
ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

1© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Multiprocessors and Multithreading

• why multiprocessors and/or multithreading?
• and why is parallel processing difficult?

• types of MT/MP

• interconnection networks

• why caching shared memory is challenging
• cache coherence, synchronization, and consistency

just the tip of the iceberg — take ECE 259/CPS 221 for more!

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

2© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Readings

H+P

• chapter 3.5, 4
• Will only loosely follow text

Recent Research Papers

• Power: A First Class Design Constraint

• SMT (Simultaneous Multithreading)

• Multiscalar

• Sun ROCK

• NVidia Tesla

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

3© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Threads, Processes, Processors, etc.

some terminology to keep straight

• process

• thread

• processor (will use term “core” interchangeably)

• thread context

• multithreaded (MT) processor

• multiprocessor (MP) on 1 chip or on multiple chips

many issues are the same for MT and MP

• will discuss in terms of MPs, but will point out MT diffs

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

4© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Why MT/MP?

Reason #1: Performance

• ILP is limited --> unicore performance is limited

• can’t even exploit all of the ILP we have
• problems: branch prediction, cache misses, etc.

• it’s often easy to exploit thread level parallelism (TLP)

• can you think of programs with lots of TLP?

Reason #2: Power-efficiency

• Can use more cores, if cores at lower clock frequency

• Improved throughput (but perhaps worse latency)

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

5© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

More Reasons for MT/MP

Reason #3: Cost and cost effectiveness

• build big systems from commodity parts (ordinary cores/procs)

• enough transistors to make multithreaded cores

• enough transistors to make multicore chips

Reasons #4 and #5:

• smooth upgrade path (keep adding cores/processors)

• fault tolerance (one processor fails, still have P-1 working)

Most important (most cynical?) reason: We have no idea what
else to do with so many transistors!

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

6© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Why Parallel Processing Is Hard

in a word: software

• difficult to parallelize applications
– compiler parallelization very hard (impossible holy grail?)

– by-hand parallelization very hard (very error prone, not fun)

• difficult to make parallel applications run fast
– communication very expensive (must be aware of it)

– synchronization very complicated

IT’S THE SOFTWARE, STUPID!

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

7© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Amdahl’s Law Revisited

speedup = 1/ [fracparallel/speedupparallel + 1 – fracparallel]

• example
• achieve speedup of 80 using 100 processors

• ⇒ 80 = 1 / [fracparallel/100 + 1 – fracparallel]

• ⇒ fracparallel = 0.9975 ⇒ only 0.25% work can be serial!

• good application domains for parallel processing
• problems where parallel parts scale faster than serial parts

• e.g., O(N2) parallel vs. O(N) serial

• interesting programs require communication between parallel parts

• problems where computation scales faster than communication

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

8© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Application Domain 1: Parallel Programs

• true parallelism in one job
• regular loop structures

• data usually tightly shared

• automatic parallelization

• called “data-level parallelism”

• can often exploit vectors as well

 for (i=0;i<1000;i++){
 A[i] = B[i]*C[i];
 }

• workloads
• scientific simulation codes (e.g., FFT, weather, fluid dynamics, etc.)

• was the dominant market segment of 10–20 years ago

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

9© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Parallel Program Example: Matrix Multiply

• parameters
• N = size of matrix (N*N)

• P = number of processors

• growth functions
• computation grows as f(N3)

• computation per processor grows as f(N3/P)

• data size grows as f(N2)

• data size per processor grows as f(N2/P)

• communication grows as f(N2/P1/2)

• computation/communication = f(N/P1/2)

N

P

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

10© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Application Domain 2: Parallel Tasks

• parallel independent-but-similar tasks
• irregular control structures

• loosely shared data locked at different granularities

• programmer defines & fine-tunes parallelism

• cannot exploit vectors

• called “thread-level parallelism” or “throughput-oriented parallelism”

• workload
• transaction processing, OS, databases, web-servers

• e.g., assign a thread to handle each request to server

• dominant MP/MT market segment today

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

11© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Many Ways to Design MT/MP Chips

How many cores per chip? Thread contexts per core? Should all
cores on a chip be identical? Should they have the same clock
frequency? Should they at least have the same ISA?

How do we connect the cores together?

Do cores share L2 caches? What about contention? What about
cache coherence?

