ECE 259 / CPS 221 Advanced Computer Architecture II (Parallel Computer Architecture)

Evaluation – Metrics, Simulation, and Workloads

Copyright 2010 Daniel J. Sorin Duke University

Outline • Metrics • Methodologies - Modeling – Simulation • Workloads

Performance Metrics

• How do we tell if our design is good?

• Performance metrics

- Clock speed (gigahertz)? No! Why not?
- Instructions per cycle? No! Why not? (tougher question)
- Database transactions per second?

• What's important? Depends on workload ...

- Latency \rightarrow interactive computing
- Throughput \rightarrow batch jobs/queries
- Availability \rightarrow enterprise applications
- Power \rightarrow mobile computing ... and everything else now, too
- Cost-efficiency \rightarrow everything but perhaps supercomputing

Metrics and Units

- Latency (an aspect of performance)
 - Response time
- Throughput (another aspect of performance)
 - Transactions per cycle (e.g., TPM-C or TPM-H)
- Availability
 - How many "nines" (e.g., 5 nines = 99.999% available)
- Power: watts
- Energy: joules
- Hybrid metrics capture more than one aspect
 - Cost-efficiency: dollars-seconds
 - Power-delay (energy-delay): watts-seconds (joules-seconds)
 - Performability: combines performance with availability

Secondary Metrics

- Metrics that we can use for insight, debugging, etc.
 - Quantify specific aspects of system, not holistic behavior

• Examples

- Instructions per cycle (IPC)
- Cache hit rates
- Average memory request latency
- Average network link utilization
- Fraction of directory requests that require 3 hops
- Etc.
- You can use these metrics to explain results
 - Otherwise, results are just inscrutable, unjustified numbers

Comparing to Prior Work

- How does your idea compare to prior work?
 - This is how we show that our idea is worthy of publication
 - E.g., 50% better throughput on TPC-C, but with 20% more power
- Why is comparison difficult?
 - Impossible to exactly reproduce experimental setup

• Example differences in experimental setup

- Different system model
 - » Different ISA, microarchitecture, network, etc.
- Different workloads (or same workloads compiled differently)
 - » Different OS
 - » Even for same exact application, can have different jobs running in the background (e.g., kernel daemons)
- Different simulator (or different configuration of simulator)
 - » Assumptions about latencies, bandwidths, etc.

Fair Comparisons

- Ideally, we'd make perfectly fair comparisons
 - Compare "apples and apples"
- If impossible, then give benefit of doubt to prior work
 - Assumptions about prior work should be optimistic

Assumptions about our work should be pessimistic

- Don't assume that our 4MB cache can be accessed in 1 cycle
- Find the worst-case scenario for our system
- Assume that future trends will be less favorable than is likely
- Show that, even in our worst case, we still do well
 - Otherwise, readers will be less convinced

Cost Effective Computing (Wood & Hill)

DISCUSSION

Outline • Metrics • Evaluation Methodologies - Modeling - Simulation • Workloads

(C) 2010 Daniel J. Sorin

Building

- Construct a hardware prototype
 - ASIC vs. FPGA
- Advantages
 - + Way cool to show off hardware to friends
 - + Runs quickly
- Disadvantages
 - Takes long time (grad student time!) to build
 - Expensive
 - Not flexible (esp. ASIC)

ASICs generally too labor intensive for research studies, but FPGAs are viable options in many cases

Modeling

- Mathematically model the system
 - Use probabilities and/or queuing models (see ECE 255/257)

Advantages

- + Very flexible
- + Very quick to develop
- + Runs quickly

• Disadvantages

- Cannot capture effects of system details
- Architects are skeptical of models

Generally OK for back of the envelope estimates

Simulating

• Write a program that mimics system behavior

• Advantages

- + Very flexible
- + Relatively quick to develop

Disadvantages

- Runs slowly (e.g., 30,000 times slower than hardware)

Method of choice for most architectural research

Applications to Simulate

- We care how system does on important applications
- We'll talk about this in a few slides ...

Describing Simulated System

- How detailed must our simulator be?
- Model every transistor in the processor?
 - Would take too long
- Abstract away details of processor organization?
 - Could miss important effects of processor features
 - Could achieve wrong conclusion
- Need balance
 - Model in detail only where necessary
 - E.g., model memory system in detail, but abstract disks

Analytic Model of Shared Memory System

- Queuing model can capture behavior of system
- Optional reading from ISCA 1998: "Analytic Evaluation of Shared-Memory Parallel Systems with ILP Processors"
 - Models processor cores as request generators
 - Models cache coherent memory system (directory protocol) as queuing system where requests (customers) access
 - Outputs average utilizations, throughputs, waiting times, etc.

(C) 2010 Daniel J. Sorin

Some Processor Simulators

	Not full-system	Full-system
uniproc	SimpleScalar	Simics (Virtutech) Simics+GEMS (Wisconsin) Simics + Flexus (CMU)
MP	Liberty (Princeton) SESC (UCSC/Illinois) RSIM (Rice) Wisconsin Wind Tunnel	M5 (Michigan) PTLsim (Suny-Binghamton) ASIM (Intel) SimOS (Stanford)

Outline

• Metrics

• Methodologies

- Modeling
- Simulation

• Workloads

Workloads

- We care how system does on important applications
- But who defines "important"? (I do!)
- Types of applications
 - Scientific (genomics, weather simulation, protein folding)
 - Commercial (database, web serving, application serving)
 - Desktop (office productivity software, multimedia)
 - Portable (voice recognition)
 - ???

DEC/Compaq/Intel (?) Workload Analysis

- Commercial workloads are different from scientific
- PRESENTATION

"Simulating \$2M Server on \$2K PC"

- Commercial workloads are different from scientific
- Simulating them requires extra work
- PRESENTATION