
ECE 152© 2012 Daniel J. Sorin from Roth
36

This Unit: Main Memory

• Memory hierarchy review

• DRAM technology

• A few more transistors

• Organization: two level addressing

• Building a memory system

• Bandwidth matching

• Error correction

• Organizing a memory system

• Virtual memory

• Address translation and page tables

• A virtual memory hierarchy

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

ECE 152© 2012 Daniel J. Sorin from Roth
37

Virtual Memory

• Idea of treating memory like a cache
• Contents are a dynamic subset of program’s address space

• Dynamic content management is transparent to program

• Actually predates “caches” (by a little)

• Original motivation: compatibility
• IBM System 370: a family of computers with one software suite

+ Same program could run on machines with different memory sizes

• Caching mechanism made it appear as if memory was 2N bytes

• Regardless of how much memory there actually was

– Prior, programmers explicitly accounted for memory size

• Virtual memory
• Virtual: “in effect, but not in actuality” (i.e., appears to be, but isn’t)

ECE 152© 2012 Daniel J. Sorin from Roth
38

Virtual Memory

• Programs use virtual addresses (VA)
• 0…2N–1

• VA size also referred to as machine size

• E.g., Pentium4 is 32-bit, Itanium is 64-bit

• Memory uses physical addresses (PA)
• 0…2M–1 (M<N, especially if N=64)

• 2M is most physical memory machine supports

• VA→PA at page granularity (VP→PP)
• By “system”

• Mapping need not preserve contiguity

• VP need not be mapped to any PP

• Unmapped VPs live on disk (swap)

…

…

Disk(swap)

Program

Main Memory

code heap stack

ECE 152© 2012 Daniel J. Sorin from Roth
39

Other Uses of Virtual Memory

• Virtual memory is quite useful

• Automatic, transparent memory management just one use

• “Functionality problems are solved by adding levels of indirection”

• Example: multiprogramming

• Each process thinks it has 2N bytes of address space

• Each thinks its stack starts at address 0xFFFFFFFF

• “System” maps VPs from different processes to different PPs

+Prevents processes from reading/writing each other’s memory

…

…

Program1 … Program2

ECE 152© 2012 Daniel J. Sorin from Roth
40

Still More Uses of Virtual Memory

• Inter-process communication

• Map VPs in different processes to same PPs

• Direct memory access I/O

• Think of I/O device as another process

• Will talk more about I/O in a few lectures

• Protection

• Piggy-back mechanism to implement page-level protection

• Map VP to PP … and RWX protection bits

• Attempt to execute data, or attempt to write insn/read-only data?

• Exception → OS terminates program

ECE 152© 2012 Daniel J. Sorin from Roth
41

Address Translation

• VA→PA mapping called address translation
• Split VA into virtual page number (VPN) and page offset (POFS)

• Translate VPN into physical page number (PPN)

• POFS is not translated – why not?

• VA→PA = [VPN, POFS] → [PPN, POFS]

• Example above
• 64KB pages → 16-bit POFS

• 32-bit machine → 32-bit VA → 16-bit VPN (16 = 32 – 16)

• Maximum 256MB memory → 28-bit PA → 12-bit PPN

POFS[15:0]virtual address[31:0] VPN[31:16]

POFS[15:0]physical address[27:0] PPN[27:16]

translate don’t touch

ECE 152© 2012 Daniel J. Sorin from Roth
42

Mechanics of Address Translation

• How are addresses translated?

• In software (now) but with hardware acceleration (a little later)

• Each process is allocated a page table (PT)

• Maps VPs to PPs or to disk (swap) addresses

• VP entries empty if page never referenced

• Translation is table lookup

struct {
union { int ppn, disk_block; }
int is_valid, is_dirty;

} PTE;
struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn) {
if (pt[vpn].is_valid)

return pt[vpn].ppn;
}

PT

vp
n

Disk(swap)

ECE 152© 2012 Daniel J. Sorin from Roth
43

Page Table Size

• How big is a page table on the following machine?
• 4B page table entries (PTEs)

• 32-bit machine

• 4KB pages

• Solution
• 32-bit machine → 32-bit VA → 4GB virtual memory

• 4GB virtual memory / 4KB page size → 1M VPs

• 1M VPs * 4B PTE → 4MB page table

• How big would the page table be with 64KB pages?

• How big would it be for a 64-bit machine?