How do multiple threads share a single core’s hardware? Round-
robin sharing per cycle? All share at once?

And many, many more issues to think about!

• Can you think of any other design issues?

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

12© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Chip Multiprocessors (aka Multicore)

trend today: multiprocessors on a single chip (CMPs)

• can’t spend all of the transistors on just one core
• with limited ILP, single core would not exploit it

• an early example: IBM POWER4
• 1 chip contains: 2 1GHz processors, L2, L3 tags, interconnect

• can connect 4 chips on 1 MCM to create 8 processor system

• targets threaded server workloads

p1 p1

L2
L3 tags bu

s
co

nt
ro

l

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

13© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Some Current CMPs

Intel and AMD: 2-core and 4-core chips

IBM: POWER6 has 2 cores, each of which is 2-way MT

IBM Xenon: 3 POWER cores

Cell processor: 9 cores (1 CPU and 8 SPUs)

Sun UltraSPARC T2: 8 cores, each of which is 8-way MT

Intel: 80-core prototype chip (Larrabee)

Azul Vega3: 54 cores

Tilera TILE64: 64 (no surprise!)

Cisco’s CRS-1 router: 188 Tensilica cores

NVidia Tesla S1070: 960 “thread processors”

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

14© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Multithreaded Processors

another trend: multithreaded processors

• processor utilization: IPC / processor width
• decreases as processor width increases (~50% on 4 wide)

• why? cache misses, branch mispredictions, RAW dependences

• idea: two (or more) processes (threads) share one pipeline

• replicate process (thread) state
• PC, register file, bpred history, page table pointer, etc.

• one copy of stateless (or naturally tagged) structures
• caches, functional units, buses, etc.

• hardware thread switch must be fast
• multiple on-chip contexts ⇒ no need to load from memory

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

15© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Two Multithreading Paradigms

• coarse-grained
• in-order processor with short pipeline

• switch threads on long stalls (e.g., L2 cache misses)

• instructions from one thread in stage per cycle

+ threads don’t interfere with each other much

– can’t improve utilization on L1 misses, or branch mispredictions

• e.g., IBM Northstar/Pulsar (2 threads)

• fine-grained: simultaneous multithreading (SMT)
• out-of-order processor with deep pipeline

• instructions from multiple threads in stage at same time

+ improves utilization in all scenarios

– individual thread performances suffer due to interference

• e.g., Pentium4 = 2 threads, Alpha 21464 (R.I.P.) = 4 threads

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

16© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Taxonomy of Processors

Flynn Taxonomy [1966]

• not universal, but simple

• dimensions
• instruction streams: single (SI) or multiple (MI)

• data streams: single (SD) or multiple (MD)

• cross-product
• SISD: uniprocessor (been there)

• SIMD: vectors (brief sketch on next slide - more in ECE 259)

• MISD: no practical examples (won’t do that)

• MIMD: multiprocessors + multithreading (doing it now)

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

17© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

SIMD Vector Architectures

different type of ISA that has vector instructions

• addv $v1, $v2, $v3 # v1 = v2 + v3

• vector registers are like V N-bit scalar registers
• for example, 128 32-bit values

• can operate on all entries of vector at once

• many Cray systems were vector architectures

useful for “vector code”

for i=1 to 128 { sum [i] = addend1 [i] + addend2 [i]; }

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

18© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

SIMD vs. MIMD

why are MPs (much) more common than vector processors?

• programming model flexibility
• can simulate vectors with an MP, but not the other way around

• dominant market segment cannot exploit vectors

• cost effectiveness
• commodity part: high volume (translation: cheap) component

• MPs made up of commodity parts (i.e., microprocessor cores)

• can match size of MP to your budget

• can’t do this for a vector processor

• footnote: vectors have actually made a comeback
• for graphics/multimedia applications (MMX, SSE, Tarantula)

• NEC’s EarthSimulator is an MP of vector processors

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

19© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Taxonomy of Parallel (MIMD) Processors
• again, two dimensions

• focuses on organization of main memory (shared vs. distributed)

• dimension I: appearance of memory to hardware
• Q: is access to all memory uniform in latency?

