
Outline

• Motivation for Cache-Coherent Shared Memory

• Snooping Cache Coherence

• Implementing Snooping Systems

• Advanced Snooping Systems

31
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Advanced Snooping Systems

Review: Symmetric Multiprocessors (SMP)

• Multiple (micro-)processor cores

• Each has cache (today a cache hierarchy)

• Connect with logical bus (totally-ordered broadcast)

32
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Implement Snooping Cache Coherence Protocol
– Broadcast all cache “misses” on bus
– All caches “snoop” bus and may act
– Memory responds otherwise

Review: MSI State Diagram

Load /--

M

Store / --

--/OtherGETSStore / OwnGETX

33
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

-- / OtherGETX

Store / OwnGETX
S

I

Load / OwnGETS

-- /OtherGETX

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

Note: we never take any action on an OtherPUTX

Some (but not all!) Implementation Issues

• How does memory know another cache will respond
so it doesn’t have to?

• Is it okay if a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?
• Can we guarantee we won’t get deadlock?

34
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• What happens on a PTE update with multiple TLBs?
• Can one use virtual caches in SMPs?

This is why they pay architects the big bucks!

Outline for Implementing Snooping

• Coherence Control Implementation

• Writebacks, Non-Atomicity

• Hierarchical Caches

• Split Buses

35
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

Snooping SMP Design Goals

• Goals
– Correctness
– High performance
– Simple hardware (reduced complexity & cost)

• Conflicts between goals

36
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Conflicts between goals
– High performance ���� multiple outstanding low-level events

���� more complex interactions
���� more potential correctness bugs

Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– No interleaving of transactions

• Atomic operations within a process

37
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Atomic operations within a process
– One finishes before next in program order

• Now, we’re going to gradually add complexity
– Why? Faster latencies and higher bandwidths!
– But we’ll stick with invalidation protocol (instead of update)

Cache Controllers and Tags

• On a last-level miss in a uniprocessor:
– Assert request for memory bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

38
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• In snoop-based multiprocessor, cache controller mus t:
– Monitor bus and serve processor

» Can view as two controllers: bus-side, and processo r-side
» With single-level cache: dual tags (not data) or du al-ported tag RAM
» Synchronize tags on updates

– Respond to bus transactions when necessary

Reporting Snoop Results: How?

• Collective response from caches must appear on bus

• Wired-OR signals
– Shared: asserted if any cache has a copy (used for E state)
– Dirty/Inhibit: asserted if some cache has a dirty c opy

» Don’t need to know which, since it will do what’s n ecessary

39
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Snoop-valid: asserted when OK to check other two si gnals

• May require priority scheme for cache-to-cache
transfers

– Which cache should supply data when in shared state ?
– Commercial implementations allow memory to provide data

Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do

• Static delay: fixed number of clocks from address
appearing on bus

– Dual tags required to reduce contention with proces sor
– Still must be conservative (update both on write: E ���� M)
– Pentium Pro, HP servers, Sun Enterprise (pre E-10K)

40
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Variable delay
– Memory assumes cache will supply data until all say “sorry”
– Less conservative, more flexible, more complex
– Memory can fetch data early and hold (SGI Challenge)

• Immediately: Bit-per-block state in memory
– HW complexity in commodity main memory system

Writebacks

• Must allow core to proceed on a miss
– Fetch the block
– Perform writeback later

• Need writeback buffer
– Must handle bus transactions in writeback buffer

41
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Must handle bus transactions in writeback buffer
» Snoop writeback buffer

– Must care about the order of reads and writes
– Affects memory consistency model (yuck – trust me on this for now)

Base Organization

Cache data RAM

P

Data

Addr Cmd

Bus-
side

controller
To

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

42
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Addr CmdSnoop state Data buffer

Write-back buffer

Comparator

Comparator

Tag

Addr Cmd

To
controller

System bus

To
controller

Optimization #1: Non-Atomic State Transitions

• Operations involve multiple actions
– Look up cache tags
– Bus arbitration
– Check for outstanding writeback
– Even if bus is atomic, overall set of actions is no t
– Race conditions among multiple operations

43
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue Upgrade to transition from S ���� M

• Issues
– Handle requests for other blocks while waiting to a cquire bus
– Must handle requests for this block A

Non-Atomicity ���� Transient States

Two types of states
• Stable (e.g. MOESI)
• Transient or Intermediate

Increases complexity

In-class exercise: let’s figure out how many states we

44
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

In-class exercise: let’s figure out how many states we
really need in an “MSI” protocol …

Optimization #2: Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– Independent bus snooping at every level?
– Maintain cache inclusion?

• Requirements for Inclusion
– Data in higher-level is subset of data in lower-lev el
– Modified in higher -level ���� marked modified in lower -level

45
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Modified in higher -level ���� marked modified in lower -level

• Now only need to snoop lowest-level cache
– If L2 says not present (modified), then not so in L 1

• Is inclusion automatically preserved?
– Replacements: all higher-level misses go to lower l evel

Violations of Inclusion

• The L1 and L2 may choose to replace different block
– Differences in reference history

» Set-associative first-level cache with LRU replacem ent
– Split higher-level caches

» Instr & data blocks go in different caches at L1, b ut collide in L2
» What if L2 is set-associative?

