
© 2012 Daniel J. Sorin
from Roth and Lebeck 66

Outline

• Instruction Sets in General
• MIPS Assembly Programming
• Other Instruction Sets

• Goals of ISA Design
• RISC vs. CISC
• Intel x86 (IA-32)

© 2012 Daniel J. Sorin
from Roth and Lebeck 67

What Makes a Good ISA?

• Programmability
• Easy to express programs efficiently?

• Implementability
• Easy to design high-performance implementations (i.e.,

microarchitectures)?

• Compatibility
• Easy to maintain programmability as languages and programs

evolve?
• Easy to maintain implementability as technology evolves?

© 2012 Daniel J. Sorin
from Roth and Lebeck 68

Programmability

• Easy to express programs efficiently?
• For whom?

• Human
• Want high-level coarse-grain instructions

• As similar to HLL as possible
• This is the way ISAs were pre-1985

• Compilers were terrible, most code was hand-assembled

• Compiler
• Want low-level fine-grain instructions

• Compiler can’t tell if two high-level idioms match exactly or not
• This is the way most post-1985 ISAs are

• Optimizing compilers generate much better code than humans
• ICQ: Why are compilers better than humans?

© 2012 Daniel J. Sorin
from Roth and Lebeck 69

Implementability

• Every ISA can be implemented
• But not every ISA can be implemented well
• Bad ISA � bad microarchitecture (slow, power-hungry, etc.)

• We’d like to use some of these high-performance
implementation techniques
• Pipelining, parallel execution, out-of-order execution
• We’ll discuss these later in the semester

• Certain ISA features make these difficult
• Variable length instructions
• Implicit state (e.g., condition codes)
• Wide variety of instruction formats

© 2012 Daniel J. Sorin
from Roth and Lebeck 70

Compatibility

• Few people buy new hardware … if it means they have to
buy new software, too
• Intel was the first company to realize this
• ISA must stay stable, no matter what (microarch. can change)

• x86 is one of the ugliest ISAs EVER, but survives
• Intel then forgot this lesson: IA-64 (Itanium) is new ISA

• Backward compatibility: very important
• New processors must support old programs (can’t drop features)

• Forward (upward) compatibility: less important
• Old processors must support new programs

• New processors only re-define opcodes that trapped in old ones
• Old processors emulate new instructions in low-level software

© 2012 Daniel J. Sorin
from Roth and Lebeck 71

Compatibility in the Age of VMs

• Virtual machine (VM): piece of software that emulates
behavior of hardware platform
• Examples: VMWare, Xen, Simics

• VM emulates target system while running on host system
• Key: host and target ISAs do not have to be the same!
• Example: On my x86 desktop, I can run VM that emulates MIPS

processor
• ICQ: Is SPIM a VM?

• Upshot: you can run code of target ISA on host with different ISA
� don’t need to buy x86 box to run legacy x86 code

• Very cool technology that’s commonly used

• ICQ: given a VM, does ISA compatibility really matter?
• More details on VMs in ECE 252

© 2012 Daniel J. Sorin
from Roth and Lebeck 72

RISC vs. CISC

• RISC: reduced-instruction set computer
• Coined by P+H in early 80’s (ideas originated earlier)

• CISC: complex-instruction set computer
• Not coined by anyone, term didn’t exist before “RISC”

• Religious war (one of several) started in mid 1980’s
• RISC (MIPS, Alpha, Power) “won” the technology battles
• CISC (IA32 = x86) “won” the commercial war

• Compatibility a stronger force than anyone (but Intel) thought
• Intel beat RISC at its own game … more on this soon

© 2012 Daniel J. Sorin
from Roth and Lebeck 73

The Setup

• Pre-1980
• Bad compilers
• Complex, high-level ISAs
• Slow, complicated, multi-chip microarchitectures

• Around 1982
• Advances in VLSI made single-chip microprocessor possible…

• Speed by integration, on-chip wires much faster than off-chip
• …but only for very small, very simple ISAs
• Compilers had to get involved in a big way

• RISC manifesto: create ISAs that…
• Simplify single-chip implementation
• Facilitate optimizing compilation

© 2012 Daniel J. Sorin
from Roth and Lebeck 74

The RISC Tenets

• Single-cycle execution (simple operations)
• CISC: many multi-cycle operations

• Load/store architecture
• CISC: register-memory and memory-memory instructions

• Few memory addressing modes
• CISC: many modes

• Fixed instruction format
• CISC: many formats and lengths

• Reliance on compiler optimizations
• CISC: hand assemble to get good performance

Summary

(1) Make it easy to implement in hardware

(2) Make it easy for compiler to generate code © 2012 Daniel J. Sorin
from Roth and Lebeck 75

PowerPC ISA � POWER ISA

• RISC-y, very similar to MIPS
• Some differences:

• Indexed addressing mode (register+register)
• lw $t1,$a0,$s3 # $t1 = mem[$a0+$s3]

• Update addressing mode
• lw $t1,4($a0) # $t1 = mem[$a0+4]; $a0 += 4;

• Dedicated counter register
• bc loop # ctr--; branch to loop if ctr != 0

• In general, though, similar to MIPS

© 2012 Daniel J. Sorin
from Roth and Lebeck 76

Intel 80x86 ISA (aka x86 or IA-32)

