
ECE 152
Introduction to Computer Architecture

Processor Design: Datapath and Control

Copyright 2012 Daniel J. Sorin

Duke University

Slides are derived from work by

Amir Roth (Penn)

Spring 2012

© 2012 Daniel J. Sorin
from Roth ECE152 2

Where We Are in This Course Right Now

• So far:

• We know what a computer architecture is

• We know what kinds of instructions it might execute

• We know how to perform arithmetic and logic in an ALU

• Now:

• We learn how to design a processor in which the ALU is just one
component

• Processor must be able to fetch instructions, decode them, and
execute them

• There are many ways to do this, even for a given ISA

• Next:

• We learn how to use pipelining to get better performance out of
this processor

© 2012 Daniel J. Sorin
from Roth ECE152 3

This Unit: Processor Design

• Datapath components and timing

• Registers and register files

• Memories (RAMs)

• Mapping an ISA to a datapath

• Control

• Exceptions

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

© 2012 Daniel J. Sorin
from Roth ECE152 4

Readings

• Patterson and Hennessy

• Chapter 4: Sections 4.1-4.4

• Read this chapter carefully

• It has many more examples than I can cover in class

© 2012 Daniel J. Sorin
from Roth ECE152 5

So You Have an ALU…

• Important reminder: a processor is just a big finite state

machine (FSM) that interprets some ISA

• Start with one instruction
add $3,$2,$4

• ALU performs just a small part of execution of instruction

• You have to read and write registers

• You have have to fetch the instruction to begin with

• What about loads and stores?

• Need some sort of memory interface

• What about branches?

• Need some hardware for that, too

© 2012 Daniel J. Sorin
from Roth ECE152 6

Datapath and Control

• Datapath: registers, memories, ALUs (computation)

• Control: which registers read/write, which ALU operation

• Fetch: get instruction, translate into control

• Processor Cycle: Fetch → Decode → Execute

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

© 2012 Daniel J. Sorin
from Roth ECE152 7

Building a Processor for an ISA

• Fetch is pretty straightforward

• Just need a register (called the Program Counter or PC) to hold
the next address to fetch from instruction memory

• Provide address to instruction memory � instruction memory

provides instruction at that address

• Let’s start with the datapath

1. Look at ISA

2. Make sure datapath can implement every instruction

© 2012 Daniel J. Sorin
from Roth ECE152 8

Datapath for MIPS ISA

• Consider only the following instructions
add $1,$2,$3

addi $1,2,$3

lw $1,4($3)

sw $1,4($3)

beq $1,$2,PC_relative_target

j Absolute_target

• Why only these?

• Most other instructions are similar from datapath viewpoint

• I leave the other ones for you to figure out

© 2012 Daniel J. Sorin
from Roth ECE152 9

Review (ECE 52 & Project Part1): Register

• Register: DFF array with shared clock, write-enable (WE)

• Notice: both a clock and a WE (DFFWE = clock & registerWE)

• Convention I: clock represented by wedge

• Convention II: if no WE, DFF is written on every clock

DFF

DFF

DFF

D0

DN-1

D1

CLK
WE

Q0

Q1

QN-1

D Q
NN

WE

© 2012 Daniel J. Sorin
from Roth ECE152 10

Uses of Registers

• A single register is good for some things

• PC: program counter

• Other things which aren’t the ISA registers

• ICQ: other examples from within the ALU, mult, div?

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

© 2012 Daniel J. Sorin
from Roth ECE152 11

What About the ISA Registers?

• Register file: the ISA (“architectural”, ”visible”) registers
• Two read “ports” + one write “port”

• Maximum number of reads/writes in single instruction (R-type)

• Port: wires for accessing an array of data
• Data bus: width of data element (MIPS: 32 bits)

• Address bus: width of log2 number of elements (MIPS: 5 bits)

• Write enable: if it’s a write port

• M ports = M parallel and independent accesses

Register File

RS1VAL

RS2VAL

RDVAL

RDWE RS1 RS2

RD = dest reg

RS = source reg

© 2012 Daniel J. Sorin
from Roth ECE152 12

A Register File With Four Registers

© 2012 Daniel J. Sorin
from Roth ECE152 13

Add a Read Port for RS1

• Output of each register into 4to1 mux (RS1VAL)

• RS1 is select input of RS1VAL mux

RS1

RS1VAL

© 2012 Daniel J. Sorin
from Roth ECE152 14

Add Another Read Port for RS2

• Output of each register into another 4to1 mux (RS2VAL)

• RS2 is select input of RS2VAL mux

RS1

RS1VAL

RS2VAL

RS2

© 2012 Daniel J. Sorin
from Roth ECE152 15

Add a Write Port for RD

• Input RDVAL into each register

• Enable only one register’s WE: (Decoded RD) & (WE)

• What if we needed two write ports?

RS1

RS1VAL

RS2VAL

RS2RDWE

RDVAL

2-to-1 decoder

© 2012 Daniel J. Sorin
from Roth ECE152 16

Another Read Port Implementation

• A read port that uses muxes is fine for 4 registers

• Not so good for 32 registers (32-to-1 mux is very slow)

• Alternative implementation uses tri-state buffers
• Truth table (E = enable, D = input, Q = output)

E D →→→→ Q

1 D → D
0 D → Z

• Z: “high impedance” state, no current flowing

• Mux: connect multiple tri-stated buses to one output bus
• Key: only one input “driving” at any time, all others must be in “Z”

• Else, all hell breaks loose (electrically)

D Q

E

© 2012 Daniel J. Sorin
from Roth ECE152 17

Register File With Tri-State Read Ports

RS2RS1RDWE

RDVAL
RS1VAL

RS2VAL

© 2012 Daniel J. Sorin
from Roth ECE152 18

Another Useful Component: Memory

• Memory: where instructions and data reside

• One read/write “port”: one access per cycle, either read or write

• One address bus

• One input data bus for writes, one output data bus for reads

Memory

DATAOUTDATAIN

WE

ADDRESS

© 2012 Daniel J. Sorin
from Roth ECE152 19

Let’s Build A MIPS-like Datapath

© 2012 Daniel J. Sorin
from Roth ECE152 20

Start With Fetch

• PC and instruction memory

• A +4 incrementer computes default next instruction PC

• Why +4 (and not +1)? What will it be for 32-bit Duke 152/32?

P
C

Insn
Mem

+
4

© 2012 Daniel J. Sorin
from Roth ECE152 21

First Instruction: add $rd, $rs, $rt

• Add register file and ALU

P
C

Insn
Mem

Register
File

Op(6)Op(6) rs(5)rs(5) rt(5)rt(5) rd(5)rd(5) Sh(5)Sh(5) Func(6)Func(6)RR--typetype

s1 s2 d

+
4

rs

rt

rs + rt

