Outline

¢ Instruction Sets in General
« MIPS Assembly Programming
¢ Other Instruction Sets

* Goals of ISA Design

+ RISCyvs. CISC

« Intel x86 (IA-32)

© 2012 Daniel J. Sorin

from Roth and Lebeck 66

What Makes a Good ISA?

e Programmability
« Easy to express programs efficiently?
e Implementability
« Easy to design high-performance implementations (i.e.,
microarchitectures)?
e Compatibility
« Easy to maintain programmability as languages and programs
evolve?

« Easy to maintain implementability as technology evolves?

© 2012 Daniel J. Sorin
from Roth and Lebeck

67

Programmability

« Easy to express programs efficiently?
¢ For whom?
* Human
« Want high-level coarse-grain instructions
* As similar to HLL as possible
« This is the way ISAs were pre-1985
» Compilers were terrible, most code was hand-assembled
¢ Compiler
* Wantlow-level fine-grain instructions
« Compiler can't tell if two high-level idioms match exactly or not
« This is the way most post-1985 ISAs are
» Optimizing compilers generate much better code than humans
* ICQ: Why are compilers better than humans?

© 2012 Daniel J. Sorin
from Roth and Lebeck

Implementability

¢ Every ISA can be implemented
« Butnot every ISA can be implemented well
« Bad ISA - bad microarchitecture (slow, power-hungry, etc.)

* We'd like to use some of these high-performance
implementation techniques
« Pipelining, parallel execution, out-of-order execution
« We'll discuss these later in the semester

» Certain ISA features make these difficult
« Variable length instructions
« Implicit state (e.g., condition codes)
« Wide variety of instruction formats

© 2012 Daniel J. Sorin
from Roth and Lebeck

69

Compatibility

Compatibility in the Age of VMs

« Few people buy new hardware ... if it means they have to
buy new software, too
« Intel was the first company to realize this
* ISA must stay stable, no matter what (microarch. can change)
« x86 is one of the ugliest ISAs EVER, but survives
« Intel then forgot this lesson: IA-64 (Itanium) is new ISA
¢ Backward compatibility: very important
* New processors must support old programs (can’t drop features)
¢ Forward (upward) compatibility: less important
+ Old processors must support new programs
* New processors only re-define opcodes that trapped in old ones
 Old processors emulate new instructions in low-level software

© 2012 Daniel J. Sorin 70
from Roth and Lebeck

¢ Virtual machine (VM): piece of software that emulates
behavior of hardware platform
« Examples: VMWare, Xen, Simics
¢ VM emulates target system while running on host system
« Key: host and target ISAs do not have to be the same!
« Example: On my x86 desktop, | can run VM that emulates MIPS
processor
+ ICQ:Is SPIMa VM?

Upshot: you can run code of target ISA on host with different ISA
- don't need to buy x86 box to run legacy x86 code

Very cool technology that's commonly used
¢ ICQ: given a VM, does ISA compatibility really matter?
* More details on VMs in ECE 252

© 2012 Daniel J. Sorin 71
from Roth and Lebeck

RISC vs. CISC

¢ RISC: reduced-instruction set computer

» Coined by P+H in early 80's (ideas originated earlier)
« CISC: complex-instruction set computer

* Not coined by anyone, term didn't exist before “RISC”

« Religious war (one of several) started in mid 1980’s
* RISC (MIPS, Alpha, Power) “won” the technology battles
» CISC (IA32 = x86) “won” the commercial war
« Compatibility a stronger force than anyone (but Intel) thought
« Intel beat RISC at its own game ... more on this soon

© 2012 Daniel J. Sorin 7
from Roth and Lebeck

The Setup

* Pre-1980
« Bad compilers
« Complex, high-level ISAs
« Slow, complicated, multi-chip microarchitectures
e Around 1982
« Advancesin VLSI made single-chip microprocessor possible...
« Speed by integration, on-chip wires much faster than off-chip
« ...butonly for very small, very simple ISAs
« Compilers had to get involved in a big way
¢ RISC manifesto: create ISAs that...
« Simplify single-chip implementation
« Facilitate optimizing compilation

© 2012 Daniel J. Sorin 73
from Roth and Lebeck

The RISC Tenets

¢ Single-cycle execution (simple operations)
« CISC: many multi-cycle operations
« Load/store architecture
« CISC: register-memory and memory-memory instructions
« Few memory addressing modes
« CISC: many modes
« Fixed instruction format
» CISC: many formats and lengths
« Reliance on compiler optimizations
» CISC: hand assemble to get good performance

Summary
(1) Make it easy to implement in hardware

©2012 Daniel J. sorin | (2) Make it easy for compiler to generate code
from Roth and Lebeck

74

PowerPC ISA - POWER ISA

¢ RISC-y, very similar to MIPS
* Some differences:
« Indexed addressing mode (register+register)
e lw $t1,$a0,$s3 # $t1 = nenf $a0+$s3]
« Update addressing mode
o lw $t1,4(%a0) # $t1 = men{ $a0+4]; $a0 += 4;
« Dedicated counter register
« bc loop # ctr--; branch to loop if ctr !=0
* In general, though, similar to MIPS

© 2012 Daniel J. Sorin

from Roth and Lebeck 75

Intel 80x86 ISA (aka x86 or IA-32)

