

	rol hazards ind					(01	· no	t at	all)	
• Pe	enalty for taken br	ranch	is 2	2 cyc	les						
		1	2	3	4	5	6	7	8	9	
	addi \$3,\$0,1	F	D	Х	М	W					
	bnez \$3,targ		F	D	Х	М	w				
	sw \$6,4(\$7)			с*	с*	F	D	Х	М	W	

Branch Performance

- Again, measure effect on CPI (clock period is fixed)
- Back of the envelope calculation
 - Branch: 20%, load: 20%, store: 10%, other: 50%
 - 75% of branches are taken (why so many taken?)

ECE 152

55

• CPI if no branches = 1

- CPI with branches = 1 + 0.20*0.75*2 = 1.3
- Branches cause 30% slowdown
 - How do we reduce this penalty?

© 2012 Daniel J. Sorin from Roth

Branch Prediction Performance

· Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50% • 75% of branches are taken

• Dynamic branch prediction

- Assume branches predicted with 75% accuracy
- CPI = 1 + 0.20*0.75*2 = **1.15**
- Branch (esp. direction) prediction was a hot research topic Accuracies now 90-95%

ECE 152

© 2012 Daniel J. Sorin from Roth

64

Pipelining And Exceptions • Remember exceptions? - Pipelining makes them nasty • 5 instructions in pipeline at once Exception happens, how do you know which instruction caused it? ٠ Exceptions propagate along pipeline in latches Two exceptions happen, how do you know which one to take first? One belonging to oldest insn • When handling exception, have to flush younger insns • Piggy-back on branch mis-prediction machinery to do this • Just FYI – we'll solve this problem in ECE 252 65

ECE 152

© 2012 Daniel J. Sorin from Roth

Pipeline Performance Summary	Instruction-Level Parallelism (ILP)						
Base CPI is 1, but hazards increase it	 Pipelining: a form of instruction-level parallelism (ILP) Parallel execution of insns from a single sequential program 						
Remember: nothing magical about a 5 stage pipeline							
Pentium4 (first batch) had 20 stage pipeline	 There are ways to exploit ILP 						
Increasing pipeline depth (#stages)	 We'll discuss this a bit more at end of semester, and then we'll really cover it in great depth in ECE 252 						
+ Reduces clock period (that's why companies do it)							
 But increases CPI 	 We'll also talk a bit about thread-level parallelism (TLP) 						
Branch mis-prediction penalty becomes longer	and how it's exploited by multithreaded and multicore						
 More stages between fetch and whenever branch computes 	processors						
Non-bypassed data hazard stalls become longer							
 More stages between register read and write 							
At some point, CPI losses offset clock gains, question is when?							

