Larrabee

A Many-Core x86 Architecture for Visual Computing

Seiler, L., Carmean, D., et al. SIGGRAPH'08

Presented by Valentin Pistol CPS221 Spring 2010

Context

- Graphics market evolving very fast
 - Mostly driven by gaming
 - Trend
 - Real time realistic graphics require more and more computation
 - Low power big concern for mobile (laptops, phones)
 - Converging CPU and GPU apps
 - Integrate CPU and GPU in a single package and even SoC
 - Driven by increase in transistor count and shrink size
 - Extract parallelism, almost everyone has a graphics card (desktop or mobile)
 - Highly programmable units
 - HPC market, scientific workloads, throughput oriented

Objectives and reality

Intel Larrabee

- Many x86 cores, wide vector processor units, some fixed functional logic, software renderer → aims for high performance and flexibility
- Designed by Intel's Hillsboro, Oregon (Nehalem)

Expected

- Late 2009 release on 45nm process
- 2010 shrink to 32nm

Killed in December '09 by Intel (way behind schedule)

- 1st generation
- Platform will be used for multi-core hw/sw research and development
- Sources
 - http://arstechnica.com/hardware/news/2009/12/intels-larrabee-gpu-put-on-ice-more-news-to-come-in-2010.ars

Inside Larrabee

- Hybrid software/hardware GPU
- Software rasterization and interpolation
 - Optimized for particular workload
 - Special purpose equations
 - Parallelizable rasterization and flexible rendering pipeline placement
- Software instruction and thread scheduling (compiler)
 - Dynamic load balancing e.g. raytracing
- Fixed (hardware) texture unit (with 32K cache)
- Limitations (as of paper prototype)
 - Application sys call porting
 - Application recompilation

Architecture

	Tight Synchronization	Data Path Divergence		
Vectors	Good	Bad		
Threads	Bad	Fine		

ic	In-Order CPU core	In-Order CPU core		In-Order CPU core	In-Order CPU core	Interfaces
80	Interprocessor Ring Network					erfa
Fixed Function Logic	Coherent L2 cache	Coherent L2 cache		Coherent L2 cache	Coherent L2 cache	I/O Inte
	Coherent L2 cache	Coherent L2 cache		Coherent L2 cache	Coherent L2 cache	Memory & L
Xe	Interprocessor Ring Network				non	
E	In-Order CPU core	In-Order CPU core		In-Order CPU core	In-Order CPU core	Mer

Figure 1: Schematic of the Larrabee many-core architecture: The number of CPU cores and the number and type of co-processors and I/O blocks are implementation-dependent, as are the positions of the CPU and non-CPU blocks on the chip.

Specs

- Simple in-order cores (16+), fully x86 ISA compatible + vector instructions
 - High power efficiency
 - Based on Pentium P54C (intro in '94 embedded use)
- High bandwidth ring network (512 bit wide for each direction)
- Shared and coherent cache hierarchy
- ▶ L1\$
 - > 32K L1I\$ + 32K L1D\$, per core
- L2 \$
 - > 256K local L2 cache slice, per core
 - Local is faster (obviously)
 - Special instructions for cache manipulation (eviction hints, prefetch, streams)
- Explicit DMA transfers
- Latency hiding
 - 4-way multithreading per core (interleaved)
 - Cell SPE has 1, PPU has 2
- Main Cell core manages and runs OS
 - "The PPE is the main processor of the Cell BE, and is responsible for running the operating system and coordinating the SPEs."
 - Larrabee identical cores
- Source:

Rendering Pipeline

Figure 2: Simplified DirectX10 Pipeline: Yellow components are programmable by the user, green are fixed function. Memory access, stream output, and texture filtering stages are omitted.

Vertex Shaders

- What is a vertex?
 - "A vertex is the corner of the triangle where two edges meet," and thus every triangle is composed of three vertices." -NVIDIA
- Use?

Example: Vertex Data

$\{X, Y, Z, W\}$
$\{Red,Green,Blue,Alpha\}$
$\{S, T, R, Q\}$
{S, T, R, Q}
{S, T, R, Q}
{F}
{P}

- - http://www.nvidia.com/object/feature_vertexshader.html
 - http://www.nvidia.com/attach/4049

Pixel Shaders

- "Graphics function that calculates effects on a perpixel basis." - NVIDIA
- Use?
 - Incredibly realistic material and lighting effects

