
ECE 252 / CPS 220 Lecture Notes
Pipelining

48© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Improvement: Correlating Predictors

different branches may be correlated

• outcome of branch depends on outcome of other branches
• makes intuitive sense (programs are written this way)

• e.g., if the first two conditions are true, then third is false

if (aa == 2) aa = 0;

if (bb == 2) bb = 0;

if (aa != bb) { . . . }

revelation: prediction = f(branch PC, recent branch outcomes)

• revolution: BP accuracies increased dramatically

• lots of reseach in designing that function for best BP

ECE 252 / CPS 220 Lecture Notes
Pipelining

49© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Correlating (Two-Level) Predictors

• branch history shift register (BHR) holds recent outcomes
• combination of PC and BHR accesses BHT

• basically, multiple predictions per branch, choose based on history

design space

• number of BHRs
• multiple BHRs (“local”, Intel)

• 1 global BHR (“global”, everyone else)

• PC/BHR overlap
• full, partial, none (concatenated?)

• popular design: Gshare [McFarling]
• 1 global BHR, full overlap, f = XOR

branch PC

f

BHT

BHR

T/N

ECE 252 / CPS 220 Lecture Notes
Pipelining

50© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Correlating Predictor Example

• example with alternating T,N (1-bit BHT, no correlation)

• add 1 1-bit BHR, concatenate with PC
• effectively, two predictors per PC

• top (BHR=N) bottom (BHR=T) active entry

state/prediction N T N T N T N T N T N T
branch outcome T N T N T N T N T N T N
mis-prediction? * * * * * * * * * * * *

state/prediction N
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

T
N

branch outcome T N T N T N T N T N T N
mis-prediction? *

ECE 252 / CPS 220 Lecture Notes
Pipelining

51© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Hybrid/Competitive/Tournament Predictors

observation: different schemes work better for different branches

idea: multiple predictors, choose on per static-branch basis

mechanics

• two (or more) predictors

• chooser
• if chosen predictor is wrong...

• ...and other is right...

• ...flip chooser

• popular design: Gselect [McFarling]
• Gshare + 2-bit saturating counter BHR

branch PC

f

ch
oo

se
r

pr
ed

ic
to

r
1

pr
ed

ic
to

r
2

ECE 252 / CPS 220 Lecture Notes
Pipelining

52© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch Target Buffer (BTB)

branch PC ⇒ target PC

• target PC available at end of IF stage
+ no bubble for correct predictions

• branch target buffer (BTB)
• index: branch PC

• data: target PC (+ T/NT?)

• tags: branch PC (why are tags needed here and not in BHT?)

– many more bits per entry than BHT

• considerations: combine with I-cache? store not-taken branches?

• branch target cache (BTC)
• data: target PC + target instruction(s)

• enables “branch folding” optimization (branch removed from pipe)

ECE 252 / CPS 220 Lecture Notes
Pipelining

53© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Jump Prediction

exploit behavior of different kinds of jumps to improve prediction

• function returns
• use hardware return address stack (RAS)

• call pushes return address on top of RAS

• for return, predict address at top of RAS and pop

– trouble: must manage speculatively

• indirect jumps (switches, virtual functions)
• more than one taken target per jump

• path-based BTB [Driesen+Holzle]

ECE 252 / CPS 220 Lecture Notes
Pipelining

54© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Branch Issues

issue1: how do we know at IF which instructions are branches?

• BTB: don’t need to “know”
• check every instruction: BTB entry ⇒ instruction is a branch

issue2: BHR (RAS) depend on branch (call) history

• when are these updated?
• at WB is too late (if another branch is in-flight)

• at IF (after prediction)

• must be able to recover BHR (RAS) on mis-speculation (nasty)

ECE 252 / CPS 220 Lecture Notes
Pipelining

55© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Limitations of Branch Prediction

Branch prediction is extremely important for performance

• So, how well can we do?

• Can you think of better branch predictors?

• Can we ever have perfect branch prediction?

Thought experiment:

• Roughly every 5th instruction is a conditional branch

• Assume you predict 90% correctly

• Assume you don’t resolve a branch for 20 cycles

• How many branches must we predict to avoid stalling?

• What’s probability that all predictions were correct?

