
Old Example: SGI Challenge Overview

(a) A four-processor board

V
M

E
-6

4

S
C

S
I-

2

G
ra

ph
ic

s

H
P

P
I

I/O subsystem

Interleaved
memory:

16 GB maximum

Powerpath-2 bus (256 data,  40 address, 47.6 MHz)

R4400 CPUs
and caches

(b) Machine organization

58
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• 36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or 18 MIPS 
R8000 (peak 5.4 GFLOPS, 2 per board)

• 8-way interleaved memory (up to 16 GB)

• 1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329 signals

• 128-Byte lines (1 + 4 cycles)

• Split-transaction with up to 8 outstanding reads
– All transactions take five cycles

• Miss latency nearly 1 us (mostly on CPU board, not bus…)



Processor and Memory Systems
L2 $

CC-chip

D-chip
slice 1

D-chip
slice 2

D-chip
slice 3

D-chip
slice 4

A-chip

MIPS
R4400

MIPS
R4400

MIPS
R4400

MIPS
R4400

L2 $L2 $L2 $

CC-chip CC-chipCC-chip

D
u

pl
ic

a
te

ta
g

s

D
u

pl
ic

a
te

ta
g

s

D
u

pl
ic

a
te

ta
g

s

D
u

pl
ic

a
te

ta
g

s

59
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• 4 MIPS R4400 processors per board share A / D chips
• A chip has address bus interface, request table, co ntrol logic
• CC chip per processor has duplicate set of tags
• Processor requests go from CC chip to A chip to bus
• 4 bit-sliced D chips interface CC chip to bus

Powerpath-2 bus



SGI Powerpath-2 Bus

• Non-multiplexed (i.e., separate A and D), 256-data/ 40-
address, 47.6 MHz, 8 outstanding requests

• Wide ���� more interface chips so higher latency, but more 
bandwidth at slower clock

• Large block size also calls for wide bus
• Uses Illinois MESI protocol (cache -to-cache sharing)

60
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Uses Illinois MESI protocol (cache -to-cache sharing)

1. Arbitration

2. Resolution

3. Address

4. Decode5. Acknowledge

No
requestors

At least one
requestor



Bus Design and Request-Response Matching

• Essentially two separate buses, arbitrated 
independently

– “Request” bus for command and address
– “Response” bus for data

• Out-of-order responses imply need for matching 
request with corresponding response

61
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

request with corresponding response
– Request gets 3-bit tag when wins arbitration (8 out standing max)
– Response includes data as well as corresponding req uest tag
– Tags allow response to not use address bus, leaving  it free

• Separate bus lines for arbitration and for snoop 
results



Bus Design (continued)

• Each of request and response phase is 5 bus cycles
– Response: 4 cycles for data (128 bytes, 256-bit bus ), 1 turnaround
– Request phase: arbitration, resolution, address, de code, ack
– Request-response transaction takes 3 or more of the se

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr Addr Addr Addr Addr AddrGrant
ackack

Time

Address
bus

62
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Cache tags looked up in decode; extend ack cycle if not possible
• Determine who will respond, if any

• Actual response comes later, with re-arbitration

Write-backs have request phase only: arbitrate both data+addr buses

req

Data
req

Tag

D0 D1 D2 D3

req

Data
req

Tag

Grant

D0

check check

ackackbus

Data
arbitration

Data
bus

Read operation 1

Read operation 2



Bus Design (continued)

• Flow-control through negative acknowledgement 
(NACK)

• No conflicting requests for same block allowed on b us
– 8 outstanding requests total, makes conflict detect ion tractable

– Eight-entry “request table” in each cache controller

– New request on bus added to all at same index, dete rmined by tag

63
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Entry holds address, request type, state in that ca che (if determined 
already), ...

– All entries checked on bus or processor accesses fo r match, so fully 
associative

– Entry freed when response appears, so tag can be re assigned by bus



Bus Interface with Request Table

Data to/from $

Request
buffer

Request table
Ta

g
7

A
dd

re
ss

Request +

M
is

ce
lla

ne
ou

s

response
queue

Snoop state
from $

Issue +
merge
check

0

O
ri

gi
na

to
r

M
y 

re
sp

on
se

in
fo

rm
at

io
n

R
es

po
ns

e
qu

eu
e

64
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Addr + cmd bus

Data + tag bus

state

W
rit

e 
b

a
ck

s

R
es

p
on

se
s



Memory Access Latency

• 250ns access time from address on bus to data on 
bus

• But overall latency seen by processor is 1000ns!
– 300 ns for request to get from processor to bus

