ECE 152
Introduction to Computer Architecture

Processor Design: Datapath and Control
Copyright 2012 Daniel J. Sorin
Duke University

Slides are derived from work by
Amir Roth (Penn)

Spring 2012

Where We Are in This Course Right Now

e Sofar:

« We know what a computer architecture is

* We know what kinds of instructions it might execute

* We know how to perform arithmetic and logic in an ALU
e Now:

e We learn how to design a processor in which the ALU is just one
component

Processor must be able to fetch instructions, decode them, and
execute them

« There are many ways to do this, even for a given ISA
e Next:

« We learn how to use pipelining to get better performance out of
this processor

© 2012 Daniel J. Sorin
from Roth ECE152

This Unit: Processor Design

¢ Datapath components and timing
« Registers and register files
¢ Memories (RAMs)

Compiler Firmware

CPU 110 ¢ Mapping an ISA to a datapath
L] Memory ¢ Control
Digital Circuits » Exceptions
Gates & Transistors

© 2012 Daniel J. Sorin
from Roth ECE152

Readings

o Patterson and Hennessy
e Chapter 4: Sections 4.1-4.4
¢ Read this chapter carefully
o It has many more examples than I can cover in class

© 2012 Daniel J. Sorin
from Roth ECE152

So You Have an ALU...

¢ Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

o Start with one instruction
add $3, $2, $4
e ALU performs just a small part of execution of instruction
¢ You have to read and write registers
¢ You have have to fetch the instruction to begin with

e What about loads and stores?

¢ Need some sort of memory interface
¢ What about branches?

* Need some hardware for that, too

© 2012 Daniel J. Sorin
from Roth ECE152

Datapath and Control

E I datapath
L Register Data J

File Memory
T

control

. : registers, memories, ALUs (computation)

e Control: which registers read/write, which ALU operation
e Fetch: get instruction, translate into control

e Processor Cycle: Fetch - Decode -

© 2012 Daniel J. Sorin

from Roth ECE152

Building a Processor for an ISA

e Fetch is pretty straightforward

e Just need a register (called the Program Counter or PC) to hold
the next address to fetch from instruction memory

« Provide address to instruction memory - instruction memory
provides instruction at that address

e Let’s start with the datapath
1. Look at ISA
2. Make sure datapath can implement every instruction

© 2012 Daniel J. Sorin
from Roth ECE152

Datapath for MIPS ISA

o Consider only the following instructions
add $1, $2, $3
addi $1, 2, $3
Iw $1, 4($3)
sw $1, 4($3)
beq $1, $2, PC rel ati ve_t ar get
j Absol ute_target

¢ Why only these?
* Most other instructions are similar from datapath viewpoint
« I leave the other ones for you to figure out

© 2012 Daniel J. Sorin
from Roth ECE152 8

Review (ECE 52 & Project Partl): Register

0, Q5
Dl gl
DFF
Dna _9er B
WE —| DFF
CLK—:D_ WE

o Register: DFF array with shared clock, write-enable (WE)
» Notice: both a clock and a WE (DFF,¢ = clock & register,)
« Convention I: clock represented by wedge
« Convention II: if no WE, DFF is written on every clock

© 2012 Daniel J. Sorin
from Roth ECE152 9

Uses of Registers

datapath
>y
fetch
m__. Insn I_. Register Data J
memory File Memory
L T

|
control)

¢ A single register is good for some things
* PC: program counter
« Other things which aren't the ISA registers
* ICQ: other examples from within the ALU, mult, div?

© 2012 Daniel J. Sorin
from Roth ECE152 10

What About the ISA Registers?

RDVAL \ RS1VAL
Regi Fil
egister File RS2VAL
__.
T 4/ /P /P RD = dest reg

WE RD RS1 RS2 RS = source reg

* Register file: the ISA (“architectural”, "visible”) registers

e Two read “ports” + one write “port”

¢ Maximum number of reads/writes in single instruction (R-type)

e Port: wires for accessing an array of data

o Data bus: width of data element (MIPS: 32 bits)

o Address bus: width of log, number of elements (MIPS: 5 bits)

« Write enable: if it's a write port

¢ M ports = M parallel and independent accesses

© 2012 Daniel J. Sorin
from Roth ECE152 11

A Register File With Four Registers

A

© 2012 Daniel J. Sorin
from Roth ECE152 12

Add a Read Port for RS1

L

fRS1

e Output of each register into 4tol mux (RS1VAL)
e RS1 is select input of RS1VAL mux

© 2012 Daniel J. Sorin
from Roth ECE152 13

Add Another Read Port for RS2

————ll | rs2vaL
U \ U | U }RSlVAL
+Rs2tRS1

o Output of each register into another 4tol mux (RS2VAL)
e RS2 is select input of RS2VAL mux

© 2012 Daniel J. Sorin
from Roth ECE152 14

Add a Write Port for RD

2-to-1 decoder

:} RS1VAL

RDVAL

L

WE| -RD RS2tRS1

¢ Input RDVAL into each register
« Enable only one register’s WE: (Decoded RD) & (WE)
¢ What if we needed two write ports?

© 2012 Daniel J. Sorin
from Roth ECE152 15

Another Read Port Implementation

¢ Aread port that uses muxes is fine for 4 registers
« Not so good for 32 registers (32-to-1 mux is very slow)

o Alternative implementation uses tri-state buffers
* Truth table (E = enable, D = input,

) %= output&
ED-.Q —-| >~
1D-D E
0b-2z
* Z: “high impedance” state, no current flowing

e Mux: connect multiple tri-stated buses to one output bus
o Key: only one input “driving” at any time, all others must be in “Z”
« Else, all hell breaks loose (electrically)

© 2012 Daniel J. Sorin
from Roth ECE152 16

Register File With Tri-State Read Ports

RS1VAL
—

ES.ZVAL

il
WE RD RS14~ -IRS2

© 2012 Daniel J. Sorin
from Roth ECE152

17

Another Useful Component: Memory

DATAIN DATAQOUT
— ~—
ADDRES§ > Memory
!
WE

¢ Memory: where instructions and data reside
« One read/write “port”: one access per cycle, either read or write
¢ One address bus
« One input data bus for writes, one output data bus for reads

© 2012 Daniel J. Sorin
from Roth ECE152 18

Let's Build A MIPS-like Datapath

© 2012 Daniel J. Sorin
from Roth ECE152

19

Start With Fetch

e PC and instruction memory
e A +4 incrementer computes default next instruction PC
e Why +4 (and not +1)? What will it be for 32-bit Duke 152/32?

© 2012 Daniel J. Sorin
from Roth ECE152 20

First Instruction: add $rd, $rs, $rt

P Insn Register rs+rt
C Mem File
P > s1s2 d
_]
R-type [op(6) INEEMRIOMRCE) Func(6)

¢ Add register file and ALU

© 2012 Daniel J. Sorin
from Roth ECE152

21

