
Old Example: SGI Challenge Overview
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(b) Machine organization
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• 36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or 18 MIPS 
R8000 (peak 5.4 GFLOPS, 2 per board)

• 8-way interleaved memory (up to 16 GB)

• 1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329 signals

• 128-Byte lines (1 + 4 cycles)

• Split-transaction with up to 8 outstanding reads
– All transactions take five cycles

• Miss latency nearly 1 us (mostly on CPU board, not bus…)



Processor and Memory Systems
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• 4 MIPS R4400 processors per board share A / D chips
• A chip has address bus interface, request table, co ntrol logic
• CC chip per processor has duplicate set of tags
• Processor requests go from CC chip to A chip to bus
• 4 bit-sliced D chips interface CC chip to bus

Powerpath-2 bus



SGI Powerpath-2 Bus

• Non-multiplexed (i.e., separate A and D), 256-data/ 40-
address, 47.6 MHz, 8 outstanding requests

• Wide ���� more interface chips so higher latency, but more 
bandwidth at slower clock

• Large block size also calls for wide bus
• Uses Illinois MESI protocol (cache -to-cache sharing)
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• Uses Illinois MESI protocol (cache -to-cache sharing)

1. Arbitration

2. Resolution

3. Address

4. Decode5. Acknowledge

No
requestors

At least one
requestor



Bus Design and Request-Response Matching

• Essentially two separate buses, arbitrated 
independently

– “Request” bus for command and address
– “Response” bus for data

• Out-of-order responses imply need for matching 
request with corresponding response

61
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

request with corresponding response
– Request gets 3-bit tag when wins arbitration (8 out standing max)
– Response includes data as well as corresponding req uest tag
– Tags allow response to not use address bus, leaving  it free

• Separate bus lines for arbitration and for snoop 
results



Bus Design (continued)

• Each of request and response phase is 5 bus cycles
– Response: 4 cycles for data (128 bytes, 256-bit bus ), 1 turnaround
– Request phase: arbitration, resolution, address, de code, ack
– Request-response transaction takes 3 or more of the se
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Cache tags looked up in decode; extend ack cycle if not possible
• Determine who will respond, if any

• Actual response comes later, with re-arbitration

Write-backs have request phase only: arbitrate both data+addr buses
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Bus Design (continued)

• Flow-control through negative acknowledgement 
(NACK)

• No conflicting requests for same block allowed on b us
– 8 outstanding requests total, makes conflict detect ion tractable

– Eight-entry “request table” in each cache controller

– New request on bus added to all at same index, dete rmined by tag
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– Entry holds address, request type, state in that ca che (if determined 
already), ...

– All entries checked on bus or processor accesses fo r match, so fully 
associative

– Entry freed when response appears, so tag can be re assigned by bus



Bus Interface with Request Table
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Memory Access Latency

• 250ns access time from address on bus to data on 
bus

• But overall latency seen by processor is 1000ns!
– 300 ns for request to get from processor to bus

» Down through cache hierarchy, CC chip and A chip
– 400ns later, data gets to D chips
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– 400ns later, data gets to D chips
» 3 bus cycles to address phase of request transactio n, 12 to 

access main memory, 5 to deliver data across bus to  D 
chips

– 300ns more for data to get to processor chip
» Up through D chips, CC chip, and 64-bit wide interf ace to 

processor chip, load data into primary cache, resta rt 
pipeline



Challenge I/O Subsystem

• Multiple I/O cards on sys bus, each w/320MB/s HIO b us
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• Multiple I/O cards on sys bus, each w/320MB/s HIO b us
– Personality ASICs connect these to devices (standar d and graphics)

• Proprietary HIO bus
– 64-bit multiplexed address/data, split read trans.,  up to 4 per device
– Pipelined, but centralized arbitration, with several  transaction lengths
– Address translation via mapping RAM in system bus i nterface

• I/O board acts like a processor to memory system



SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol

GigaplaneTM  bus (256 data, 41 address, 83 MHz)
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• Up to 30 UltraSPARC processors, MOESI protocol
• Gigaplane TM bus has peak bw 2.67 GB/s, 300 ns 

latency
• Up to 112 outstanding transactions (max 7 per board )
• 16 bus slots, for processing or I/O boards 

– 2 CPUs and 1GB memory per board
» Memory distributed, but protocol treats as centrali zed (UMA)



Sun Gigaplane Bus
• Non-multiplexed, split-transaction, 256-data/41-

address, 83.5 MHz (plus 32 ECC lines, 7 tag, 18 
arbitration, etc.  Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each boa rd

– Designed for multiple outstanding transactions per processor

• Emphasis on reducing latency, unlike Challenge
– Speculative arbitration if address bus not schedule d from prev. cycle
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– Speculative arbitration if address bus not schedule d from prev. cycle
– Else regular 1-cycle arbitration, and 7-bit tag ass igned in next cycle

• Snoop result associated with request (5 cycles late r)
• Main memory can stake claim to data bus 3 cycles in to 

this, and start memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol



Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-b ar
• Data lines buffered through UDB to drive internal 1 .3 

GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus c ycles

Memory (16 × 72-bit SIMMS) SBUS slots
10/100 
Ethernet

FiberChannel
module (2)
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Enterprise I/O System

• I/O board has same bus interface ASICs as processor  
boards

• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing  

boards
– Uniformity simplifies design
– ASICs implement single -block cache, follows coherence protocol

70
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– ASICs implement single -block cache, follows coherence protocol

• Two independent 64-bit, 25 MHz Sbuses
– One for two dedicated FiberChannel modules connecte d to disk
– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arb itrary 

peripherals

• Performance and cost of I/O scale with # of I/O boa rds



Sun Enterprise 10000 (aka E10K or Starfire)

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four 

“logical” address buses
– Each handles 1/4 of physical address space
– Impose logical ordering for consistency: for writes on same cycle,  

those on bus 0 occur “before” bus 1, etc.