» Down through cache hierarchy, CC chip and A chip
– 400ns later, data gets to D chips

65
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– 400ns later, data gets to D chips
» 3 bus cycles to address phase of request transactio n, 12 to 

access main memory, 5 to deliver data across bus to  D 
chips

– 300ns more for data to get to processor chip
» Up through D chips, CC chip, and 64-bit wide interf ace to 

processor chip, load data into primary cache, resta rt 
pipeline



Challenge I/O Subsystem

• Multiple I/O cards on sys bus, each w/320MB/s HIO b us

HIO bus (320 MB/s)

System address bus

System data bus (1.2 GB/s)

Address DatapathAddress map

HIO
Peripheral

HIO
SCSI

HIO
VME

HIO
HPPI

HIO
graphics

Personality
ASICs

System bus to HIO bus
interface

66
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Multiple I/O cards on sys bus, each w/320MB/s HIO b us
– Personality ASICs connect these to devices (standar d and graphics)

• Proprietary HIO bus
– 64-bit multiplexed address/data, split read trans.,  up to 4 per device
– Pipelined, but centralized arbitration, with several  transaction lengths
– Address translation via mapping RAM in system bus i nterface

• I/O board acts like a processor to memory system



SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol

GigaplaneTM  bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interface / Switch
Bus Interface

CPU/Mem
Cards

67
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Up to 30 UltraSPARC processors, MOESI protocol
• Gigaplane TM bus has peak bw 2.67 GB/s, 300 ns 

latency
• Up to 112 outstanding transactions (max 7 per board )
• 16 bus slots, for processing or I/O boards 

– 2 CPUs and 1GB memory per board
» Memory distributed, but protocol treats as centrali zed (UMA)



Sun Gigaplane Bus
• Non-multiplexed, split-transaction, 256-data/41-

address, 83.5 MHz (plus 32 ECC lines, 7 tag, 18 
arbitration, etc.  Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each boa rd

– Designed for multiple outstanding transactions per processor

• Emphasis on reducing latency, unlike Challenge
– Speculative arbitration if address bus not schedule d from prev. cycle

68
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Speculative arbitration if address bus not schedule d from prev. cycle
– Else regular 1-cycle arbitration, and 7-bit tag ass igned in next cycle

• Snoop result associated with request (5 cycles late r)
• Main memory can stake claim to data bus 3 cycles in to 

this, and start memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol



Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-b ar
• Data lines buffered through UDB to drive internal 1 .3 

GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus c ycles

Memory (16 × 72-bit SIMMS) SBUS slots
10/100 
Ethernet

FiberChannel
module (2)

69
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

UltraSparc

L2 $ Tags

UDB

L2 $ Tags

UDB

Address controller Data controller (crossbar)D-tags

576144

Gigaplane connector

Control Address Data 288

Address controller Data controller (crossbar)

Gigaplane connector

Control Address Data 288

72

SysIO SysIO

SBUS
25 MHz 64

Fast wide 
SCSI

Ethernetmodule (2)

UltraSparc



Enterprise I/O System

• I/O board has same bus interface ASICs as processor  
boards

• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing  

boards
– Uniformity simplifies design
– ASICs implement single -block cache, follows coherence protocol

70
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– ASICs implement single -block cache, follows coherence protocol

• Two independent 64-bit, 25 MHz Sbuses
– One for two dedicated FiberChannel modules connecte d to disk
– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arb itrary 

peripherals

• Performance and cost of I/O scale with # of I/O boa rds



Sun Enterprise 10000 (aka E10K or Starfire)

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four 

“logical” address buses
– Each handles 1/4 of physical address space
– Impose logical ordering for consistency: for writes on same cycle,  

those on bus 0 occur “before” bus 1, etc.

• Get rid of data bandwidth problem: use a network

71
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Get rid of data bandwidth problem: use a network
– E10k uses 16x16 crossbar between CPU boards & memor y boards
– Each CPU board has up to 4 CPUs: max 64 CPUs total

• 10.7 GB/s max BW, 468 ns unloaded miss latency
• We will discuss a paper on E10K later



Outline for Implementing Snooping

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

72
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

These two issues apply to 
any coherence protocol, 
not just snooping



Translation Lookaside Buffer

• Cache of page table entries
• Page table maps virtual page to physical frame

0

Virtual Address Space Physical Address Space

73
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

0

4

7 7

4

3



The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all 

processors
• Why might a PTE be cached in more than 1 TLB?

