Rate Control in Wireless Networks

ECE 299.02
Spring 2007
Today’s Discussions

- Recall key MAC layer issues/ideas
 - Recall 802.11 → SS radios, PLCP, HT problems, RTS/CTS, CS
 - Recall D-Antennas → Spatial reuse, higher range, capture ...

- Introducing rate control
 - Motivation to exploit variations in channel conditions
 - Rate control ideas in literature, ARF in 802.11

- Receiver-based Rate Control
 - The Idea, Evaluation
 - Issues/Discussions
 - Opportunistic rate-control

- What lies ahead?
Recall Lecture 2

- RTS/CTS + Large CS Zone
 - Alleviates hidden terminals, but trades off spatial reuse
Recall Lecture 3

Omni Communication

Silenced Node

Directional Communication

No Simultaneous Communication

Ok Simultaneous Communication
Research Directions

- **Benefits from protecting data communication**
 - RTS/CTS and carrier sensing
 - MACA, MACAW, 802.11 ...

- **Benefits from spatial filtering**
 - Directional communication
 - Capture-awareness

- **Benefits from exploiting channel conditions**
 - Rate adaptation to extract higher performance
 - Power control is a dual problem
Some Basics

- Friss’ Equation
 \[
 P_R = \frac{P_T G_T G_R}{K r^\alpha}
 \]

- Shannon’s Equation
 \[
 C = B \times \log_2 (1 + \text{SINR})
 \]

- Bit-energy-to-noise ratio
 \[
 \frac{E_b}{N_0} = \text{SINR} \times \frac{B}{R}
 \]

Leads to BER

Varying with time and space

How do we choose the rate of modulation
Estimate a value of SINR
Then choose a corresponding rate that would transmit packets correctly (i.e., $E_b / N_0 > \text{thresh}$) most of the times
Failure in some cases of fading \rightarrow live with it
Adaptive Rate-Control

- Observe the current value of SINR
- Believe that current value is indicator of near-future value
- Choose corresponding rate of modulation
- Observe next value
- Control rate if channel conditions have changed
Is there a tradeoff?

Rate = 10
Is there a tradeoff?

What about length of routes due to smaller range?
Any other tradeoff?

Can anyone think of yet another IMPORTANT tradeoff

Hint: Related to the MAC Layer
Total interference

More nodes free to transmit packets (A, B, E)
Interference incident at receiver (D) increases
A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks

Gavin Holland
HRL Labs

Nitin Vaidya
UIUC

Paramvir Bahl
Microsoft Research

MOBICOM’01 Rome, Italy

© 2001. Gavin Holland
Background

- Current WLAN hardware supports multiple data rates
 - 802.11b - 1 to 11 Mbps
 - 802.11a - 6 to 54 Mbps

- The data rate is determined by the modulation scheme
Problem

Modulation schemes have different error characteristics

![Graph showing BER vs. SNR for different data rates (1 Mbps and 8 Mbps)]
Impact

Large-scale variation with distance (Path loss)

Path Loss

SNR (dB)

Distance (m)

Mean Throughput (Kbps)

Distance (m)

8 Mbps

1 Mbps
Impact

Small-scale variation with time (Fading)

[Diagram showing Rayleigh Fading with SNR (dB) on the y-axis and Time (ms) on the x-axis. The diagram includes markers for different modulation schemes such as QAM256 (8 Mbps), QAM64 (6 Mbps), QAM16 (4 Mbps), QPSK (2 Mbps), and BPSK (1 Mbps) at 2.4 GHz 2 m/s LOS.]
Question

Which modulation scheme to choose?
Answer → Rate Adaptation

- Dynamically choose the best modulation scheme for the channel conditions
Design Issues

- How frequently must rate adaptation occur?

- Signal can vary rapidly depending on:
 - carrier frequency
 - node speed
 - interference
 - etc.

- For conventional hardware at pedestrian speeds, rate adaptation is feasible on a *per-packet* basis

Coherence time of channel higher than transmission time
Adaptation → At Which Layer?

- Cellular networks
 - Adaptation at the *physical layer*

- Impractical for WLANs
 - RTS/CTS requires that the *rate be known in advance*

- For WLANs, rate adaptation best handled at MAC
Who should select the data rate?