• Page tables can get enormous
• There are ways of making them smaller

ECE 152© 2012 Daniel J. Sorin from Roth
44

Multi-Level Page Table

• One way: multi-level page tables
• Tree of page tables

• Lowest-level tables hold PTEs

• Upper-level tables hold pointers to lower-level tables

• Different parts of VPN used to index different levels

• Example: two-level page table for machine on last slide
• Compute number of pages needed for lowest-level (PTEs)

• 4KB pages / 4B PTEs → 1K PTEs fit on a single page

• 1M PTEs / (1K PTEs/page) → 1K pages to hold PTEs

• Compute number of pages needed for upper-level (pointers)

• 1K lowest-level pages → 1K pointers

• 1K pointers * 32-bit VA → 4KB → 1 upper level page

ECE 152© 2012 Daniel J. Sorin from Roth
45

Multi-Level Page Table

• 20-bit VPN

• Upper 10 bits index 1st-level table

• Lower 10 bits index 2nd-level table
1st-level
“pointers”

2nd-level
PTEs

VPN[9:0]VPN[19:10]

struct {
union { int ppn, disk_block; }
int is_valid, is_dirty;

} PTE;
struct {

struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate(int vpn) {
struct L2PT *l2pt = pt[vpn>>10];
if (l2pt && l2pt->ptes[vpn&1023].is_valid)

return l2pt->ptes[vpn&1023].ppn;
}

pt “root”

ECE 152© 2012 Daniel J. Sorin from Roth
46

Multi-Level Page Table

• Have we saved any space?

• Isn’t total size of 2nd level PTE pages same as single-
level table (i.e., 4MB)?

• Yes, but…

• Large virtual address regions unused

• Corresponding 2nd-level pages need not exist

• Corresponding 1st-level pointers are null

• Example: 2MB code, 64KB stack, 16MB heap

• Each 2nd-level page maps 4MB of virtual addresses

• 1 page for code, 1 for stack, 4 for heap, (+1 1st-level)

• 7 total pages for PT = 28KB (<< 4MB)

ECE 152© 2012 Daniel J. Sorin from Roth
47

Address Translation Mechanics

• The six questions
• What? address translation

• Why? compatibility, multi-programming, protection

• How? page table

• Who performs it?

• When?

• Where does page table reside?

• Option I: process (program) translates its own addresses
• Page table resides in process visible virtual address space

– Bad idea: implies that program (and programmer)…

• …must know about physical addresses

• Isn’t that what virtual memory is designed to avoid?

• …can forge physical addresses and mess with other programs

• Translation on L2 miss or always? How would program know?

ECE 152© 2012 Daniel J. Sorin from Roth
48

Who? Where? When? Take II

• Option II: operating system (OS) translates for process

• Page table resides in OS virtual address space

+ User-level processes cannot view/modify their own tables

+ User-level processes need not know about physical addresses

• Translation on L2 miss

– Otherwise, OS SYSCALL before any fetch, load, or store

• L2 miss: interrupt transfers control to OS handler

• Handler translates VA by accessing process’s page table

• Accesses memory using PA

• Returns to user process when L2 fill completes

– Still slow: added interrupt handler and PT lookup to memory access

– What if PT lookup itself requires memory access? Head spinning…

ECE 152© 2012 Daniel J. Sorin from Roth
49

Translation Buffer

• Functionality problem? Add indirection!

• Performance problem? Add cache!

• Address translation too slow?

• Cache translations in translation buffer (TB)

• Small cache: 16–64 entries, often fully assoc

+ Exploits temporal locality in PT accesses

+ OS handler only on TB miss

CPU

D$

L2

Main
Memory

I$

TB

VPN PPN
VPN PPN
VPN PPN

“tag” “data”PA

VA

VA

VA VA

ECE 152© 2012 Daniel J. Sorin from Roth
50

TB Misses

• TB miss: requested PTE not in TB, but in PT

• Two ways of handling

• 1) OS routine: reads PT, loads entry into TB (e.g., Alpha)

• Privileged instructions in ISA for accessing TB directly

• Latency: one or two memory accesses + OS call

• 2) Hardware FSM: does same thing (e.g., IA-32)

• Store PT root pointer in hardware register

• Make PT root and 1st-level table pointers physical addresses

• So FSM doesn’t have to translate them

+ Latency: saves cost of OS call

ECE 152© 2012 Daniel J. Sorin from Roth
51

Nested TB Misses

• Nested TB miss: when OS handler itself has a TB miss

• TB miss on handler instructions

• TB miss on page table VAs

• Not a problem for hardware FSM: no instructions, PAs in page table

• Handling is tricky for SW handler, but possible

• First, save current TB miss info before accessing page table

• So that nested TB miss info doesn’t overwrite it

• Second, lock nested miss entries into TB

• Prevent TB conflicts that result in infinite loop

• Another good reason to have a highly-associative TB

ECE 152© 2012 Daniel J. Sorin from Roth
52

Page Faults

• Page fault: PTE not in TB or in PT

• Page is simply not in memory

• Starts out as a TB miss, detected by OS handler/hardware FSM

• OS routine

• OS software chooses a physical page to replace

• “Working set”: more refined software version of LRU

• Tries to see which pages are actively being used

• Balances needs of all current running applications

• If dirty, write to disk (like dirty cache block with writeback $)

