Dynamic Verification of
Sequential Consistency

Paper by Albert Meixner and Daniel J.
Sorin

Presented by: Tom Marmaduke



Design Goals

* Dynamic verification of the consistency model
(focused on Sequential Consistency)

* Detect errors that conflict with SC and trigger
system recovery

* Errors detected:
— Memory corruption in caches and memory

— Cache and memory controllers
e Faults cause incorrect state

— Interconnection Network
* Dropped and corrupted messages



DVSC-Direct

* Send Inform messages for loads and stores
— Indexed by time <major, minor, ProcID>

e Verification Window Buffer allows processors
to see inform messages in program order

* Verification Memory stores blocks, updates
based on inform messages

— On Load-Inform, check if matches Verification
Memory, fault if it doesn’t



DVSC-Indirect Sub-Invariants

Fact: Load gets last store, or the data that was
sent at beginning of epoch

Lemma 1: Exclusive epochs are only epochs at
the time

Lemma 2: Processors perform loads/stores
during proper epoch

Lemma 3: Correct values are passed between
processors



DVSC-Indirect

e Use DIVA to check Fact 1 and Lemmas 2 and 3

* Cache Epoch Table

— Store epoch type, start time (16-bit), hashed starting
block value, DataReadyBit

— Error Correcting Code in cache to prevent corruption
— Checks state on load/store to verify Lemma 2

 Send Epoch-Inform message at end of epoch to
block’s home memory

— Data address, time and block value of epoch start,
time and block value of epoch end



DVSC-Indirect

e Memory Epoch Table

— Stores Epoch-Inform messages in start time order

 Stores end time of last Shared epoch, end time of last
Exclusive epoch, data value at end of last Exclusive
epoch
— Processes Epoch-Inform messages
* Check epoch times for overlap, update MET times

* Check start data in Epoch-Inform message matches
MET’s last value, update MET if necessary



Evaluation

* Error Coverage:

— No false positives when epochs were processed
out of order

e Performance:

— DVSC normalized runtime always under 1.2
* Bandwidth:

— A lot more network traffic, but messages are small
so normalized bandwidth increase is not too high



Evaluation continued

 Showed how different logical time lengths
affected errors, why not performance?

 What happens with more nodes? Less nodes?
Would it work better/worse on different
network schemes?



Questions

* |s this extra level of fault protection worth the
extra bandwidth and hardware?

 Would it scale well for different numbers of
nodes? Could the bandwidth overhead cause
problems?