- Channel conditions are only known at the receiver
- Receiver’s hardware can provide useful information
 - SS, noise, interference, BER, multi-path characteristics

- The receiver is best positioned to select the data rate
Previous Work

- **PRNet**
 - Periodic broadcasts of link quality tables

- **Pursley and Wilkins**
 - RTS/CTS feedback for power adaptation
 - ACK/NACK feedback for rate adaptation

- **Lucent WaveLAN “Autorate Fallback” (ARF)**
 - Uses lost ACKs as link quality indicator
Pursley and Wilkins

- Caches per-node transmit and receive parameters
- RTS carries transmit parameters to receiver
- CTS may only carry power adjustment, not rate
- ACK/NACK may carry new parameters for subsequent packets
- May not work well for infrequent traffic

WHY?
Lucent WaveLAN “Autorate Fallback” (ARF)

- **Sender decreases rate after**
 - N consecutive ACKS are lost

- **Sender increases rate after**
 - Y consecutive ACKS are received or
 - T secs have elapsed since last attempt

1 Mbps Effective Range

2 Mbps Effective Range
Performance of ARF

- Slow to adapt to channel conditions
- Choice of N, Y, T may not be best for all situations
RBAR Approach

- Move the rate adaptation mechanism to the receiver
 - Better channel quality information = better rate selection

- Utilize the RTS/CTS exchange to:
 - Provide the receiver with a signal to sample (RTS)
 - Carry feedback (data rate) to the sender (CTS)
Receiver-Based Autorate (RBAR) Protocol

- RTS carries sender's estimate of best rate
- CTS carries receiver's selection of the best rate
- Nodes that hear RTS/CTS calculate reservation
- If rates differ, special subheader in DATA packet updates nodes that overheard RTS
Performance of RBAR

[Graph showing SNR (dB) over time for RBAR and ARF, with different modulation schemes indicated.]
Question to the class

- There are two types of fading
 - Short term fading
 - Long term fading

- Under which fading is RBAR better than ARF?
- Under which fading is RBAR comparable to ARF?
- Is there a case when RBAR is worse than ARF?
Implementation into 802.11

<table>
<thead>
<tr>
<th>Frame Control</th>
<th>Duration</th>
<th>DA</th>
<th>SA</th>
<th>FCS</th>
<th>BSSID</th>
<th>Sequence Control</th>
<th>Body</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Reservation Subheader (RSH)**

- **Encode data rate and packet length in *duration* field of frames**
 - Rate can be changed by receiver
 - Length can be used to select rate
 - Reservations are calculated using encoded rate and length

- **New DATA frame type with *Reservation Subheader (RSH)***
 - Reservation fields protected by additional frame check sequence
 - RSH is sent at same rate as RTS/CTS

- **New frame is only needed when receiver suggests rate change**
Ns-2 with mobile ad hoc networking extensions

- Rayleigh fading

Scenarios: single-hop, multi-hop

Protocols: RBAR and ARF

RBAR
- Channel quality prediction:
 - SNR sample of RTS
- Rate selection:
 - Threshold-based
- Sender estimated rate:
 - Static (1 Mbps)

Performance Analysis

<table>
<thead>
<tr>
<th>BER</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-5</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing BER vs SNR with different modulation schemes and thresholds.
Performance Results

Single-Hop Network
Single-Hop Scenario

![Graph showing Mean Throughput (Kbps) vs Distance (m) for different modulation schemes: QAM256 (8Mbps), QAM64 (6Mbps), QAM16 (4Mbps), QPSK (2Mbps), and BPSK (1Mbps). The graph illustrates the decline in throughput as the distance between nodes A and B increases.]
Varying Node Speed

UDP Performance

- RBAR performs best
- Declining improvement with increase in speed
 - Adaptation schemes over fixed
 - RBAR over ARF
- Some higher fixed rates perform worse than lower fixed rates
Varying Node Speed
TCP Performance

- RBAR again performs best
- Overall lower throughput and sharper decline than with UDP
 - Caused by TCP’s sensitivity to packet loss
- More higher fixed rates perform worse than lower fixed rates
Infrequent Traffic
UDP Performance

- Similar results for shorter burst intervals
- Similar results for TCP (see tech report)
No Mobility
UDP Performance

- RSH overhead seen at high data rates
 - Can be reduced using some initial rate estimation algorithm
- Limitations of simple threshold-based rate selection seen
- Generally, still better than ARF
No Mobility
UDP Performance

- RBAR-P - RBAR using a simple initial rate estimation algorithm
 - Previous rate used as *estimated* rate in RTS
- Better high-rate performance
- Other initial rate estimation and rate selection algorithms are a topic of future work

