
Presented for ECE 259 by Mohammad Mottaghi
March 29th 2010

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav H?llberg, Johan H?gberg, Fredrik Larsson,
Andreas Moestedt, Bengt Werner

A perfect model: simulation with total accuracy
problems: cost, time to completion, specification
inaccuracies
Serious problem: workload

Highly accurate models very small toy benchmarks
Result: Accurate answers to irrelevant questions

Simics: Balance between accuracy and
performance Sufficiently:

Abstract
Functional accurate commercial workloads
Time accurate interface with hardware

Simics supports a broad variety of tasks:
microprocessor design, operating system
development, fault injection

Simulates different processors /
operating systems / devices

Multiple sessions, each separate
simulation
Can be networked together

Simics central

Sample:
Fast enough interactive
30 secs load forum webpage

Record & timestamp events(User
inputs), Access mem traffic anywhere,
breakpoints

Reduces time-to-market
relaxes many dependencies by providing a single
platform across the development cycle
each task can begin within an abstract context

Applications
Microprocessor design

Simulates processors @ the instruction-set level
Resolves traditional trace-based simulation limitations

Cache and I/O timing + interleaving mem ops + OS mem mgmnt
Data dependence tracking and roll back support
Provides functional model (no timing model)

Operating system emulation
OS development
High-availability testing

Memory studies
represented by one or more memory spaces (address spaces)

Examples: physical cacheable memory, PCI bus spaces
extension: connecting timing model

Mem op latency, cache input,

Device development
Can communicate with external programs

A single device is simulated by an ext program

Debugging
Reproduce errors repeat exact event flow

play back KB, mouse, NWK traffic

Implement advanced breakpoints
correlated locks, timing breakpoints

Use well-known debugger interface
gdb through gdb-remote

Simics Central, a tool that:
synchronizes the virtual time between Simics simulators
distributes simulated traffic between nodes

Acts as a router

halts the simulation if one process consumes cycles slower than the rest
NWK sim speed slowest Simics process

Entire distributed sim fully deterministic

Devices
For each target: a set of devices are supported OS boot

e.g. x86(PC): 8254, 8237, 8259 (int contoller)

Supports multiprocessor for all targets

Interfacing to other simulators
Interface to a clock-cycle-accurate model written in Verilog

Simics API
> 200 functions + > 50 interfaces + data types
Extensible write plug-in device models

Memory
Mem ops: biggest perf. challenge for simulator
Simulator translation cache (STC)

Pointer to simulated mem indexd by virtual adr

Event handling
2 event queues per processor: Step Q, Time Q

allows Simics to mix event-driven and time-driven components
Events in Step Q fired after n PC steps
Events in Time Q fired after n CPU clock cycles

Configuration
describe target sys object-oriented conf. lang.
To add a device

write a class using the Simics API loadable module
define an object of that class in the configuration file

CLI and scripting
Simics controlled through command line interface

Also a runtime python env.

Scripts can be tied to certain events
e.g. TLB misses, I/O operations

[figure 5: example]

Performance Analysis toolkit: missing?
Simics: CPU + Capabilities of compiler (entire prog)
How much does Simics exploit this?

For speeding up the simlulation
Could give hints for Ideal ILP vs. real ILP
Ideal vs. real cache hits rates

Hardware emulation?
Can we use FPGA or ASIC emulators to speedup simulation? (of a
non-existing CPU)

Time-to-market reduction: not as good as advertised, dangerous?
Might hide a critical failure of the target system

Data dependant heat distribution of a particular layout

Presumed to be successful
Upon this (false) assumption, investment on the next ongoing phases
(compiler, os,)