• Binary compatibility across generations
• 1978: 8086, 16-bit, registers have dedicated uses
• 1980: 8087, added floating point (stack)
• 1982: 80286, 24-bit
• 1985: 80386, 32-bit, new instrs � GPR almost
• 1989-95: 80486, Pentium, Pentium II
• 1997: Added MMX instructions (for graphics)
• 1999: Pentium III
• 2002: Pentium 4
• 2004: “Nocona” 64-bit extension (to keep up with AMD)
• 2006: Core2
• 2007: Core2 Quad

© 2012 Daniel J. Sorin
from Roth and Lebeck 77

Intel x86: The Penultimate CISC

• DEC VAX was ultimate CISC, but x86 (IA-32) is close
• Variable length instructions: 1-16 bytes
• Few registers: 8 and each one has a special purpose
• Multiple register sizes: 8,16,32 bit (for backward compatibility)
• Accumulators for integer instrs, and stack for FP instrs
• Multiple addressing modes: indirect, scaled, displacement
• Register-register, memory-register, and memory-register insns
• Condition codes
• Instructions for memory stack management (push, pop)
• Instructions for manipulating strings (entire loop in one instruction)

• Summary: yuck!

© 2012 Daniel J. Sorin
from Roth and Lebeck 78

80x86 Registers and Addressing Modes

• Eight 32-bit registers (not truly general purpose)
• EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• Six 16-bit registers for code, stack, & data
• 2-address ISA

• One operand is both source and destination

• NOT a Load/Store ISA
• One operand can be in memory

© 2012 Daniel J. Sorin
from Roth and Lebeck 79

80x86 Addressing Modes

• Register Indirect
• mem[reg]
• not ESP or EBP register

• Base + displacement (8 or 32 bit)
• mem[reg + const]
• not ESP or EBP

• Base + scaled index
• mem[reg + (2scale x index)]
• scale = 0,1,2,3
• base any GPR, index not ESP

• Base + scaled index + displacement
• mem[reg + (2scale x index) + displacement]
• scale = 0,1,2,3
• base any GPR, index not ESP

© 2012 Daniel J. Sorin
from Roth and Lebeck 80

Condition Codes

• Both Power ISA and x86 ISA have condition codes
• Special HW register that has values set as side effect of

instruction execution
• Example conditions

• Zero
• Negative

• Example use
subi $t0, $t0, 1
bz loop // branch to loop if result of previous instruction is zero

© 2012 Daniel J. Sorin
from Roth and Lebeck 81

80x86 Instruction Encoding

• Variable size 1-byte to 17-bytes
• Examples

• Jump (JE) 2-bytes
• Push 1-byte
• Add Immediate 5-bytes

• W bit says 32-bits or 8-bits
• D bit indicates direction

• memory � reg or reg � memory
• movw EBX, [EDI + 45]
• movw [EDI + 45], EBX

© 2012 Daniel J. Sorin
from Roth and Lebeck 82

Decoding x86 Instructions

• Is a &$%!# nightmare!
• Instruction length is variable from 1 to 17 bytes
• Crazy “formats” � register specifiers move around
• But key instructions not terrible
• Yet, everything must work correctly

© 2012 Daniel J. Sorin
from Roth and Lebeck 83

How Intel Won Anyway

• x86 won because it was the first 16-bit chip by 2 years
• IBM put it into its PCs because there was no competing choice
• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…
• Because Intel (and AMD) sells the most processors…
• It has the most money…
• Which it uses to hire more and better engineers…
• Which it uses to maintain competitive performance …
• And given equal performance compatibility wins…
• So Intel (and AMD) sells the most processors…

• Moore’s law has helped Intel in a big way
• Most engineering problems can be solved with more transistors

© 2012 Daniel J. Sorin
from Roth and Lebeck 84

Current Approach: Pentium Pro and beyond

• Instruction decode logic translates into µops
• Fixed-size instructions moving down execution path
• Execution units see only µops
+ Faster instruction processing with backward compatibility
+ Execution unit as fast as RISC machines like MIPS
– Complex decoding
– We work with MIPS to keep decoding simple/clean
– Learn x86 on the job!

Learn exactly how this all works in ECE 252

© 2012 Daniel J. Sorin
from Roth and Lebeck 85

Aside: Complex Instructions

• More powerful instructions � not necessarily faster
execution

• E.g., string copy or polynomial evaluation

• Option 1: use “repeat” prefix on memory-memory move inst
• Custom string copy

• Option 2: use a loop of loads and stores through registers
• General purpose move through simple instructions

• Option 2 is often faster on same machine

© 2012 Daniel J. Sorin
from Roth and Lebeck 86

Concluding Remarks

1. Keep it simple and regular
• Uniform length instructions
• Fields always in same places

2. Keep it simple and fast
• Small number of registers

3. Make sure design can be pipelined (will learn soon)
4. Make the common case fast

• Compromises inevitable � there is no perfect ISA

© 2012 Daniel J. Sorin
from Roth and Lebeck 87

Outline

• Instruction Sets in General
• MIPS Assembly Programming
• Other Instruction Sets

