Radio-Triggered Wake-Up Capability for Sensor Networks

Soji Sajuyigbe
Duke University

A presentation of the paper:

Slides adapted from:
Wireless Sensor Networks Power Management Prof. John Stankovic, CS Dept, Univ. of Virginia
Real-Time Communication in Wireless Sensor Networks Richard Arps, Robert Foerster, Jungwoo Lee, Hui Cao
Scheme Design Goals

- Provide energy efficient sensing coverage for a geographic area covered by sensor nodes
 - Extend system life
 - Reduce total energy consumption
 - Minimize sensor wake-up periods
Power Costs - Examples

- **Motes**
 - ATmega 128 - six working modes with different energy saving features
 - Most aggressive sleep can be very small % of active working mode
 - Working - 8 mA
 - Sleep - 100 microA
 - **Radio**
 - 10 microA sleeping
 - 7.5 mA Rcv
 - 12 mA Tx
Power Management Schemes

- Scheme discerns application and decides efficient wake-up/sleep schedule
 - Should not trade-off performance
 - Application Specific
 - Often involves collaboration with other nodes in network
 - Needs time synchronization service
Hardware layer

- Turn off/on
 - CPU
 - Memory
 - Sensors
 - Radio (most expensive)
 - Fully awake Deep Sleep

- SW ensures a node/components are awake when needed
Power Management - Communication Coverage

Minimum awake - still communicate
Sensing Coverage
Nodes present in Network
Possible Solution (1)

- **Periodic wake-up**
 - Each (non-awake) node has a sleep/wakeup duty cycle based on local timer
 - Listen for stay awake message
 - *Most current systems use this technique*
 - Application dependent, often complicated, wastes energy
 - E.g., correct duty cycle depends on speed of targets, sensing ranges, types of sensors, ...
 - May miss wakeup call
Possible Solution (2)

- **Special** low power hardware stand-by component that *(always)* listens for a wakeup beacon (not the full radio component)
 - Uses extra energy (but not as much as full radio component)
Other Related Work

- **UCBerkeley and Intel Research**
 - Wake-up messages awakens whole network
 - In every 4 sec node must be awake for 100ms
 - Timer-based protocols and special hardware needed

- **SMAC**
 - Nodes gauge channel and sync periodically with neighbors
 - Duty cycle of 30-40% achieved
Radio-Triggered Scheme

- **Just-In-Time Wake-up Capability**
 - A node does not wake up until it is needed
 - It uses no active listening energy
 - Uses radio-triggered hardware that extracts energy from the electromagnetic energy in the wakeup signal itself

- Not RFID - they employ powerful readers to send strong radio signals
Application Scenario

- A small number of nodes stay awake
- Most of the network sleeps
- Rare events
Application Scenario

- Awakened nodes detect an event
- Messages are sent to wake up other nodes
Radio-Triggered Requirements

- Node should turn ON immediately
- No false wake-ups
- Should not miss wake-up calls
- While sleeping, expend same amount of energy as schemes without radio-triggered
Radio-Triggered Hardware

- lone antenna
- special radio frequency
- low cost
Basic Radio-Triggered Hardware

Wake up!

Task:
- collect EM energy
- distinguish trigger signals from others
- drive ‘start’ voltage

0.6 V
Effectiveness of basic circuit

\[P_r = \frac{P_s G_s G_r \lambda^2}{(4\pi \cdot D)^2} \]

- Only 10 ft transmission secured if Berkeley Mica motes used

Gain needed to get 0.6V at \(V_{out} \)
Improve basic circuit to extend range

- Reduced voltage threshold requirement will increase range
 - Use comparator to measure output voltage
 - If V_{in} too low, amplifier can be employed.
Scheme Evaluation

• Application scenario
 - 1000 random motes deployed
 - 10 events daily, each lasts 2 minutes
 - Vehicle tracking Application
 - Nodes use two 1600mAh AA batteries

• Compare the following schemes
 - Always-on
 - Rotation (wake-up/sleep)
 - Radio-Triggered
Solution – Is it worth it?

• Scheme I: Always-on (No power management)
 - The node is on and actively sensing until it is out of power
 - 1% of the energy is used to track vehicles, 99% is used in a peeking state (uselessly sensing for potential passing vehicles)
 - Lifetime 3.3 days
Solution - Is it worth it?

- Scheme II: Rotation-based (Periodic wake-up)
 - Nodes are awakened wirelessly by wake-up messages
 - Duty cycle 4.7%
 - 21% of the energy is used to track vehicles, 7% used in sleeping mode, and 72% is used in peeking state
 - Lifetime 50 days

Energy wasted!!!
Solution - Is it worth it?

- **Scheme III: Radio-triggered**
 - Nodes keep sleeping until events of interest happen
 - Nodes are awakened wirelessly by wake-up messages
 - 74% of the energy is used to track vehicles, 26% used in sleeping mode (minimal CPU energy)

- Lifetime - 178 days
Network Lifespan Comparison

Comparison of lifespan

always-on	rotation scheme	radio-triggered
0 | 50 | 250

Lifespan (days)
Circuit Design Improvements

- Add capacitor and transformer
 - Capacitor rise time and transformer introduce latency
 - Three times operating distance can be realized (30 ft) if 5ms latency acceptable
Circuit Design Improvements

- **Add Amplifier**
 - Use amplifier with low sleep current (880nA: 0.8% of 100uA)
- Does not compromise functionality; will help increase range
Conclusions

• Extracts energy from the radio signals

• Hardware provides wake-up signals to the network node without using internal power supply

• Adequate antenna: does not respond to normal data communication, not prematurely wake up

• Highly flexible and efficient
 - Zero stand-by power consumption and timely wake-up capability

This slide courtesy: Real-Time Communication in Wireless Sensor Networks Richard Arps, Robert Foerster, Jungwoo Lee, Hui Cao

University of Virginia
Questions?