Larrabee

A Many-Core x86 Architecture for Visual Computing

Seiler, L., Carmean, D., et al. SIGGRAPH’08
Context

Graphics market evolving very fast

- Mostly driven by gaming

Trend

- Real time realistic graphics require more and more computation
- Low power - big concern for mobile (laptops, phones)
- Converging CPU and GPU apps
- Integrate CPU and GPU in a single package and even SoC
- Driven by increase in transistor count and shrink size
- Extract parallelism, almost everyone has a graphics card (desktop or mobile)
- Highly programmable units
- HPC market, scientific workloads, throughput oriented
Objectives and reality

- Intel Larrabee
 - Many x86 cores, wide vector processor units, some fixed functional logic, software renderer → aims for high performance and flexibility
- Designed by Intel’s Hillsboro, Oregon (Nehalem)
- Expected
 - Late 2009 release on 45nm process
 - 2010 shrink to 32nm
- Killed in December ‘09 by Intel (way behind schedule)
 - 1st generation
 - Platform will be used for multi-core hw/sw research and development

Sources
Inside Larrabee

- Hybrid software/hardware GPU
- Software rasterization and interpolation
 - Optimized for particular workload
 - Special purpose equations
 - Parallelizable rasterization and flexible rendering pipeline placement
- Software instruction and thread scheduling (compiler)
 - Dynamic load balancing – e.g. raytracing
- Fixed (hardware) texture unit (with 32K cache)
- Limitations (as of paper prototype)
 - Application sys call porting
 - Application recompilation
Architecture

<table>
<thead>
<tr>
<th></th>
<th>Tight Synchronization</th>
<th>Data Path Divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectors</td>
<td>Good</td>
<td>Bad</td>
</tr>
<tr>
<td>Threads</td>
<td>Bad</td>
<td>Fine</td>
</tr>
</tbody>
</table>

Figure 1: Schematic of the Larrabee many-core architecture: The number of CPU cores and the number and type of co-processors and I/O blocks are implementation-dependent, as are the positions of the CPU and non-CPU blocks on the chip.
Specs

- Simple in-order cores (16+), fully x86 ISA compatible + vector instructions
 - High power efficiency
 - Based on Pentium P54C (intro in ’94 – embedded use)
- High bandwidth ring network (512 bit wide for each direction)
- Shared and coherent cache hierarchy
 - L1 $
 - 32K L1I$ + 32K L1D$, per core
 - L2 $
 - 256K local L2 cache slice, per core
 - Local is faster (obviously)
 - Special instructions for cache manipulation (eviction hints, prefetch, streams)
- Explicit DMA transfers
- Latency hiding
 - 4-way multithreading per core (interleaved)
 - Cell SPE has 1, PPU has 2
- Main Cell core manages and runs OS
 - “The PPE is the main processor of the Cell BE, and is responsible for running the operating system and coordinating the SPEs. “
 - Larrabee identical cores

Source:
Figure 2: Simplified DirectX10 Pipeline: Yellow components are programmable by the user, green are fixed function. Memory access, stream output, and texture filtering stages are omitted.
Vertex Shaders

What is a vertex?
- “A vertex is the corner of the triangle where two edges meet, and thus every triangle is composed of three vertices.” – NVIDIA

Use?
- Special effects!

Example: Vertex Data
- position: \{X, Y, Z, W\}
- color: \{Red, Green, Blue, Alpha\}
- texture1: \{S, T, R, Q\}
- texture2: \{S, T, R, Q\}
- texture-n: \{S, T, R, Q\}
- fog: \{F\}
- specularity: \{P\}

Sources:
Pixel Shaders

- “Graphics function that calculates effects on a per-pixel basis.” - NVIDIA

Use?
- Incredibly realistic material and lighting effects

Sources:
Performance

- Theoretical SP (single precision)
 - 32 cores × 16 single-precision float SIMD/core × 2 FLOP (fused multiply-add) × 1GHz = \textbf{1 TFLOPS} – slow!