< Binary compatibility across generations

« 1978: 8086, 16-bit, registers have dedicated uses
« 1980: 8087, added floating point (stack)

* 1982: 80286, 24-bit

« 1985: 80386, 32-hit, new instrs > GPR almost

« 1989-95: 80486, Pentium, Pentium I

¢ 1997: Added MMX instructions (for graphics)

¢ 1999: Pentium Il

« 2002: Pentium 4

¢ 2004: “Nocona” 64-bit extension (to keep up with AMD)
* 2006: Core2

¢ 2007: Core2 Quad

© 2012 Daniel J. Sorin

from Roth and Lebeck 76

Intel x86: The Penultimate CISC

« DEC VAX was ultimate CISC, but x86 (IA-32) is close
« Variable length instructions: 1-16 bytes
« Few registers: 8 and each one has a special purpose
« Multiple register sizes: 8,16,32 bit (for backward compatibility)
« Accumulators for integer instrs, and stack for FP instrs
« Multiple addressing modes: indirect, scaled, displacement
« Register-register, memory-register, and memory-register insns
« Condition codes
« Instructions for memory stack management (push, pop)
« Instructions for manipulating strings (entire loop in one instruction)

e Summary: yuck!

© 2012 Daniel J. Sorin

from Roth and Lebeck 77

80x86 Registers and Addressing Modes

« Eight 32-bit registers (not truly general purpose)
+ EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

« Six 16-bit registers for code, stack, & data

¢ 2-addressISA
» One operand is both source and destination

« NOT a Load/Store ISA
« One operand can be in memory

© 2012 Daniel J. Sorin

from Roth and Lebeck 78

80x86 Addressing Modes

* Register Indirect
* memlreg]
* not ESP or EBP register
» Base + displacement (8 or 32 bit)
* memlreg + const]
* not ESP or EBP
* Base + scaled index
* meml[reg + (2s¢ae x index)]
* scale=0,1,2,3
* base any GPR, index not ESP
¢ Base + scaled index + displacement
* memlreg + (2sc@¢ x index) + displacement]
* scale=0,1,2,3
* base any GPR, index not ESP

© 2012 Daniel J. Sorin
from Roth and Lebeck

79

Condition Codes

« Both Power ISA and x86 ISA have condition codes
« Special HW register that has values set as side effect of
instruction execution
« Example conditions
* Zero
* Negative
¢ Example use
subi $tO, $t0, 1
bz loop // branchto loop if result of previous instruction is zero

© 2012 Daniel J. Sorin

from Roth and Lebeck 80

80x86 Instruction Encoding

¢ Variable size 1-byte to 17-bytes
e Examples
« Jump (JE) 2-bytes
¢ Push 1-byte
« Add Immediate 5-bytes
* W bit says 32-bits or 8-bits
» D bit indicates direction
¢ memory -> reg or reg > memory
« movw EBX, [EDI + 45]
* movw [EDI + 45], EBX

© 2012 Daniel J. Sorin
from Roth and Lebeck

81

Decoding x86 Instructions

¢ Is a &$%!'# nightmare!

¢ Instruction length is variable from 1 to 17 bytes

« Crazy “formats” - register specifiers move around
¢ But key instructions not terrible

¢ Yet, everything must work correctly

© 2012 Daniel J. Sorin

from Roth and Lebeck 82

How Intel Won Anyway

* x86 won because it was the first 16-bit chip by 2 years
« IBM putit into its PCs because there was no competing choice
« Restis historical inertia and “financial feedback”

x86 is most difficult ISA to implement and do it fast but...

Because Intel (and AMD) sells the most processors...

It has the most money...

Which it uses to hire more and better engineers...

Which it uses to maintain competitive performance ...

And given equal performance compatibility wins...

So Intel (and AMD) sells the most processors...

¢ Moore’s law has helped Intel in a big way
« Most engineering problems can be solved with more transistors

© 2012 Daniel J. Sorin

from Roth and Lebeck 83

Current Approach: Pentium Pro and beyond

¢ Instruction decode logic translates into pops

¢ Fixed-size instructions moving down execution path

« Execution units see only pops

Faster instruction processing with backward compatibility
Execution unit as fast as RISC machines like MIPS

— Complex decoding

— We work with MIPS to keep decoding simple/clean

— Learn x86 on the job!

Learn exactly how this all works in ECE 252

© 2012 Daniel J. Sorin

from Roth and Lebeck 84

Aside: Complex Instructions

* More powerful instructions = not necessarily faster
execution

» E.g., string copy or polynomial evaluation

e Option 1: use “repeat” prefix on memory-memory move inst
« Custom string copy

¢ Option 2: use a loop of loads and stores through registers
« General purpose move through simple instructions

¢ Option 2 is often faster on same machine

© 2012 Daniel J. Sorin

from Roth and Lebeck 85

Concluding Remarks

1. Keep it simple and regular
* Uniform length instructions
* Fields always in same places
2. Keep it simple and fast
* Small number of registers
3. Make sure design can be pipelined (will learn soon)

4. Make the common case fast

« Compromises inevitable - there is no perfect ISA

© 2012 Daniel J. Sorin

from Roth and Lebeck 86

Outline

¢ Instruction Sets in General
¢ MIPS Assembly Programming
¢ Other Instruction Sets

© 2012 Daniel J. Sorin
from Roth and Lebeck

87