ECE 252 / CPS 220 Lecture Notes
Pipelining

56© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Reminder of Where We Are

• principles of pipelining
• pipeline depth: clock rate vs. number of stalls (CPI)

• hazards
• structural

• data (RAW, WAR, WAW)

• control

• multi-cycle operations
• structural hazards, WAW hazards

• interrupts
• precise state

ECE 252 / CPS 220 Lecture Notes
Pipelining

57© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Adding Multi-Cycle Operations

RISC tenet #1: “single-cycle operations”

• why was this such a big deal?

• fact: not all operations complete in 1 cycle
• FP add, int/FP multiply: 2–4 cycles, int/FP divide: 20–50 cycles

• L1 data cache misses: 10–150 cycles!

• slow clock cycle down to slowest operation?
– can’t without incurring huge performance loss

• solution: extend pipeline - add pipeline stages to EX

ECE 252 / CPS 220 Lecture Notes
Pipelining

58© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Extended Pipeline

• separate integer/FP, pipe register files
• loads/stores in integer pipeline only (why?)

• additional, parallel functional units
• E+: FP adder (2 cycles, pipelined)

• E*: FP/integer multiplier (4 cycles, pipelined)

• E/: FP/integer divider (20 cycles, not pipelined)

I$

int RF

D
F

M WX
F/D

D/X X/M M/W

PC D$

FP RF

W
FP+ FP+

E+

ECE 252 / CPS 220 Lecture Notes
Pipelining

59© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Multi-Cycle Example

• write-after-write (WAW) hazards

• register write port structural hazards

• functional unit structural hazards

• elongated read-after-write (RAW) hazards

1 2 3 4 5 6 7 8 9 10
divf f0,f1,f2 F D E/ E/ E/ E/ W
mulf f0,f3,f4 F D E* E* W
addf f5,f6,f7 F D E+ E+ W
subf f8,f6,f7 F D * E+ E+ W
mulf f9,f8,f7 F D * * E* E*

ECE 252 / CPS 220 Lecture Notes
Pipelining

60© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Another Multi-Cycle Example

example: SAXPY (math kernel)

Z[i] = A*X[i] + Y[i] // single precision

KEY: d* = data stall, p* = stalled behind older stalled instruction

1 2 3 4 5 6 7 8 9 10
ldf f2,0(r1) F D X M W
mulf f6,f0,f2 F D d* E* E* E* E* W
ldf f4,0(r2) F p* D X M W
addf f8,f6,f4 F D d* d* E+ E+ W
stf f8,0(r3) F p* p* D X M W
add r1,r1,#4 F D X M W
add r2,r2,#4 F D X M W
add r3,r3,#4 F D X M W

f6

ECE 252 / CPS 220 Lecture Notes
Pipelining

61© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Register Write Port Structural Hazards

where are these resolved?

• multiple writeback ports?
– not a good idea (why not?)

• in ID?
• reserve writeback slot in ID (writeback reservation bits)

+ simple, keeps stall logic localized to ID stage

– won’t work for cache misses (why not?)

• in MEM?
+ works for cache misses, better utilization

– two stall controls (F/D and M/W) must be synchronized

• in general: cache misses are hard
• don’t know in ID whether they will happen early enough (in ID)

ECE 252 / CPS 220 Lecture Notes
Pipelining

62© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

WAW Hazards

how are these dealt with?

• stall younger instruction writeback?
+ intuitive, simpler

– lower performance (cascading writeback structural hazards)

• abort (don’t do) older instruction writeback?
+ no performance loss

– but what if intermediate instruction causes an interrupt? (next)

ECE 252 / CPS 220 Lecture Notes
Pipelining

63© 2009 by Sorin, Roth, Hill, Wood,
Sohi, Smith, Vijaykumar, Lipasti

Dealing With Interrupts

interrupts (aka faults, exceptions, traps)

• e.g., arithmetic overflow, divide by zero, protection violation

• e.g., I/O device request, OS call, page fault

classifying interrupts

• terminal (fatal) vs. restartable (control returned to program)

• synchronous (internal) vs. asynchronous (external)

• user vs. coerced

• maskable (ignorable) vs. non-maskable

• between instructions vs. within instruction

