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Interconnect Routing

• store-and-forward routing
• switch buffers entire message before passing it on

• latency = [(message length / bandwidth) + fixed overhead]  * # hops

• wormhole routing
• pipeline message through interconnect

• switch passes message on before completely arrives

• latency = (message length / bandwidth) + (fixed overhead * # hops)

+ no buffering needed at switch

+ latency (relatively) independent of number of intermediate hops
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Avoiding Deadlock in Interconnect

two types of deadlock

• routing deadlock (~gridlock)
• circular dependence on buffers

• solutions (more in ECE 259!)
• routing restrictions (“turn model”)

• virtual channels

• request/response deadlock
• circular dependence on messages

• solutions
• separate networks

• virtual networks

full
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Shared Memory vs. Message Passing

MIMD dimension II: appearance of address space to software 

• message passing (multicomputers, clusters)
• each processor has its own address space (and unique processor #)

• processors send (receive) messages to (from) each other

• communication pattern explicit and precise (only way)

• used for scientific codes (explicit communication patterns)

• message passing systems: PVM, MPI

+ simple hardware

– difficult programming model (in general)
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Shared Memory vs. Message Passing

• shared memory (multiprocessors, multicores)
• one shared address space

• processors use conventional loads/stores to access shared data

• communication can be complex/dynamic

+ simpler programming model (compatible with uniprocessors)

– but with its own nasties (e.g., synchronization)

– more complex hardware... (we’ll see soon)

+ but more room for hardware optimization

• aside: software shared virtual memory (SVM) exists
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Multiprocessor Industry Trends

• shared memory
• easier, more dynamic program model (it IS the software, stupid!)

• can do more to optimize the hardware

• multicore chips
• achieve greater scalability by using multiple chips 

• glueless MP: slap these together and it just works! e.g., Opteron

• larger NUMA systems built from smaller (N)UMA systems
• exploit commodity nature of small systems

• use commodity interconnect (e.g., gigabit Ethernet, Myrinet)

• called NUMA clusters 
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Caching Shared Memory

• three issues
• cache coherence

• synchronization

• memory consistency model

• not completely unrelated to each other

• not issues for message passing machines
• why not?
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Cache (In)Coherence

• most common cause: sharing of writeable data
• example

 processor 0  processor 1  correct value of A is in..
 -----------  -----------  --------------------------
                           memory
 read A                    memory, p0 cache
              read A       memory, p0 cache, p1 cache
 write A                   p0 cache, memory (if wthru)
              read A       p1 gets stale value on hit
 

• other causes
• process migration (even if jobs are independent)

• I/O (can be fixed by OS cache flushes)
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Solutions to Coherence Problem

• no caches
• not a good solution - caches are important!

• make shared data non-cacheable
+ simplest software solution

– low performance if a lot of data is shared

• software flush at strategic times: e.g., after critical sections
+ relatively simple

– low performance if synchronization is frequent

• hardware cache coherence
• make memory and caches coherent (consistent) with each other

• in other words: let memory and other processors see writes

• invisible to software
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Cache Coherence Protocols

• absolute coherence
• all copies of each block have same data at all times

• not necessary

• what is required is appearance of absolute coherence
• temporary incoherence is OK (e.g., write-back cache)

• as long as all loads get “correct” values

• cache coherence protocol: FSM that runs at every cache
• and usually a FSM at every memory, too

• two ways of handling writes
• invalidate protocol: invalidate copies in other caches 

• update protocol: update copies in other caches
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Bus-Based Protocols (Snooping)

• bus-based cache coherence protocol (snooping)
• ALL caches/memories see and react to ALL bus events

• protocol relies on global visibility of requests (ordered broadcast)

• owner (either proc or mem) responds to request with data

memory

cachecache cache cache

proc procprocproc

BUS
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Snooping Protocol Events

• requests from proc/cache to cache coherence controller 
• load (Ld)

• store (St)

• writeback (WB)

• bus events (= cache coherence transactions)
• GetShared (GETS) - broadcast request for read-only data

• GetExclusive (GETX) - broadcast request for read-write data

• PutExclusive (PUTX) - broadcast request to write data back to mem

• coherence transactions on bus can be from self or others

• we’ll assume atomic bus transactions
• thus, we have atomic cache coherence transactions
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Two-State (MI) Invalidate Protocol

• two states
• invalid (I): either don’t have block or have it but not allowed to use it

• modified (M): have block with read-write access

• problem
– block can be in only one cache at a time

– not efficient, especially if data is only being read

invalid modified

{Ld,St}/OwnGETX

-/OtherGETX

WB/OwnPUTX

notation “a/b”:

a = proc request

b = coherence transaction

blue = upgrade

red = downgrade
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Three-State (MSI) Invalidate Protocol
• three states

• idea: add new “read-only” state (shared) - allows multiple readers!

• invalid

• modified: have block with read-write access  

• shared (S): have block with read-only access

invalid modified

St/OwnGETX

-/OtherGETX

WB/OwnPUTX

shared -/O
therG

ETS
St/O

wnG
ETX

-/OtherGETX

W
B/-

Ld/O
wnG

ETS



ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

40© 2009 by Sorin, Roth, Hill, Wood, Sohi, 
Smith,  Vijaykumar, Lipasti

Scalable Coherence Protocols: Directories

– bus-based protocols (i.e., broadcast) are not scalable!
• not enough bus b/w for everyone’s coherence traffic

• not enough processor snooping b/w to handle everyone’s traffic

• directories: scalable cache coherence for large MPs
• each memory entry (cache line) has a bit vector (1 bit per processor)

• bit vector tracks which processors have cached copies of line

• send all requests to directory at home memory

• if no other cached copies, memory is owner and returns data

• otherwise, memory forwards request to current owner processor

+ low b/w consumption (communicate only with processors that care)

+ works with general interconnect (bus not needed)

– longer latency (3-hop transactions: p0 ⇒ directory ⇒ p1 ⇒ p0) 
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Directory Protocol in Action (MI) 

proc/mem

proc/mem

proc/mem
St/GETX

ForwardedGETX (N1)

Node 1 = requestor (I -> M)

Data

Node 2 = home of block

Node 3 = current owner of block (M -> I)
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Coherence Protocols: Performance

• 3C miss model ⇒ 4C miss model
• capacity, compulsory, conflict

• coherence: additional misses due to coherence protocol

• complicates uniprocessor cache analysis

• as processors are added
– coherence misses increase (more communication)

• as cache size is increased
+ capacity misses decrease

– coherence misses increase (more shared data is cached)

• as block size is increased
– coherence misses increase (false sharing)

• false sharing: sharing of different data in same cache line