• shared (UMA): yes ⇒ where you put data doesn’t matter

• distributed (NUMA): no ⇒ where you put data really matters

• dimension II: appearance of memory to software
• Q: can processors communicate via memory directly?

• shared (shared memory): yes ⇒ communicate via loads/stores

• distributed (message passing): no ⇒ communicate via messages

• dimensions are orthogonal
• e.g., DSM: (physically) distributed (logically) shared memory

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

20© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

UMA vs. NUMA

• UMA: uniform memory access
• from p0, same latency to m0 as to m3

+ data placement unimportant (software is easier)

– latency long, gets worse as system grows

– interconnect contention restricts bandwidth

• typically used in small multiprocessors only

• NUMA: non-uniform memory accesss
• from p0 faster to m0 (local) than m3 (non-local)

+ low latency to local memory helps performance

– data placement important (software is harder)

+ less contention (non-local only) ⇒ more scalable

• typically used in larger multiprocessors

interconnect

m0

long

m1 m2 m3

p0 p1 p2 p3

latency

interconnect

m0

long

m1 m2 m3

p0 p1 p2 p3

latency

short
latency

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

21© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Interlude: What Is “Interconnect”?
• connects processors/memories to each other

• direct: endpoints (i.e., procs, mems) connected directly (e.g., mesh)

• indirect: endpoints connected via switches/routers (e.g., tree)

• interconnect issues
• latency: average latency most important (locality optimizations?)

• bandwidth: per processor (also, bisection bandwidth)

• cost: # wires, # switches, # ports per switch

• scalability: how latency, bandwidth, cost grow with # processors (P)

• we’ll mainly focus on interconnect topology

• can have separate interconnects for addresses and data

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

22© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Interconnect 1: Bus

• direct interconnect

+ cost
• f(1) wires

+ latency: f(1)
• no neighbor/locality optimization

– bandwidth: not scalable at all, f(1/P)
• only used in small systems (P <= 8)

+ capable of ordered broadcast
• incapable of anything else

• newer: logical buses w/point-to-point links
• tree = logical bus, if all messages go to root

• e.g., Sun UltraEnterprise E10000

p0 p1 p2 p3

m0 m1 m2 m3

p0 p1 p2 p3

m0 m1 m2 m3

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

23© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Interconnect 2: Crossbar Switch

• indirect interconnect

+ latency: f(1)
• no locality/neighbor optimizations

+ bandwidth: f(1)

– cost
• f(2P) wires

• f(P2) switches

• 4 wires per switch

m0 m1 m2 m3

p0

p1

p2

p3

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

24© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Interconnect 3: Multistage Network
• indirect interconnect

• routing done by address bit decoding

• k: switch arity (# inputs and outputs per switch)

• d: number of network stages = logkP

+ cost
• f(d*P/k) switches

• f(P*d) wires

• f(k) wires per switch

+ latency: f(d)

+ bandwidth: f(1)

• commonly used in large UMA systems
• a.k.a. butterfly, banyan, omega

m0 m1 m2 m3

p0 p1 p2 p3

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

25© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

Interconnect 4: 2D Torus

• direct interconnect
• no dedicated switches

+ latency: f(P1/2)
• locality/neighbor optimization

+ bandwidth: f(1), scales with P

+ cost
• f(2P) wires

• 4 wires per switch

• good scalability ⇒ widely used
• variants: 3D, mesh (no “wraparound”)

• e.g., Alpha 21364-based MPs

p/m p/m p/m p/m

p/m p/m p/m p/m

p/m p/m p/m p/m

p/m p/m p/m p/m

ECE 252 / CPS 220 Lecture Notes
Multiprocessors and Multithreading

26© 2009 by Sorin, Roth, Hill, Wood, Sohi,
Smith, Vijaykumar, Lipasti

• direct interconnect
• k: arity (# nodes per dimension)

• d: dimension = logkP

• in figure: P = 16, k = 2, d = 4

+ latency: f(k/d)
• locality/neighbor optimized

+ bandwidth: f((k–1)*d)

– cost
• f((k–1)*d*P) wires

• f((k–1)*d) wires per switch

• good scalability, expensive switches
– switch changes as nodes are added

Interconnect 5: Hypercube

p/m p/m

p/m p/m

p/m p/m

p/m p/m

p/m p/m

p/m p/m

p/m p/m

p/m p/m

