ECE 152 Introduction to Computer Architecture

Processor Design: Datapath and Control Copyright 2012 Daniel J. Sorin **Duke University**

> Slides are derived from work by Amir Roth (Penn) Spring 2012

Where We Are in This Course Right Now

• So far:

- We know what a computer architecture is
- We know what kinds of instructions it might execute
- We know how to perform arithmetic and logic in an ALU

• Now:

- We learn how to design a processor in which the ALU is just one component
- Processor must be able to fetch instructions, decode them, and execute them
- There are many ways to do this, even for a given ISA

• Next:

 We learn how to use pipelining to get better performance out of this processor

ECE152

© 2012 Daniel J. Sorin from Roth

Readings

- Patterson and Hennessy
- Chapter 4: Sections 4.1-4.4 · Read this chapter carefully
- It has many more examples than I can cover in class

© 2012 Daniel J. Sorin

ECE152

- Important reminder: a processor is just a big finite state machine (FSM) that interprets some ISA
- Start with one instruction
 - <mark>add</mark> \$3,\$2,\$4
 - ALU performs just a small part of execution of instruction

ECE152

- You have to read and write registers
- You have have to fetch the instruction to begin with
- What about loads and stores?
- Need some sort of memory interface
- What about branches?Need some hardware for that, too

© 2012 Daniel J. Sorin from Roth

Building a Processor for an ISA

- Fetch is pretty straightforward
 - Just need a register (called the Program Counter or PC) to hold
 the next address to fetch from instruction memory
 - Provide address to instruction memory \rightarrow instruction memory provides instruction at that address
- Let's start with the datapath
 - 1. Look at ISA
 - 2. Make sure datapath can implement every instruction

ECE152

© 2012 Daniel J. Sorin from Roth

Datapath for MIPS ISA

- Consider only the following instructions
 - add \$1,\$2,\$3
 - addi \$1,2,\$3
 - lw \$1,4(\$3)
 - sw \$1,4(\$3)
 - beq \$1,\$2,PC_relative_target
 - j Absolute_target
- Why only these?
 - Most other instructions are similar from datapath viewpoint

ECE152

• I leave the other ones for you to figure out

© 2012 Daniel J. Sorin