Sources:

http://www.nvidia.com/object/feature_pixelshader.html

Performance

- Theoretical SP (single precision)
 - 32 cores × 16 single-precision float SIMD/core × 2 FLOP (fused multiply-add) × 1GHz = 1 TFLOPS – slow!
 - Comparison?
 - AMD '08 ATI Radeon HD4800 series 1TFLOPS
 - ATI Radeon 4870X2 card Aug '08 2.4 TFLOPS
 - ATI Radeon HD 5970 (2xGPU) Nov '09 4.6 TFLOPS !!!
 - ATI FirePro V8800 April 7 '10 2.6 TFLOPS
 - □ 1600 Stream Processors, < 225W
 - NVIDIA GTX480 (Fermi) April '10 1.35 TFLOPS
 - □ 6 months late, expensive, extremely hot (~ 100C/210F), loud and power hungry
 - □ System load: 480W vs 367W (Radeon 5870)
- Sources:
 - http://en.wikipedia.org/wiki/FLOPS
 - http://www.amd.com/us/products/workstation/graphics/ati-firepro-3d/v8800/Pages/v8800-specifications.aspx
 - http://techreport.com/articles.x/18682
 - http://zikkir.net/tech/11889
 - http://www.hardocp.com/article/2010/03/26/nvidia_fermi_gtx_470_480_sli_revieww

Larrabee Programming

- Transparent memory management
 - All memory on Larrabee is shared by all processors
 - But NVIDIA just launched Fermi with coherency and L1/L2 caches...
- Predication
 - Power-efficient masks don't compute results for unused lanes
- Gather/scatter
 - Limited by cache speed
- Pthreads, OpenMP, Intel TBB support
- Compiler with auto-vectorization
 - How good?
- Tight integration with host
 - Proxy Larrabee I/O functions read/write/open/close...
- Full C++ support
 - Available on CUDA now
- *"Profile it once it's running, find out which bits need love"* Intel, SIMD Programming Larrabee, GDC 2009

Look to future and questions

- Hybrid CPU/GPU future?
- Simple cores/logic \rightarrow less errors/faults/bugs \rightarrow good yield?
- AMD Fusion project
 - AMD Llano samples in H2'10
 - Target notebook market
 - APU (Application Processor Unit)
 - > OO 3GHz quad-core CPU and GPU on single die 32nm

Intel Clarkdale 3.46GHz – launch Q1 '10

- Nehalem micro-architecture
- Two dies on package 32nm CPU , 45m integrated graphics

Linear scaling, really?

Game engines hard to parallelize

Feeding cores with enough bandwidth?

- Memory subsystem very costly and power hungry
- Bandwidth doesn't scale linearly across technology nodes
- Crysis game benchmark missing? (released Nov '07)
 - Kills all but the very latest GPUs
- Raytracing?
 - Current raytracers 10-20M+rays /s
 - NVIDIA OPTIX Raytracer released Jan '10, supports Fermi
- Sources
 - http://apcmag.com/amd-offers-detaisl-on-llano-gpucpu-hybrid-for-laptops.htm
 - > http://arstechnica.com/business/news/2010/02/amd-reveals-fusion-cpugpu-to-challege-intel-in-laptops.ars
 - http://www.xbitlabs.com/news/cpu/display/20090728142821_Intel_Clarkdale_3_46GHz_Clock_Speed_32nm_Process_Tech_Launch_in_Q1_2010.html
 - http://developer.nvidia.com/object/optix-beta.html

Thanks!

Intel[®] Desktop Processor Codename Clarkdale

Intel® Desktop processors codename Clarkdale

- 32 nm, 2nd Generation Hi-K process CPU
- 45nm, Hi-K Process, Integrated Graphics

Key Features²:

- 32nm Nehalem Microarchitecture (Westmere)
 - Intel[®] Turbo Boost Technology ¹
 - Intel[®] Hyper-Threading Technology ²(2 Cores, 4 threads)Up to
- Up to 4MB of Intel[®] Smart Cache
- Integrated Memory Controller (IMC) 2ch DDR3, up to 1333
- Integrated Graphics or Discrete graphics support (1x16, 2x8)⁴
- Advanced Encryption Standard (AES) acceleration

Socket:

 LGA1156 Socket (drop-in compatible with Intel[®] Core[™] i7-800 processor series and Intel[®] Core[™] i5-700 processor series)

Platform Compatibility:

Intel[®] 5 series Chipset

Source: http://www.legitreviews.com/article/1091/2/

Clarkdale GPU and CPU Dies To Scale

Source: http://hothardware.com/Articles/Intel-Clarkdale-Core-i5-Desktop-Processor-Debuts/

Fermi (GF100) – GTX480

Source: http://www.tomshardware.com/reviews/geforce-gtx-480,2585-10.html

Source: http://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Glasses_800_ed_.png/800px-Glasses_800_edit.png

10000