- Comparison?
 - AMD ‘08 ATI Radeon HD4800 series – 1TFLOPS
 - ATI Radeon 4870X2 card Aug ‘08 – 2.4 TFLOPS
 - ATI Radeon HD 5970 (2xGPU) Nov ’09 – 4.6 TFLOPS !!!
 - ATI FirePro V8800 April 7 ’10 – 2.6 TFLOPS
 - 1600 Stream Processors, < 225W
 - NVIDIA GTX480 (Fermi) April ’10 – 1.35 TFLOPS
 - 6 months late, expensive, extremely hot (~ 100C/210F), loud and power hungry
 - System load: 480W vs 367W (Radeon 5870)

- Sources:
 - http://techreport.com/articles.x/18682
 - http://zikkir.net/tech/11889
Larrabee Programming

- Transparent memory management
 - All memory on Larrabee is shared by all processors
 - But NVIDIA just launched Fermi with coherency and L1/L2 caches...
- Predication
 - Power-efficient – masks don’t compute results for unused lanes
- Gather/scatter
 - Limited by cache speed
- Pthreads, OpenMP, Intel TBB support
- Compiler with auto-vectorization
 - How good?
- Tight integration with host
 - Proxy Larrabee I/O functions – read/write/open/close…
- Full C++ support
 - Available on CUDA now
- “Profile it once it’s running, find out which bits need love” – Intel, SIMD

Programming Larrabee, GDC 2009
Look to future and questions

- Hybrid CPU/GPU future?
- Simple cores/logic \rightarrow less errors/faults/bugs \rightarrow good yield?
- AMD Fusion project
 - AMD Llano samples in H2’10
 - Target notebook market
 - APU (Application Processor Unit)
 - OO 3GHz quad-core CPU and GPU on single die - 32nm
- Intel Clarkdale 3.46GHz – launch Q1 ‘10
 - Nehalem micro-architecture
 - Two dies on package – 32nm CPU , 45m integrated graphics
- Linear scaling, really?
 - Game engines hard to parallelize
- Feeding cores with enough bandwidth?
 - Memory subsystem very costly and power hungry
 - Bandwidth doesn’t scale linearly across technology nodes
- Crysis game benchmark missing? (released Nov ‘07)
 - Kills all but the very latest GPUs
- Raytracing?
 - Current raytracers 10-20M+rays /s
 - NVIDIA OPTIX Raytracer released Jan ’10, supports Fermi

Sources
Thanks!
Intel® Desktop Processor Codename Clarkdale

Intel® Desktop processors codename Clarkdale

- 32 nm, 2nd Generation Hi-K process CPU
- 45nm, Hi-K Process, Integrated Graphics

Key Features

- 32nm Nehalem Microarchitecture (Westmere)
 - Intel® Turbo Boost Technology
 - Intel® Hyper-Threading Technology (2 Cores, 4 threads)Up to
- Up to 4MB of Intel® Smart Cache
- Integrated Memory Controller (IMC) – 2ch DDR3, up to 1333
- Integrated Graphics or Discrete graphics support (1x16, 2x8)
- Advanced Encryption Standard (AES) acceleration

Socket:

- LGA1156 Socket (drop-in compatible with Intel® Core™ i7-800 processor series and Intel® Core™ i5-700 processor series)

Platform Compatibility:

- Intel® 5 series Chipset

Source: http://www.legitreviews.com/article/1091/2/
Clarkdale GPU and CPU Dies To Scale

Source: http://hothardware.com/Articles/Intel-Clarkdale-Core-i5-Desktop-Processor-Debuts/
Fermi (GF100) – GTX480
Crysis
Benchmark Tool
2560x1600, No AA / 4x AA

- Radeon HD 5970 2GB: No AA 7.13, 4x AA 28.61
- Radeon HD 4870 X2 2GB: No AA 12.77, 4x AA 23.37
- Radeon HD 5870 1GB: No AA 15.84, 4x AA 22.72
- GeForce GTX 295 1.79GB: No AA 15.50, 4x AA 22.53
- GeForce GTX 480 1.53GB: No AA 18.38, 4x AA 21.76
- Radeon HD 5850 1GB: No AA 13.62, 4x AA 18.90
- GeForce GTX 470 1.28GB: No AA 14.31, 4x AA 17.03
- GeForce GTX 285 1GB: No AA 11.67, 4x AA 15.18

Source: http://www.tomshardware.com/reviews/geforce-gtx-480,2585-10.html