– Actual sharing of data
– Process migration

• Historical view: 

74
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Historical view: 
– Changes are infrequent ���� get OS to do it

• Current view (as of January 2010):
– Coherence via OS is way too slow ���� use HW for TLB coherence
– Optional paper by Romanescu, Lebeck, Sorin [HPCA 20 10]



TLB Shootdown

• To modify TLB entry, modifying processor must
– LOCK page table,
– Flush TLB entries, 
– Queue TLB operations, 
– Send inter-processor interrupt, 
– Spin until other processors are done
– UNLOCK page table

75
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• SLOW!
• But most common solution today

– Until Romanescu’s HPCA 2010 paper convinces everyon e of the 
folly of their ways



TLB Shootdown Improvements

• Evolutionary Changes
– Keep track of which processor even had the mapping

& only shoot them down
– Defer shootdowns on “upgrade” changes

(e.g., page from read-only to read-write)
– SGI Origin “poison” bit for also deferring downgrades

76
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Revolutionary Changes
– “Invalidate TLB entry” instruction (e.g., PowerPC)
– No TLB (e.g., Berkeley SPUR)

» Use virtual L1 caches so address translation only o n miss
» On miss, walk PTE (which will often be cached norma lly)
» PTE changes kept coherent by normal cache coherence



Virtual Caches & Synonyms

• Problem
– Synonyms: V0 & V1 map to P1
– When doing coherence on block in P1, how do you fin d V0 & V1?

• Don’t do virtual caches (most common today)
• Don’t allow synonyms

– Probably use a segmented global address space

77
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Probably use a segmented global address space
– E.g., Berkeley SPUR had process pick 4 of 256 1GB s egments
– Still requires reverse address translation

• Allow virtual cache & synonyms
– How do we implement reverse address translation?
– See Wang et al. next



Wang et al. [ISCA89]

• Basic Idea
– Extended Goodman one-level cache idea [ASPLOS87]
– Virtual L1 and physical L2
– Do coherence on physical addresses
– Each L2 block maintains pointer to corresponding L1  block (if any)

(requires log2 #L1_blocks - log2 (page_size / block_s ize)
– Never allow block to be simultaneously cached under  synonyms

78
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Example where V0 & V1 map to P2
– Initially V1 in L1 and P2 in L2 points to V1
– Processor references V0
– L1 miss
– L2 detects synonym in L1
– Change L1 tag and L2 pointer so that L1 has V0 inst ead of V1
– Resume



Virtual Caches & Homonyms

• Homonym
– “Pool” of water and “pool” the game
– V0 of one process maps to P2, while V0 of other pro cess maps to P3

• Flush cache on context switch
– Simple but performs poorly

• Address-space IDs (ASIDs)

79
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– In architecture & part of context state

• Mapping-valid bit of Wang et al.
– Add mapping-valid as a “second” valid bit on L1 cache  block
– On context switch do “flash clear” of mapping-valid b its
– Interesting case is valid block with mapping invali d

» On processor access, re-validate mapping
» On replacement (i.e., writeback) treat as valid blo ck



Outline for Implementing Snooping

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

80
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues



Outline

• Motivation for Cache-Coherent Shared Memory

• Snooping Cache Coherence

• Implementing Snooping Systems

• Advanced Snooping Systems

81
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Snooping Systems
– Sun UltraEnterprise 10000
– Multicast Snooping (Wisconsin)



Sun UltraEnterprise 10000 (Starfire)

• Shared-wire bus is bottleneck in snooping systems
– Tough to implement at high speed
– Centralized shared resource

• Solution: multiple “logical buses”

• PRESENTATION

82
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• PRESENTATION



Multicast Snooping

• Bus is bottleneck in snooping systems
– But why broadcast requests when we can multicast?

• PRESENTATION

83
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221



Timestamp Snooping

• Optional paper by Martin et al. [ASPLOS 2000]
• Insight: snooping doesn’t actually require:

– All coherence requests to arrive at every node at t he exact same 
time (ok, so we already knew that)

– All coherence requests to arrive at every node in t he same order … 
in physical time 

• Key idea: assign logical times to requests and let 

84
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Key idea: assign logical times to requests and let 
nodes process them in logical time order

• OK, so why is this interesting?
– Can implement snooping on any network topology!  No t just buses 

or trees



Outline

• Motivation for Cache-Coherent Shared Memory

• Snooping Cache Coherence

• Implementing Snooping Systems

• Advanced Snooping Systems

85
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Snooping Systems