• Read missing page from disk (done by OS)

• Takes so long (10ms), OS schedules another task

• Treat like a normal TB miss from here

ECE 152© 2012 Daniel J. Sorin from Roth
53

Virtual Caches

• Memory hierarchy so far: virtual caches
• Indexed and tagged by VAs

• Translate to PAs only to access memory

+ Fast: avoids translation latency in common case

• What to do on process switches?
• Flush caches? Slow

• Add process IDs to cache tags

• Does inter-process communication work?
• Aliasing: multiple VAs map to same PA

• How are multiple cache copies kept in sync?

• Also a problem for I/O (later in course)

• Disallow caching of shared memory? Slow

CPU

D$

L2

Main
Memory

I$

TB

PA

VA

VA

VA VA

ECE 152© 2012 Daniel J. Sorin from Roth
54

Physical Caches

• Alternatively: physical caches
• Indexed and tagged by PAs

• Translate to PA at the outset

+ No need to flush caches on process switches

• Processes do not share PAs

+ Cached inter-process communication works

• Single copy indexed by PA

– Slow: adds 1 cycle to thit

CPU

D$

L2

Main
Memory

I$

TB

PA

PA

VA VA

PA PA

TB

ECE 152© 2012 Daniel J. Sorin from Roth
55

Virtual Physical Caches

• Compromise: virtual-physical caches

• Indexed by VAs

• Tagged by PAs

• Cache access and address translation in parallel

+ No context-switching/aliasing problems

+ Fast: no additional thit cycles

• A TB that acts in parallel with a cache is a TLB

• Translation Lookaside Buffer

• Common organization in processors today

CPU

D$

L2

Main
Memory

I$TLB

PA

PA

VA VA

TLB

ECE 152© 2012 Daniel J. Sorin from Roth
56

Cache/TLB Access

• Two ways to look at VA

• Cache: TAG+IDX+OFS

• TLB: VPN+POFS

• Can have parallel cache &
TLB …

• If address translation

doesn’t change IDX

• � VPN/IDX don’t overlap

1:0[31:12]

data

[11:2] <<

address

==

TLB hit/miss

0
1

1022
1023

2

==

==
==

VPN [31:16] POFS[15:0]

cache

TLB

cache hit/miss

ECE 152© 2012 Daniel J. Sorin from Roth
57

Cache Size And Page Size

• Relationship between page size and L1 I$(D$) size

• Forced by non-overlap between VPN and IDX portions of VA

• Which is required for TLB access

• I$(D$) size / associativity ≤ page size

• Big caches must be set associative

• Big cache � more index bits (fewer tag bits)

• More set associative � fewer index bits (more tag bits)

• Systems are moving towards bigger (64KB) pages

• To amortize disk latency

• To accommodate bigger caches

1:0[31:12] IDX[11:2]

VPN [31:16] [15:0]

ECE 152© 2012 Daniel J. Sorin from Roth
58

TLB Organization

• Like caches: TLBs also have ABCs

• What does it mean for a TLB to have a block size of two?

• Two consecutive VPs share a single tag

• Rule of thumb: TLB should “cover” L2 contents

• In other words: #PTEs * page size ≥ L2 size

• Why? Think about this …

ECE 152© 2012 Daniel J. Sorin from Roth
59

Flavors of Virtual Memory

• Virtual memory almost ubiquitous today

• Certainly in general-purpose (in a computer) processors

• But even some embedded (in non-computer) processors support it

• Several forms of virtual memory

• Paging (aka flat memory): equal sized translation blocks

• Most systems do this

• Segmentation: variable sized (overlapping?) translation blocks

• IA32 uses this

• Makes life very difficult

• Paged segments: don’t ask

ECE 152© 2012 Daniel J. Sorin from Roth
60

Summary

• DRAM

• Two-level addressing

• Refresh, access time, cycle time

• Building a memory system

• DRAM/bus bandwidth matching

• Memory organization

• Virtual memory

• Page tables and address translation

• Page faults and handling

• Virtual, physical, and virtual-physical caches and TLBs

Next part of course: I/O

