
Outline

• Directory-Based Cache Coherence

• Stanford DASH Case Study

• SGI Origin Case Study

15
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Directory Systems

DASH

• First system with directory-based cache coherence

• Academic design (Stanford) that led to SGI Origin

• Also had follow-on at Stanford called FLASH

16
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• DISCUSS DASH PAPER

Outline

• Directory-Based Cache Coherence

• Stanford DASH Case Study

• SGI Origin Case Study
– Overview

17
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Overview
– Directory & Protocol States
– Detailed Coherence Protocol Examples

• Advanced Directory Systems

Origin2000 System Overview

L2 cache

P

(1-4 MB)
L2 cache

P

(1-4 MB)

Hub

Main
Memory
(1-4 GB)

Direc-
tory

L2 cache

P

(1-4 MB)
L2 cache

P

(1-4 MB)

Hub

Main
Memory
(1-4 GB)

Direc-
tory

SysAD b usSysAD b us

18
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Single 16”-by-11” PCB (except for Xbow I/O)
• Directory state in same or separate DRAMs, accessed in parallel
• Up to 512 nodes (1024 processors)
• With 195MHz R10K processor, peak 390MFLOPS/780 MIPS
• Peak SysAD bus b/w is 780 MB/s, same for Hub to Mem b/w
• Hub to router chip and to Xbow is 1.56 GB/s (both a re off-board)

Interconnection Netw ork

Origin Node Board

R10K

SC SC

SC SC

Tag

R10K

SC SC

SC SC

Tag

Extended
Main Memory

Main Memory

BC BC BC BC BCBCHub

and 16-bit Directory

and 16-bit Directory

Directory

19
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Hub is 500K-gate in 0.5 um CMOS
– Has outstanding transaction buffers for each proces sor (4 each)
– Has two block transfer engines (memory copy and fil l)
– Interfaces to and connects processor, memory, netwo rk and I/O
– Provides support for synch primitives, and for page migration

• Two processors within node not snoopy-coherent (cos t)

SC SC

Pwr/gnd Pwr/gnd Pwr/gndNetwork I/O

Connections to Backplane

Origin Network

N

N

N

N

N

N

N

N

N

N

N

N

(b) 4-node (c) 8-node (d) 16-node
(d) 32-node

meta-router

20
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Each router has six pairs of 1.56MB/s unidirectiona l links
– Two to nodes, up to four to other routers
– Latency: 41ns pin to pin across a router

• Flexible cables up to 3 ft long
• Four “virtual channels”: request, reply, two for pr iority or I/O

(e) 64-node

Origin Directory Structure

• Flat, memory-based: all directory information at ho me

• Three directory formats:
– (1) If exclusive in a cache, entry is pointer to that specific processor (not

node)
– (2) If shared, bit vector: each bit points to a node (Hub), not processor
– Invalidation sent to a Hub is broadcast to both pro cessors in the node

21
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Invalidation sent to a Hub is broadcast to both pro cessors in the node
– Two sizes, depending on scale

» 16-bit format (32 procs), kept in main memory DRAM
» 64-bit format (128 procs), extra bits kept in exten sion memory

– (3) For larger machines, coarse vector: each bit corresponds to p/64
nodes

• Ignore coarse vector in discussion for simplicity

Origin Cache and Directory States

• Cache states: MESI (like Illinois snooping protocol)
• Seven directory states

– Unowned: no cache has a copy, memory copy is valid
– Shared: one or more caches has a shared copy, memory is v alid
– Exclusive: one cache (pointed to) has block in modified or e xclusive

state
– Three pending or busy states, one for each of the above:

22
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Three pending or busy states, one for each of the above:
» Indicates directory has received a previous request for the

block
» Couldn’t satisfy it itself, sent it to another node and is waiting
» Cannot take another request for the block yet

– Poisoned state, used for efficient page migration (later)

• Let’s see how it handles read and “write” requests
– No point-to-point order assumed in network ���� lots of races!

Races in the Protocol

• Without point-to-point ordering in the network,
messages can bypass each other and arrive at
unexpected times

• Example (all messages involve block B)
– Initially: all caches in Invalid, directory in unow ned
– P1 sends GETX to Dir

23
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– P1 sends GETX to Dir
– Dir receives P1’s GETX, responds with data (msg get s delayed)
– P2 sends GETX to Dir
– Dir forwards P2’s GETX to P1
– P1 receives Forwarded-GETX … while in state Invalid!

