
Kouroush Gharachorloo, Madhu Sharma, Simon
Steely, and Stephen Van Doren

Presented by: Zachary Drillings

Motivation and Goals
 Achieve a low overhead directory protocol optimized

for medium scale systems

 Address correctness issues related to rare protocol
races without slowing common transaction flow

 Nacks seriously degrade performance and set up
situations where livelock/starvation can occur.

 Even using acks causes unnecessarily high numbers of
messages in some cases, as well.

Implementation and Design
 Simple Interconnects, such as a crossbar switch
 Infeasible for large networks, but fine for this scale

 Can exploit the ordering properties of the switch!

• Quad-Processor Nodes, using Alpha 21264, up to 32 GB
memory per node.
 Can connect up to 8 nodes for a 32 Processor System using a

global switch.

 Directory and Transactions-in-Transit maintained at each node

 Global Switch buffers packets and sends them out
independently allowing for totally-ordered
multicast, when needed

Coherence Model
 Invalidation Based. Four Message types:

 Read
 Read Exclusive
 Exclusive
 Exclusive-without-data

• Requesting Processor doesn’t need to wait for acks, because of
ability to enforce total ordering.

• Allow for dirty-sharing
• 3 Virtual lanes

 Q0 for carrying requests from requester to home directory (totally
ordered!- > invalidates are “delivered” as soon as they are scheduled on
the switch)

 Q1 for carrying replies from home directory
 Q2 for carrying replies to processor from third-party

No Naks
 No need to deal with liveness and starvation as a

consequence of naks.

 Guarantee the owner can always service a request

 Fewer Messages

 Figure 3 - Really neat case where this has an advantage over
Naking methods.

 Deal with Races by:
 Late request race: Hold onto valid copy until home directory

acknowledges a write-back

 Early request race: Delay request on Q1, until data arrives on
Q2 (total ordering on Q1 prevents deadlocks)

Consistency
 Early Acknowledgement

 Define commit event for each write, commit only needs
to complete before another write occurs.

• Separate data and commit components in replies to data
requests.

 Data is time critical and arrives at requester as fast as possible

 Commit stays ordered on Q1 line

 Can’t go past memory barrier until both are received

 For Read and read exclusive, can do Early Commit in certain
circumstances. -> Go past barrier if commits are recieved

Discussion/Evaluation
 Not terribly impressive latency improvements when

Processors Idle, but better when active.

 No Snoopy bus

• Somewhat mixed results for various
benchmarks against different competitors.
— Unclear what differing latencies really mean to real-world

performance

— Unclear how valuable benchmarks are, as well as
price/performance ratio.

 In general, unconvincing, in my opinion.

Thoughts and Questions
 Some very interesting ideas.

 Totally ordered requests, no ordering in data replies.
 No Naking
 Reduced number of messages and interesting solutions to

races, etc.

• However,
 Is this better than competing designs?
 How well are these ideas going to scale?
 How does additional hardware increase cost?
 How does this system change with a switch to multiple cores on chip?

Can it still be useful? Could it, in fact, be an even better model, since
nodes could be a single chip and much fast?

 With 32 cores, is this even a big win over previous generations?

