Outline

• Metrics

• Methodologies
 – Modeling
 – Simulation

• Workloads
Performance Metrics

• How do we tell if our design is good?

• Performance metrics
 – Clock speed (gigahertz)? No! Why not?
 – Instructions per cycle? No! Why not? (tougher question)
 – Database transactions per second?

• What’s important? Depends on workload …
 – Latency → interactive computing
 – Throughput → batch jobs/queries
 – Availability → enterprise applications
 – Power → mobile computing … and everything else now, too
 – Cost-efficiency → everything but perhaps supercomputing
Metrics and Units

- **Latency** (an aspect of performance)
 - Response time
- **Throughput** (another aspect of performance)
 - Transactions per cycle (e.g., TPM-C or TPM-H)
- **Availability**
 - How many “nines” (e.g., 5 nines = 99.999% available)
- **Power**: watts
- **Energy**: joules
- **Hybrid metrics capture more than one aspect**
 - Cost-efficiency: dollars-seconds
 - Power-delay (energy-delay): watts-seconds (joules-seconds)
 - Performability: combines performance with availability
Secondary Metrics

- **Metrics that we can use for insight, debugging, etc.**
 - Quantify specific aspects of system, not holistic behavior

- **Examples**
 - Instructions per cycle (IPC)
 - Cache hit rates
 - Average memory request latency
 - Average network link utilization
 - Fraction of directory requests that require 3 hops
 - Etc.

- **You can use these metrics to explain results**
 - Otherwise, results are just inscrutable, unjustified numbers
Comparing to Prior Work

• How does your idea compare to prior work?
 – This is how we show that our idea is worthy of publication
 – E.g., 50% better throughput on TPC-C, but with 20% more power

• Why is comparison difficult?
 – Impossible to exactly reproduce experimental setup

• Example differences in experimental setup
 – Different system model
 » Different ISA, microarchitecture, network, etc.
 – Different workloads (or same workloads compiled differently)
 » Different OS
 » Even for same exact application, can have different jobs running in the background (e.g., kernel daemons)
 – Different simulator (or different configuration of simulator)
 » Assumptions about latencies, bandwidths, etc.
Fair Comparisons

• Ideally, we’d make perfectly fair comparisons
 – Compare “apples and apples”

• If impossible, then give benefit of doubt to prior work
 – Assumptions about prior work should be optimistic

• Assumptions about our work should be pessimistic
 – Don’t assume that our 4MB cache can be accessed in 1 cycle
 – Find the worst-case scenario for our system
 – Assume that future trends will be less favorable than is likely

• Show that, even in our worst case, we still do well
 – Otherwise, readers will be less convinced
Cost Effective Computing (Wood & Hill)

• DISCUSSION
Outline

• Metrics

• Evaluation Methodologies
 – Modeling
 – Simulation

• Workloads
Ways to Evaluate New Architectures

Tradeoff between three desired features

Ease of development & Flexibility

Simulating Modeling Building

Precision Runtime speed
Building

• Construct a hardware prototype
 – ASIC vs. FPGA

• Advantages
 + Way cool to show off hardware to friends
 + Runs quickly

• Disadvantages
 – Takes long time (grad student time!) to build
 – Expensive
 – Not flexible (esp. ASIC)

ASICs generally too labor intensive for research studies, but FPGAs are viable options in many cases
Modeling

• Mathematically model the system
 – Use probabilities and/or queuing models (see ECE 255/257)

• Advantages
 + Very flexible
 + Very quick to develop
 + Runs quickly

• Disadvantages
 – Cannot capture effects of system details
 – Architects are skeptical of models

Generally OK for back of the envelope estimates
Simulating

• Write a program that mimics system behavior

• Advantages
 + Very flexible
 + Relatively quick to develop

• Disadvantages
 – Runs slowly (e.g., 30,000 times slower than hardware)

Method of choice for most architectural research
Simulation Challenges

Tough problems associated with each arrow!
Applications to Simulate

• We care how system does on important applications

• We’ll talk about this in a few slides …
Describing Simulated System

- How detailed must our simulator be?
- Model every transistor in the processor?
 - Would take too long
- Abstract away details of processor organization?
 - Could miss important effects of processor features
 - Could achieve wrong conclusion

- Need balance
 - Model in detail only where necessary
 - E.g., model memory system in detail, but abstract disks
• Queuing model can capture behavior of system
• Optional reading from ISCA 1998: "Analytic Evaluation of Shared-Memory Parallel Systems with ILP Processors"
 – Models processor cores as request generators
 – Models cache coherent memory system (directory protocol) as queuing system where requests (customers) access
 – Outputs average utilizations, throughputs, waiting times, etc.
Some Processor Simulators

<table>
<thead>
<tr>
<th>Not full-system</th>
<th>Full-system</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleScalar</td>
<td>Simics (Virtutech)</td>
</tr>
<tr>
<td></td>
<td>Simics+GEMS (Wisconsin)</td>
</tr>
<tr>
<td></td>
<td>Simics + Flexus (CMU)</td>
</tr>
<tr>
<td></td>
<td>M5 (Michigan)</td>
</tr>
<tr>
<td></td>
<td>PTLsim (Suny-Binghamton)</td>
</tr>
<tr>
<td>Liberty (Princeton)</td>
<td>ASIM (Intel)</td>
</tr>
<tr>
<td>SESC (UCSC/Illinois)</td>
<td>SimOS (Stanford)</td>
</tr>
<tr>
<td>RSIM (Rice)</td>
<td></td>
</tr>
<tr>
<td>Wisconsin Wind Tunnel</td>
<td></td>
</tr>
</tbody>
</table>

(C) 2010 Daniel J. Sorin

ECE 259 / CPS 221
Simics

- Simics is a full-system commercial simulator

- PRESENTATION
RAMP

- PRESENTATION
Outline

• Metrics

• Methodologies
 – Modeling
 – Simulation

• Workloads
Workloads

• We care how system does on important applications

• But who defines “important”? (I do!)

• Types of applications
 – Scientific (genomics, weather simulation, protein folding)
 – Commercial (database, web serving, application serving)
 – Desktop (office productivity software, multimedia)
 – Portable (voice recognition)
 – ???
DEC/Compaq/Intel (?) Workload Analysis

- Commercial workloads are different from scientific
- PRESENTATION
“Simulating $2M Server on $2K PC”

- Commercial workloads are different from scientific
- Simulating them requires extra work

- PRESENTATION