(1) Handling a Read Miss

• Hub looks at address
– If remote, sends request to home directory
– If local, looks up directory entry and memory itsel f

• Directory may indicate one of many states

• If Shared or Unowned State:
– If shared, directory sets presence bit
– If unowned, goes to exclusive state and uses pointe r format

24
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– If unowned, goes to exclusive state and uses pointe r format
– Replies with block to requestor

» Strict request-reply (no network transactions if ho me is local)
– Also looks up memory speculatively to get data

» If directory is shared or unowned, data already obt ained by Hub
» If not one of these, speculative memory access is w asted

• If Busy state: not ready to handle
– NACK, so as not to hold up buffer space for long

Read Miss to Block in Exclusive State

• Most interesting case is read miss to Exclusive bloc k
– If owner is not home, need to transfer the data fro m owner to both

requestor and home (why to home?)
– Uses reply forwarding for lowest latency and traffi c

» Not strict request-reply (think about deadlock issu es …)
– Note: home doesn’t know if remote node is in E (uno wned!) or M

» Must speculatively send response to requestor (if i n E)

25
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

L

H

R

req

forwarded req

spec
response

response

ack

Actions at Home & Owner

• At the home:
– Set directory to Busy-Exclusive and NACK subsequent requests

» General philosophy of protocol (unlike GS320 or Pir anha)
» Can’t set to shared or exclusive
» Alternative is to buffer at home until done, but in put buffer problem

– Set and unset appropriate presence bits
– Assume block is clean-exclusive and send speculativ e reply

26
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• At the owner:
– If block is dirty

» Send data reply to requestor and send “sharing write back” (aka
“copyback”) with data to home

– If block is clean exclusive
» Similar, but don’t send data (msg to home is called “downgrade”)

• Home changes state to shared when it receives msg

(2) Handling a Write Miss

• Request to home could be upgrade or read-exclusive

• If state is busy: NACK
• If state is unowned:

– If RdEx, set bit, change state to dirty, reply with data
– If Upgrade, means block has been replaced from cach e and

directory already notified, so upgrade is inappropr iate request

27
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

directory already notified, so upgrade is inappropr iate request
» NACKed (will be retried as RdEx)

• If state is shared or exclusive:
– Invalidations must be sent
– Use reply forwarding; i.e. invalidation acks sent t o requestor, not

home

Write to Block in Shared State

• At the home:
– Set directory state to exclusive and set presence b it for requestor

» Ensures that subsequent requests will be forwarded to requestor
– If RdEx, send “excl. reply with invals pending” to re questor (w/data)

» How many sharers to expect invalidations from
– If Upgrade, similar “upgrade ack with invals pending ” reply, no data
– Send invals to sharers, which will ack requestor

• At requestor, wait for all acks to come back before

28
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• At requestor, wait for all acks to come back before
“closing” the operation

– Subsequent request for block to home is forwarded a s intervention to
requestor

– For proper serialization, requestor does not handle it until all acks
received for its outstanding request

Write to Block in Exclusive State

• If upgrade, not valid so NACKed
– Another write has beaten this one to the home, so r equestor’s data not

valid

• If RdEx:
– Like read, set to busy state, set presence bit, sen d speculative reply
– Send invalidation to owner with identity of request or

• At owner:

29
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– If block is dirty in cache
» Send “ownership xfer” revision msg to home (no data)
» Send response with data to requestor (overrides spe culative reply)

– If block in clean exclusive state
» Send “ownership xfer” revision msg to home (no data)
» Send ack to requestor (no data; got that from specu lative reply)

(3) Handling Writeback Requests

• Directory state cannot be shared or unowned
– Requestor (owner) has block dirty
– If another request had come in to set state to shar ed, would have

been forwarded to owner and state would be busy

• State is exclusive
– Directory state set to unowned, and ack returned

• State is busy: interesting race condition
– Busy because intervention due to request from anoth er node (Y)

30
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Busy because intervention due to request from anoth er node (Y)
has been forwarded to the node X that is doing the writeback

» Intervention and writeback have crossed each other
– Y’s operation is already in flight and has had its effect on directory
– Can’t drop writeback (only valid copy)
– Can’t NACK writeback and retry after Y’s ref comple tes

» Y’s cache will have valid copy while a different di rty copy is
written back

Solution to Writeback Race

• Combine the two operations
• When writeback reaches directory, it changes the

state
– To shared if it was busy-shared (i.e., Y requested a read copy)
– To exclusive if it was busy-exclusive

• Home forwards the writeback data to the requestor Y
– Sends writeback ack to X

31
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Sends writeback ack to X

• When X receives the intervention, it ignores it
– Knows to do this since it has an outstanding writeb ack for the line

• Y’s operation completes when it gets the reply
• X’s writeback completes when it gets the writeback

ack

(4) Replacement of Shared Block

• Could send a replacement hint to the directory
– To remove the node from the sharing list

• Can eliminate an invalidation the next time block i s
written

• But does not reduce traffic
– Have to send replacement hint
– Incurs the traffic at a different time

32
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Incurs the traffic at a different time

• Origin protocol does not use replacement hints
• Total transaction types:

– Coherent memory: 9 request transaction types, 6 inv al/intervention,
39 reply

– Noncoherent (I/O, synch, special ops): 19 request, 14 reply (no
inval/intervention)

Outline

• Directory-Based Cache Coherence

• Stanford DASH Case Study

• SGI Origin 2000 Case Study

33
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Directory Systems
– AlphaServer GS320
– Compaq Piranha

AlphaServer GS320

• PRESENTATION

34
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Compaq Piranha

• One of the first multicores
• Prototype from Compaq

– Simple cores
– Directory protocol
– Goal? Throughput!

35
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Outline

• Directory-Based Cache Coherence

• Stanford DASH Case Study

• SGI Origin 2000 Case Study

36
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Directory Systems