• Get rid of data bandwidth problem: use a network
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• Get rid of data bandwidth problem: use a network
– E10k uses 16x16 crossbar between CPU boards & memor y boards
– Each CPU board has up to 4 CPUs: max 64 CPUs total

• 10.7 GB/s max BW, 468 ns unloaded miss latency
• We will discuss a paper on E10K later



Outline for Implementing Snooping

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses
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• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

These two issues apply to 
any coherence protocol, 
not just snooping



Translation Lookaside Buffer

• Cache of page table entries
• Page table maps virtual page to physical frame

0

Virtual Address Space Physical Address Space
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The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all 

processors
• Why might a PTE be cached in more than 1 TLB?

– Actual sharing of data
– Process migration

• Historical view: 
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• Historical view: 
– Changes are infrequent ���� get OS to do it

• Current view (as of January 2010):
– Coherence via OS is way too slow ���� use HW for TLB coherence
– Optional paper by Romanescu, Lebeck, Sorin [HPCA 20 10]



TLB Shootdown

• To modify TLB entry, modifying processor must
– LOCK page table,
– Flush TLB entries, 
– Queue TLB operations, 
– Send inter-processor interrupt, 
– Spin until other processors are done
– UNLOCK page table
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• SLOW!
• But most common solution today

– Until Romanescu’s HPCA 2010 paper convinces everyon e of the 
folly of their ways



TLB Shootdown Improvements

• Evolutionary Changes
– Keep track of which processor even had the mapping

& only shoot them down
– Defer shootdowns on “upgrade” changes

(e.g., page from read-only to read-write)
– SGI Origin “poison” bit for also deferring downgrades
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• Revolutionary Changes
– “Invalidate TLB entry” instruction (e.g., PowerPC)
– No TLB (e.g., Berkeley SPUR)

» Use virtual L1 caches so address translation only o n miss
» On miss, walk PTE (which will often be cached norma lly)
» PTE changes kept coherent by normal cache coherence



Virtual Caches & Synonyms

• Problem
– Synonyms: V0 & V1 map to P1
– When doing coherence on block in P1, how do you fin d V0 & V1?

• Don’t do virtual caches (most common today)
• Don’t allow synonyms

– Probably use a segmented global address space

77
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Probably use a segmented global address space
– E.g., Berkeley SPUR had process pick 4 of 256 1GB s egments
– Still requires reverse address translation

• Allow virtual cache & synonyms
– How do we implement reverse address translation?
– See Wang et al. next



Wang et al. [ISCA89]

• Basic Idea
– Extended Goodman one-level cache idea [ASPLOS87]
– Virtual L1 and physical L2
– Do coherence on physical addresses
– Each L2 block maintains pointer to corresponding L1  block (if any)

(requires log2 #L1_blocks - log2 (page_size / block_s ize)
– Never allow block to be simultaneously cached under  synonyms
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• Example where V0 & V1 map to P2
– Initially V1 in L1 and P2 in L2 points to V1
– Processor references V0
– L1 miss
– L2 detects synonym in L1
– Change L1 tag and L2 pointer so that L1 has V0 inst ead of V1
– Resume



Virtual Caches & Homonyms

• Homonym
– “Pool” of water and “pool” the game
– V0 of one process maps to P2, while V0 of other pro cess maps to P3

• Flush cache on context switch
– Simple but performs poorly

• Address-space IDs (ASIDs)

79
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– In architecture & part of context state

• Mapping-valid bit of Wang et al.
– Add mapping-valid as a “second” valid bit on L1 cache  block
– On context switch do “flash clear” of mapping-valid b its
– Interesting case is valid block with mapping invali d

» On processor access, re-validate mapping
» On replacement (i.e., writeback) treat as valid blo ck



Outline for Implementing Snooping

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses
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• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues



Outline

• Motivation for Cache-Coherent Shared Memory

• Snooping Cache Coherence

• Implementing Snooping Systems

• Advanced Snooping Systems
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• Advanced Snooping Systems
– Sun UltraEnterprise 10000
– Multicast Snooping (Wisconsin)



Sun UltraEnterprise 10000 (Starfire)

• Shared-wire bus is bottleneck in snooping systems
– Tough to implement at high speed
– Centralized shared resource

• Solution: multiple “logical buses”

• PRESENTATION
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• PRESENTATION



Multicast Snooping

• Bus is bottleneck in snooping systems
– But why broadcast requests when we can multicast?

• PRESENTATION
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Timestamp Snooping

• Optional paper by Martin et al. [ASPLOS 2000]
• Insight: snooping doesn’t actually require:

– All coherence requests to arrive at every node at t he exact same 
time (ok, so we already knew that)

– All coherence requests to arrive at every node in t he same order … 
in physical time 

• Key idea: assign logical times to requests and let 
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• Key idea: assign logical times to requests and let 
nodes process them in logical time order

• OK, so why is this interesting?
– Can implement snooping on any network topology!  No t just buses 

or trees



Outline

• Motivation for Cache-Coherent Shared Memory

• Snooping Cache Coherence

• Implementing Snooping Systems

• Advanced Snooping Systems
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• Advanced Snooping Systems


