
ECE 152© 2012 Daniel J. Sorin from Roth 52

Control Hazards

• Control hazards

• Must fetch post branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell if it’s a branch)

PC
Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S
X

ECE 152© 2012 Daniel J. Sorin from Roth 53

Branch Recovery

• Branch recovery: what to do when branch is taken

• Flush insns currently in F/D and D/X (they’re wrong)

• Replace with NOPs

+Haven’t yet written to permanent state (RegFile, DMem)

PC
Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

nopnop

PC

A

B

IR

O

B

IR

PC

IR

S
X

ECE 152© 2012 Daniel J. Sorin from Roth 54

Control Hazard Pipeline Diagram

• Control hazards indicated with c* (or not at all)

• Penalty for taken branch is 2 cycles

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W

bnez $3,targ F D X M W

sw $6,4($7) c* c* F D X M W

ECE 152© 2012 Daniel J. Sorin from Roth 55

Branch Performance

• Again, measure effect on CPI (clock period is fixed)

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken (why so many taken?)

• CPI if no branches = 1

• CPI with branches = 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

• How do we reduce this penalty?

ECE 152© 2012 Daniel J. Sorin from Roth 56

One Option: Fast Branches

• Fast branch: resolves in Decode stage, not Execute

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is only 1

– Need additional comparison insns (slt) for complex tests

– Must be able to bypass into decode now, too

PC
Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D

D/X X/M

S
X

<>
0

O

B

IR

A

B

IR

PC

IR

S
X

ECE 152© 2012 Daniel J. Sorin from Roth 57

Another Option: Delayed Branches

• Delayed branch: don’t flush insn immediately following

• As if branch takes effect one insn later

• ISA modification � compiler accounts for this behavior

• Insert insns independent of branch into branch delay slot(s)

PC
Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

nop

O

B

IR

PC

A

B

IR

PC

IR

S
X

ECE 152© 2012 Daniel J. Sorin from Roth 58

Improved Branch Performance?

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Fast branches

• 25% of branches have complex tests that require extra insn

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2

• Delayed branches

• 50% of delay slots can be filled with insns, others need nops

• CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.50*1(extra insn) = 1.25

– Bad idea: painful for compiler, gains are minimal

– E.g., delayed branches in SPARC architecture (Sun computers)

ECE 152© 2012 Daniel J. Sorin from Roth 59

Dynamic Branch Prediction

• Dynamic branch prediction: guess outcome
• Start fetching from guessed address

• Flush on mis-prediction

PC
Insn
Mem

Register
File

S
X

s1 s2 d

+
4

<<
2

TG
PC

IR

TG
PC

A

B

IR

O

B

IR

PC

F/D D/X

X/M

nopnop

BP <>

ECE 152© 2012 Daniel J. Sorin from Roth 60

Inside A Branch Predictor

• Two parts

• Target buffer: maps PC to taken target

• Direction predictor: maps PC to taken/not-taken

• What does it mean to “map PC”?

• Use some PC bits as index into an array of data items (like Regfile)

PC

Predicted direction (taken/not taken)

Predicted target (if taken)

ECE 152© 2012 Daniel J. Sorin from Roth 61

More About “Mapping PCs”

• If array of data has N entries

• Need log(N) bits to index it

• Which log(N) bits to choose?

• Least significant log(N) after the least significant 2, why?

• LS 2 are always 0 (PCs are aligned on 4 byte boundaries)

• Least significant change most often → gives best distribution

• What if two PCs have same pattern in that subset of bits?

• Called aliasing

• We get a nonsense target (intended for another PC)

• That’s OK, it’s just a guess anyway, we can recover if it’s wrong

PC[lgN+2:2]

PC[31:0]

ECE 152© 2012 Daniel J. Sorin from Roth 62

Updating A Branch Predictor

• How do targets and directions get into branch predictor?

• From previous instances of branches

• Predictor “learns” branch behavior as program is running

• Branch X was taken last time, probably will be taken next time

• Branch predictor needs a write port, too (not in my ppt)

• New prediction written only if old prediction is wrong

ECE 152© 2012 Daniel J. Sorin from Roth 63

Types of Branch Direction Predictors

• Predict same as last time we saw this same branch PC

• 1 bit of state per predictor entry (take or don’t take)

• For what code will this work well? When will it do poorly?

• Use 2-level saturating counter

• 2 bits of state per predictor entry

• 11, 10 = take, 01, 00 = don’t take

• Why is this usually better?

• And every other possible predictor you could think of!

• ICQ: Think of other ways to predict branch direction

• Dynamic branch prediction is one of most important
problems in computer architecture

ECE 152© 2012 Daniel J. Sorin from Roth 64

Branch Prediction Performance

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Assume branches predicted with 75% accuracy

• CPI = 1 + 0.20*0.75*2 = 1.15

• Branch (esp. direction) prediction was a hot research topic

• Accuracies now 90-95%

ECE 152© 2012 Daniel J. Sorin from Roth 65

Pipelining And Exceptions

• Remember exceptions?
– Pipelining makes them nasty

• 5 instructions in pipeline at once

• Exception happens, how do you know which instruction caused it?

• Exceptions propagate along pipeline in latches

• Two exceptions happen, how do you know which one to take first?

• One belonging to oldest insn

• When handling exception, have to flush younger insns

• Piggy-back on branch mis-prediction machinery to do this

• Just FYI – we’ll solve this problem in ECE 252

ECE 152© 2012 Daniel J. Sorin from Roth 66

Pipeline Performance Summary

• Base CPI is 1, but hazards increase it

• Remember: nothing magical about a 5 stage pipeline

• Pentium4 (first batch) had 20 stage pipeline

• Increasing pipeline depth (#stages)

+ Reduces clock period (that’s why companies do it)

– But increases CPI

• Branch mis-prediction penalty becomes longer

• More stages between fetch and whenever branch computes

• Non-bypassed data hazard stalls become longer

• More stages between register read and write

• At some point, CPI losses offset clock gains, question is when?

ECE 152© 2012 Daniel J. Sorin from Roth 67

Instruction-Level Parallelism (ILP)

• Pipelining: a form of instruction-level parallelism (ILP)

• Parallel execution of insns from a single sequential program

• There are ways to exploit ILP

• We’ll discuss this a bit more at end of semester, and then we’ll
really cover it in great depth in ECE 252

• We’ll also talk a bit about thread-level parallelism (TLP)

and how it’s exploited by multithreaded and multicore

processors

ECE 152© 2012 Daniel J. Sorin from Roth 68

Summary

• Principles of pipelining

• Pipelining a datapath and controller

• Performance and pipeline diagrams

• Data hazards

• Software interlocks and code scheduling

• Hardware interlocks and stalling

• Bypassing

• Control hazards

• Branch prediction

Next up: Memory Systems (caches and main memory)