Why useful?
Performance Results

Multi-Hop Network
Multi-Hop Network
UDP Performance

Similar results for TCP
Multi-Hop Network
Sensitivity to RSH Loss

- Aggregate throughput is unaffected by RSH loss
- High loss probability results in only slight change in fairness
Multi-Hop Network
Sensitivity to RSH Loss

- Similar results
- Slightly more unfairness (vs. ARF) for no loss
 - (overall fairness problem due to MAC backoff by node A)
RBAR Summary

- Modulation schemes have different error characteristics

- Significant performance improvement may be achieved by MAC-level adaptive modulation

- Receiver-based schemes may perform best
 - Proposed Receiver-Based Auto-Rate (RBAR) protocol
 - Implementation into 802.11

- Future work
 - RBAR without use of RTS/CTS
 - RBAR based on the size of packets
 - Routing protocols for networks with variable rate links
Other proposals in rate-control

Quick survey/discussion
Opportunistic Auto-Rate (OAR)

- In multihop networks, there is intrinsic diversity
 - One among many possible transmissions take place
 - Decision made based on channel contention
 - Exploiting this diversity can offer benefits

- RBAR does not exploit this diversity
 - It optimizes per-link throughput

- OAR identified possibility of exploiting channel diversity
 - Identify transmitters with better channel quality
 - Let these transmitters transmit more packets
OAR Idea

Basic Idea
- If bad channel, wait for better channel quality
- If good channel, transmit as much as possible
Why is OAR any better?

- 802.11 alternates between transmitters A and C
 - Why is that bad

Is this diagram correct?
Why is OAR any better?

- Bad channel reduces SINR \rightarrow increases transmit time
 - Fewer packets can be delivered

A

\[\text{Data} \quad \text{Data} \quad \text{Data}\]

B

\[\text{Data} \quad \text{Data} \quad \text{Data}\]
OAR Protocol Steps

- Transmitter estimates current channel
 - Can use estimation algorithms
 - Can use RBAR, etc.

- If channel better than base rate (2 Mbps)
 - Transmit proportionally more packets
 - E.g., if channel can support 11 Mbps, transmit (11/2 ~ 5) pkts

- OAR upholds temporal fairness
 - Each node gets same duration to transmit
 - Sacrifices throughput fairness → the network gains!!
OAR thoughts

- OAR does not offer benefits when

- OAR may not be suitable for applications like

- With TCP how can OAR get affected?
OAR thoughts

- OAR does not offer benefits when
 - Neighboring nodes do not experience diverse channel conditions
 - Coherence time is shorter than N packets

- OAR may not be suitable for applications like
 - Voice traffic, video traffic ... why ??

- With TCP how can OAR get affected ?
 - Back-to-back packets can increase TCP performance
 - However, bottleneck bandwidth can get congested quick
 - Also, variance of RTT can increase
Exploiting Diversity in Rate Adaptation

Yet another idea exploits multiple user diversity
- Among many intermediate nodes, who has best channel
- Use that node as forwarding node
- Forwarding node can change with time
 - Due to channel fluctuations at different time and space
The Protocol Overview

• MAD using Packet Concatenation (PAC)

Diagram:
- **Sender:** GRTS
 - **User 1:** CTS 1
 - **User 2:** CTS 2
 - **User k:** ... CTS k
 - **Data:** SF DATA 0 DATA 1 DATA 2
 - **ACK:** ACK 0~2

Since at least one intermediate node is likely to have good channel condition, transmitter can transmit at a high data rate or concatenate multiple packets:

- Choosing subset of neighbor-group is important
- Coherence time of channel must be greater than packet chain
- Group needs to really have independent channel gain
 - Correlated channel gains can lead to performance hit.
Summary

Rate control can be useful
- When adapted to channel fluctuations (RBAR)
- When opportunistically selecting transmitters (OAR)
- When utilizing node diversity

Benefits maximal when
- Channel conditions vary widely in time and space

Correlation in fluctuation can offset benefits
- OAR and Diversity-based MAC may show negligible gain

Several more research possibilities with rate control
What lies ahead?

- **Routing based on rate-control**
 - Choosing routes that contain high-rate links
 - ETX metric proposed from MIT accommodates link character
 - Opportunistic routing from MIT again - takes neighbor diversity into account (best paper Sigcomm 2005)
 - Fertile area for a project ...

- **Dual of rate-control is power control**
 - One might be better than the other
 - Decision often depends on the scenario → open problem

- **Directional antennas for DD link for data/ack**
 - Rate control can be introduced → Not been studied yet

... many many more
Questions?