is also supported, in part, by the Semicon-
ductor Research Corporations Global Research Collaboration
(GRC) program under task 2821.001.

REFERENCES

[1] Spearmint: https://github.com/HIPS/Spearmint/tree/PESM.
[2] G. Ascia, V. Catania, and M. Palesi, “A multiobjective genetic approach

for system-level exploration in parameterized systems-on-a-chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 4, pp. 635–645, 2005.

[3] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, 2012.

[4] P. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Transactions
on Evolutionary Computation, 2003.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, 2002.

[6] D. Hernández-Lobato, J. Hernandez-Lobato, A. Shah, and R. Adams,
“Predictive entropy search for multi-objective bayesian optimization,”
in Proc. International Conference on Machine Learning, 2016.

[7] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis,
and K. Olukotun, “Automatic generation of efficient accelerators for re-
configurable hardware,” in Proc. International Symposium on Computer
Architecture (ISCA), 2016.

[8] B. Lee and D. Brooks, “Illustrative design space studies with microarchi-
tectural regression models,” in Proc. International Symposium on High-
Performance Computer Architecture (HPCA), 2007.

[9] H. Liu and L. Carloni, “On learning-based methods for design-space
exploration with high-level synthesis,” in Proc. Design Automation
Conference (DAC), 2013.

[10] C. Lo and P. Chow, “Model-based optimization of high level synthesis
directives,” in Proc. International Conference on Field Programmable
Logic and Applications (FPL), 2016.

[11] M. Palesi and T. Givargis, “Multi-objective design space exploration
using genetic algorithms,” in Proceedings of the tenth international
symposium on Hardware/software codesign. ACM, 2002, pp. 67–72.

[12] L. Pouchet, “Polybench: The polyhedral benchmark suite,” PolyBench:
http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

[13] B. Reagen, R. Adolf, Y. Shao, G. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. International Symposium on Workload Characterization, 2014.

[14] B. Reagen, J. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough,
G. Wei, and D. Brooks, “A case for efficient accelerator design space ex-
ploration via bayesian optimization,” in Proc. International Symposium
on Low Power Electronics and Design (ISLPED), 2017.

[15] B. Reagen, Y. Shao, G. Wei, and D. Brooks, “Quantifying acceleration:
Power/performance trade-offs of application kernels in hardware,” in
Proc. International Symposium on Low Power Electronics and Design
(ISLPED), 2013.

[16] B. Schafer, T. Takenaka, and K. Wakabayashi, “Adaptive simulated
annealer for high level synthesis design space exploration,” in Proc.
International Symposium on VLSI Design, Automation and Test, 2009.

[17] B. Schafer and K. Wakabayashi, “Machine learning predictive modelling
high-level synthesis design space exploration,” IET Computers & Digital
Techniques, 2012.

[18] B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. D. Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, 2016.

[19] Y. Shao, B. Reagen, G. Wei, and D. Brooks, “Aladdin: A pre-rtl, power-
performance accelerator simulator enabling large design space explo-
ration of customized architectures,” in Proc. International Symposium
on Computer Architecture (ISCA), 2014.

[20] F. Winterstein, S. Bayliss, and G. Constantinides, “High-level synthesis
of dynamic data structures: A case study using vivado hls,” in Proc.
International Conference on Field-Programmable Technology, 2013.

[21] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Comba: A
comprehensive model-based analysis framework for high level synthesis
of real applications,” in Proceedings of the 36th International Confer-
ence on Computer-Aided Design, 2017.

[22] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer:
a high-level performance analysis tool for fpga-based accelerators,” in
Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016, p. 136.

6

