
Dynamic Verification of 
Sequential Consistency

Paper by Albert Meixner and Daniel J. 
Sorin

Presented by: Tom Marmaduke



Design Goals

• Dynamic verification of the consistency model 
(focused on Sequential Consistency)

• Detect errors that conflict with SC and trigger 
system recovery

• Errors detected:
– Memory corruption in caches and memory

– Cache and memory controllers
• Faults cause incorrect state

– Interconnection Network
• Dropped and corrupted messages



DVSC-Direct

• Send Inform messages for loads and stores

– Indexed by time <major, minor, ProcID>

• Verification Window Buffer allows processors 
to see inform messages in program order

• Verification Memory stores blocks, updates 
based on inform messages

– On Load-Inform, check if matches Verification 
Memory, fault if it doesn’t



DVSC-Indirect Sub-Invariants

• Fact: Load gets last store, or the data that was 
sent at beginning of epoch

• Lemma 1: Exclusive epochs are only epochs at 
the time

• Lemma 2: Processors perform loads/stores 
during proper epoch

• Lemma 3: Correct values are passed between 
processors



DVSC-Indirect

• Use DIVA to check Fact 1 and Lemmas 2 and 3

• Cache Epoch Table
– Store epoch type, start time (16-bit), hashed starting 

block value, DataReadyBit

– Error Correcting Code in cache to prevent corruption

– Checks state on load/store to verify Lemma 2

• Send Epoch-Inform message at end of epoch to 
block’s home memory
– Data address, time and block value of epoch start, 

time and block value of epoch end



DVSC-Indirect

• Memory Epoch Table

– Stores Epoch-Inform messages in start time order

• Stores end time of last Shared epoch, end time of last 
Exclusive epoch, data value at end of last Exclusive 
epoch

– Processes Epoch-Inform messages

• Check epoch times for overlap, update MET times

• Check start data in Epoch-Inform message matches 
MET’s last value, update MET if necessary



Evaluation

• Error Coverage:

– No false positives when epochs were processed 
out of order

• Performance:

– DVSC normalized runtime always under 1.2

• Bandwidth:

– A lot more network traffic, but messages are small 
so normalized bandwidth increase is not too high



Evaluation continued

• Showed how different logical time lengths 
affected errors, why not performance?

• What happens with more nodes? Less nodes? 
Would it work better/worse on different 
network schemes?



Questions

• Is this extra level of fault protection worth the 
extra bandwidth and hardware? 

• Would it scale well for different numbers of 
nodes? Could the bandwidth overhead cause 
problems?


