
Duke ECE152 – Spring 2012 – Project Part 6: Pipelined CPU
200 Points. Due electronically by 11:59pm on April 11.

This is NOT an easy assignment. Start early! That way you have time to get help.

In this part of the project, you will build a complete and pipelined processor starting from
your unpipelined processor. As part of this project, you will build your processor in Quartus
(VHDL highly recommended), download your design onto an FPGA prototyping board, and
demonstrate that it works by running a test program provided to you. Recall that the
specification for the Duke152-S12-32 Instruction Set Architecture can be found at
http://people.ee.duke.edu/~sorin/ece152/project/arch-spec.pdf.

Project Part 6a: Five-Stage Single-Issue 32-bit Integer Processor
This pipelined processor has the same functional requirements as the unpipelined

processor from the previous part of the project. It should use a similar version of the 5-stage
pipeline presented in lecture, consisting of Fetch, Decode, Execute, Memory, and Writeback
stages.

Whenever data bypassing is possible, you must use it to avoid hazards instead of
stalling. If a stall is unavoidable, the hardware is responsible for managing the stall (inserting a
bubble into the pipeline). Stalling until a branch, jump, or return is resolved is acceptable.
However, keep in mind that bonus points will be awarded to groups with the highest performing
processors at the end of the semester, and stalling does hurt performance.

You may implement your instruction decode and pipeline control (i.e. hazard detection
and bypassing) combinational logic using Behavioral VHDL. This is the only exception to the
rule about not using Behavioral VHDL. You learned how to minimize logic in ECE 52; in this
class we let the CAD (Computer-Aided-Design) tools do it for us. When-else statements are
recommended to generate simple combinational logic; process blocks are not.

A recommended intermediate step in this project is to pipeline your processor first
without hazard stalling or bypassing, and test it with extra NOP non-operation instructions
inserted into your code to eliminate data hazards. A testGiveMeN program with NOPs inserted to
eliminate data hazards is provided at
http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_nodatahazard.asm. Note that only
data hazards are eliminated; you must either flush upstream instructions on changes in control
flow or add nops to the code yourself. A sample waveform to match is provided at
http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_nodatahazard.vwf. You may have
to shift the keyboard inputs in time if you insert NOPs or have a faster processor.

A sample waveform for your complete pipelined processor running testGiveMeN is
provided at http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_pipelined.vwf. Again,
you may have to shift the keyboard inputs in time if you have a faster processor.

Hint: Recall that Register $r0 must always have the value zero, so a non-zero value for it
should never be forwarded from the bypass network, including if an earlier instruction had $r0 as

Page 1 of 2

http://people.ee.duke.edu/~sorin/ece152/project/arch-spec.pdf
http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_pipelined.vwf
http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_nodatahazard.vwf
http://people.ee.duke.edu/~sorin/ece152/project/testGiveMeN_nodatahazard.asm

its destination register. Note that this also means that you should not stall on a hazard for $r0;
doing so might even lock up your pipeline.

Tip: If you update your Memory Initialization Files but keep the same file names, you
can go to the menu item “Processing”  “Update Memory Initialization File” instead of
recompiling before simulating again in Quartus with your new assembly code. You must still
recompile before downloading to the FPGA board.

Project Part 6b: Hardware Demonstration
After designing and testing your processor in Quartus, you will download it to one of the

Altera DE2 FPGA prototyping boards and demonstrate that it executes the “testFibonacci”
program correctly and quickly. Do not wait until demo day to complete this final step; just
because your design works in Quartus does not mean that there will not be hiccups getting it onto
the board. A skeleton framework with all of the pin mappings and keyboard and LCD controllers
is provided at http://people.ee.duke.edu/~sorin/ece152/project/skeleton.qar. Restore from the
archive file (Project  Restore Archived Project) and add your processor into this skeleton
project. In the skeleton.vhd file, comment out line 38 “div: pll PORT MAP
(inclock,clock);” and uncomment line 39 “clock <= inclock;” to run your processor at 50 MHz
clock frequency.

Submitting This Assignment
To submit this assignment, create a Quartus Archive (Project  Archive Project) named

project6.qar of all the files needed to implement your design. Make sure that your processor file
is named processor.vhd or processor.bdf. Names of lower-level files are unrestricted, but be sure
to include them along with your top-level design entity in the Quartus Archive file. Email your
Quartus Archive file as an attachment along with all group members’ names and NetIDs to
duke.ece152.spring2012@gmail.com. You will also demonstrate your working processor on an
FPGA board in lab on a date TBD later.

Page 2 of 2

mailto:duke.ece152.spring2012@gmail.com
http://people.ee.duke.edu/~sorin/ece152/project/skeleton.qar