– Differences in block size

46
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Differences in block size

• But a common case works automatically
– L1 direct-mapped, and
– L1 has fewer sets than L2, and
– L1 and L2 have same block size

Inclusion: To Be or Not To Be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must so urce data or

invalidate, forward actions to L1 caches
– Can maintain bits in L2 cache to filter some action s from forwarding

• But inclusion may not be ideal

47
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• But inclusion may not be ideal
– Restricted associativity in unified L2 can limit bl ocks in split L1s
– Not that hard to always snoop L1s
– If L2 isn’t much bigger than L1, then inclusion is wasteful

• Thus, many new designs don’t maintain inclusion
– Exclusion : no block is in more than any one cache
– Not Inclusive != Exclusive and Not Exclusive != In clusive

Optimization #3: Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions
– Higher throughput!! (perhaps worse latency)

Req
Delay

Response

Atomic Transaction Bus

48
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Split-transaction Bus

Time

Potential Problems

• Two transactions to same block (conflicting)
– Mid-transaction snoop hits
– E.g., in S, going to M, observe OtherGETX

• Buffering requests and responses
– Need flow control to prevent deadlock

49
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Ordering of snoop responses
– When does snoop response appear with respect to dat a response?

One Solution (like the SGI PowerPath-2)

• NACK (Negative ACKnowledgment) for flow control
– Snooper can nack a transaction if it can’t buffer i t

• Out-of-order responses
– Snoop results presented with data response

• Disallow multiple concurrent transactions to one li ne

50
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Disallow multiple concurrent transactions to one li ne
– Not necessary, but it can improve designer sanity

Serialization Point in Split Transaction Buses

• Is the bus still the serialization point?
– Yes! When a request wins the bus, it is serialized (unless nacked)
– Data and snoop response can show up way later
– Snoop decisions are made based on what’s been seria lized

• Example (allows multiple outstanding to same block)
– Initially: block B is in Invalid in all caches

51
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Initially: block B is in Invalid in all caches
– P1 issues GETX for B, waits for bus
– P2 issues GETX for B, waits for bus
– P2’s request wins the bus (but no data from memory until later)
– P1’s request wins the bus … who responds?
– P2 will respond, since P2 is the owner (even before data arrives!)
– P2 receives data from memory
– P2 sends data to P1

A More General Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of transaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Forms of coherence transactions

52
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Forms of coherence transactions
– GETS, GETX (both are “request + response”)
– PUTX (“request + data”)
– Upgrade (“request”)

• Per Processor Request Table Tracks All Transactions

Multi-Level Caches with Split Bus

Response Processor request

L1 $

18

Processor

L1 $

5
4

Processor

Response/
request

Response/
request

53
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

Request/response
to bus

L2 $

27

Bus

L2 $

5

63

4

Response/
request
from bus

request
from L2 to L1

request
from L1 to L2

Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• Many potential deadlock problems
• Classify all messages to break cyclic dependences

– Requests only generates responses

54
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Requests only generates responses
– Responses don’t generate any other messages

• Requestor guarantees space for all responses
• Use separate request and response queues

B

More on Correctness

• Partial correctness (never wrong):
Maintain coherence and consistency

• Full correctness (always right): Prevent:
• Deadlock :

– All system activity ceases
– Cycle of resource dependences

• Livelock :

55
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

A• Livelock :
– No processor makes forward progress
– Constant on-going transactions at hardware level
– E.g. simultaneous writes in invalidation-based prot ocol

• Starvation :
– Some processors make no forward progress
– E.g. interleaved memory system with NACK on bank bu sy

Deadlock, Livelock, Starvation

• Deadlock: Can be caused by request-reply protocols
– When issuing requests, must service incoming transa ctions
– E.g., cache awaiting bus grant must snoop & flush b locks
– Else may not respond to request that will release b us: deadlock

• Livelock:
– Window of vulnerability problem [Kubi et al., MIT]

56
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

– Window of vulnerability problem [Kubi et al., MIT]
– Handling invalidations between obtaining ownership & write
– Solution: don’t let exclusive ownership be stolen b efore write

• Starvation:
– Solve by using fair arbitration on bus and FIFO buf fers

Deadlock Avoidance

• Responses are never delayed by requests waiting for
a response

• Responses are guaranteed to be sunk
• Requests will eventually be serviced since the

number of responses is bounded by the number of
outstanding requests

• Must classify messages according to deadlock and

57
(C) 2010 Daniel J. Sorin from Adve,
Falsafi, Hill, Lebeck, Reinhardt, Singh ECE 259 / CPS 221

• Must classify messages according to deadlock and
coherence semantics

– If type 1 messages (requests) spawn type 2 messages (responses),
then type 2 messages can’t be allowed to spawn type 1 messages

– More generally, must avoid cyclic dependences with messages
» We will see that directory protocols often have 3 m essage types
» Request, ForwardedRequest, Response

