U

Architecture and Design
of the AlphaServer GS320

Kouroush Gha dhu Sharma, Simon

hen Van Doren

Drillings



—

/

Motivation and Goals

Achieve a low overhead directory protocol optimized
for medium scale systems

Address correctness issues related to rare protocol
races without slowing common transaction flow

Nacks seriously degrade performance and set up
situations where livelock/starvation can occur.

e Even using acks causes unnecessarily high numbers of
messages in some cases, as well.



p

/

Implementation and Design

Simple Interconnects, such as a crossbar switch
e Infeasible for large networks, but fine for this scale
e Can exploit the ordering properties of the switch!

- Quad-Processor Nodes, using Alpha 21264, up to 32 GB
memory per node.

» Can connect up to 8 nodes for a 32 Processor System using a
global switch.

 Directory and Transactions-in-Transit maintained at each node
» Global Switch buffers packets and sends them out
independently allowing for totally-ordered
multicast, when needed



p

/

Coherence Model

Invalidation Based. Four Message types:
e Read
e Read Exclusive
e Exclusive
e Exclusive-without-data
. R]g(}uesting Processor doesn’t need to wait for acks, because of
abi

ity to enforce total ordering.
- Allow for dirty-sharing

- 3 Virtual lanes

Qo for carrying requests from requester to home directory (totally
ordered!- > invalidates are “delivered” as soon as they are scheduled on
the switch)

« (1 for carrying replies from home directory
» Q2 for carrying replies to processor from third-party



No Naks

No need to deal with liveness and starvation as a
consequence of naks.

Guarantee the owner can always service a request
Fewer Messages

Figure 3 - Really neat case where this has an advantage over
Naking methods.

Deal with Races by:

e Late request race: Hold onto valid copy until home directory
acknowledges a write-back

» Early request race: Delay request on Q1, until data arrives on
Q2 (total ordering on Q1 prevents deadlocks)



/ R

Consistency

Early Acknowledgement

e Define commit event for each write, commit only needs
to complete before another write occurs.

- Separate data and commit components in replies to data
requests.
 Data is time critical and arrives at requester as fast as possible
« Commit stays ordered on Q1 line
« Can’t go past memory barrier until both are received

» For Read and read exclusive, can do Early Commit in certain
circumstances. -> Go past barrier if commits are recieved



, PO oe o MALEE P oo s
e

/

Discussion/Evaluation

Not terribly impressive latency improvements when
Processors Idle, but better when active.

e No Snoopy bus

- Somewhat mixed results for various
benchmarks against different competitors.

— Unclear what differing latencies really mean to real-world
performance

— Unclear how valuable benchmarks are, as well as
price/performance ratio.

» In general, unconvincing, in my opinion.



o

Thoughts and Questions

Some very interesting ideas.
 Totally ordered requests, no ordering in data replies.

e No Naking

e Reduced number of messages and interesting solutions to
races, etc.

- However,

« Is this better than competing designs?
« How well are these ideas going to scale?
« How does additional hardware increase cost?

« How does this system change with a switch to multiple cores on chip?
Can it still be useful? Could it, in fact, be an even better model, since
nodes could be a single chip and much fast?

« With 32 cores, is this even a big win over previous generations?



