
© 2012 Daniel J. Sorin
from Roth and Lebeck 42

Outline

• ISAs in General
• MIPS Assembly Programming
• Other Instruction Sets

© 2012 Daniel J. Sorin
from Roth and Lebeck 43

But first: SPIM

• SPIM is a program that simulates the behavior of MIPS32
computers
• Can run MIPS32 assembly language programs
• You will use SPIM to run/test the assembly language programs you

write for homeworks in this class

• Two flavors of same thing:
• spim: command line interface
• xspim: xwindows interface

© 2012 Daniel J. Sorin
from Roth and Lebeck 44

MIPS Assembly Language

• One instruction per line
• Numbers are base-10 integers or Hex with leading 0x
• Identifiers: alphanumeric, _, . string starting in a letter or _
• Labels: identifiers starting at the beginning of a line

followed by “:”
• Comments: everything following # until end-of-line
• Instruction format: Space and “,” separated fields

• [Label:] <op> reg1, [reg2], [reg3] [# comment]
• [Label:] <op> reg1, offset(reg2) [# comment]
• .Directive [arg1], [arg2], . . .

© 2012 Daniel J. Sorin
from Roth and Lebeck 45

MIPS Pseudo-Instructions

• Pseudo-instructions: extend the instruction set for convenience
• Examples

• move $2, $4 # $2 = $4, (copy $4 to $2)
Translates to:
add $2, $4, $0

• li $8, 40 # $8 = 40, (load 40 into $8)
addi $8, $0, 40

• sd $4, 0($29) # mem[$29] = $4; Mem[$29+4] = $5
sw $4, 0($29)
sw $5, 4($29)

• la $4, 0x1000056c # Load address $4 = <address>
lui $4, 0x1000 # load upper immediate (lui)
ori $4, $4, 0x056c # or immediate (ori)

© 2012 Daniel J. Sorin
from Roth and Lebeck 46

Assembly Language (cont.)

• Directives: tell the assembler what to do
• Format “.”<string> [arg1], [arg2] . . .

• Examples
.data [address] # start a data segment
.text [address] # start a code segment
.align n # align segment on 2n byte boundary
.ascii <string> # store a string in memory
.asciiz <string> # store null-terminated string in memory
.word w1, w2, . . . , wn # store n words in memory

Let’s see how these get used in programs …

© 2012 Daniel J. Sorin
from Roth and Lebeck 47

A Simple Program

• Add two numbers x and y:
.text # declare text segment

.align 2 # align it on 4-byte (word) boundary

main: # label for main

la $3, x # load address of x into R3 (pseudo-inst)

lw $4, 0($3) # load value of x into R4

la $3, y # load address of y into R3 (pseudo-inst)

lw $5, 0($3) # load value of y into R5

add $6, $4, $5 # compute x+y

jr $31 # return to calling routine

.data # declare data segment

.align 2 # align it on 4-byte boundary

x:.word 10 # initialize x to 10

y:.word 3 # initialize y to 3 Note: program

doesn’t obey register

conventions

© 2012 Daniel J. Sorin
from Roth and Lebeck 48

Another example: The C / C++ code

#include <iostream.h>

int main ()

{

int i;

int sum = 0;

for(i=0; i <= 100; i++)

sum = sum + i*i ;

cout << “The answer is “ << sum << endl;

}

Let’s write the assembly …

© 2012 Daniel J. Sorin
from Roth and Lebeck 49

.text

.align 2
main:

move $14, $0 # i = 0
move $15, $0 # tmp = 0

move $16, $0 # sum = 0
loop:

mul $15, $14, $14 # tmp = i*i
add $16, $16, $15 # sum = sum + tmp
addi $14, $14, 1 # i++

ble $14, 100, loop # if i < 100, goto loop

how are we going to print the answer here?
and how are we going to exit the program?

Assembly Language Example 1

© 2012 Daniel J. Sorin
from Roth and Lebeck 50

• System call is used to communicate with the operating
system and request services (memory allocation, I/O)
• syscall instruction in MIPS

• SPIM supports “system-call-like”
1. Load system call code into register $v0

• Example: if $v0==1, then syscall will print an integer

2. Load arguments (if any) into registers $a0, $a1, or $f12
(for floating point)

3. syscall
• Results returned in registers $v0 or $f0

System Call Instruction

© 2012 Daniel J. Sorin
from Roth and Lebeck 51

SPIM System Call Support

code service ArgType Arg/Result

1 print int $a0

2 print float $f12

3 print double $f12

4 print string $a0 (string address)

5 read integer integer in $v0

6 read float float in $f0

7 read double double in $f0 & $f1

8 read string $a0=buffer, $a1=length

9 sbrk $a0=amount address in $v0

10 exit

© 2012 Daniel J. Sorin
from Roth and Lebeck 52

Echo number and string

.text

main:

li $v0, 5 # code to read an integer

syscall # do the read (invokes the OS)

move $a0, $v0 # copy result from $v0 to $a0

li $v0, 1 # code to print an integer

syscall # print the integer

li $v0, 4 # code to print string

la $a0, nln # address of string (newline)

syscall

code continues on next slide …

© 2012 Daniel J. Sorin
from Roth and Lebeck 53

Echo Continued

li $v0, 8 # code to read a string

la $a0, name # address of buffer (name)

li $a1, 8 # size of buffer (8 bytes)

syscall

la $a0, name # address of string to print

li $v0, 4 # code to print a string

syscall

jr $31 # return

.data

.align 2

name: .word 0,0

nln: .asciiz "\n"

