Multi-Sensor Inversion via Rigorous Analysis of Underlying Waves

Qing H. Liu
Duke University
qhliu@ee.duke.edu

MURI Program Review
January 13, 2005
Outline

• Summary of Progress
• Joint EM/Seismic Multi-Modality Inversion
• Through-Wall Imaging Results
• Inversion of data collected by Institut Fresnel in June 2004
• Inversion of data collected by Georgia Tech (W. Scott) in Dec. 2004
Summary of Research Progress

- Objective: To use the wave physics with fast algorithms to enhance multi-modality inversion and imaging.

- Developed
 - PSTD and spectral discontinuous Galerkin method for time domain simulation
 - Forward and inverse scattering methods for 3D objects in layered earth
 - Joint electromagnetic and acoustic inversion method with mutual information method
 - Novel diagonal tensor approximation (DTA)
 - Nonuniform fast Fourier transform (NUFFT) for imaging

- Inversion of measured 2D and 3D data sets
Outline

- Summary of Progress
- Joint EM/Acoustic Multi-Modality Inversion
- Through-Wall Imaging Results
- Inversion of data collected by Institut Fresnel in June 2004
- Inversion of data collected by Georgia Tech (W. Scott) in Dec. 2004
Seismic/Electromagnetic Joint Inversion with Mutual Information Method

Joint Image $\alpha A + B$. Seismic Image A. EM Image B.
Outline

- Summary of Progress
- Joint EM/Acoustic Multi-Modality Inversion
- Through-Wall Imaging Results
- Inversion of data collected by Institut Fresnel in June 2004
- Inversion of data collected by Georgia Tech (W. Scott) in Dec. 2004
Through-Wall Imaging Results

Wall Imaging: Austria Profile in a 5-layer model
Configuration, source/receiver interval = 0.20 m

Air
\[\varepsilon_w = 4.0 \quad \sigma_w = 0.01 \ S/m \]

\[0.2 \ m \]

Walls

32 sources and receivers
Single-Frequency Imaging

Single-frequency Wall Imaging: Austria Profile

The aperture size $L = 3$ m, a 2-side linear array

100 MHz

200 MHz

300 MHz

400 MHz

Poor due to Inadequate # of sensors
Multi-Frequency Adaptivity

Multifrequency Wall Imaging: Austria Profile

The aperture size $L = 3$ m, a 2-side linear array

100 MHz

100 MHz \rightarrow 200 MHz

200 MHz \rightarrow 300 MHz

300 MHz \rightarrow 400 MHz
Outline

• Summary of Progress
• Joint EM/Acoustic Multi-Modality Inversion
• Through-Wall Imaging Results
• Inversion of data collected by Institut Fresnel in June 2004
• Inversion of data collected by Georgia Tech (W. Scott) in Dec. 2004
Target-I : Geometry and Parameters

Air

Circular array
8 x 241

20 mm

60 mm

20 mm

D

200 mm

200 mm

$\epsilon_r = 1.45$

8 x 241

30 mm

$\epsilon_r = 3.0$
Multi-Frequency Inversion of Target I

Left: ε_r

Right: σ

$f = 2\text{GHz}$

$f = 2\text{GHz} \rightarrow 3\text{GHz}$
$f = 3\, \text{GHz} \rightarrow 4\, \text{GHz}$

$\ f = 4\, \text{GHz} \rightarrow 5\, \text{GHz}$
\[f = 5 \text{GHz} \rightarrow 6 \text{GHz} \]

\[f = 6 \text{GHz} \rightarrow 7 \text{GHz} \]
\[f = 7 \text{GHz} \rightarrow 8 \text{GHz} \]

\[f = 8 \text{GHz} \rightarrow 9 \text{GHz} \]
Target-III: Geometry and Parameters

Circular array
18 x 241

D

$\varepsilon_r = 3.0$

$\varepsilon_r = 3.0$

$\varepsilon_r = 1.45$

20 mm

60 mm

30 mm

200 mm

Air
Inversion Results: Target III

Left: \(E_r \)

Right: \(\sigma \)

\[f = 2\text{GHz} \]

\[f = 2\text{GHz} \rightarrow 3\text{GHz} \]
\[f = 3\text{GHz} \rightarrow 4\text{GHz} \]

\[f = 4\text{GHz} \rightarrow 5\text{Hz} \]
$f = 5\text{GHz} \rightarrow 6\text{GHz}$

$f = 6\text{GHz} \rightarrow 7\text{Hz}$
\[f = 7\text{GHz} \rightarrow 8\text{GHz} \]
\[f = 8\text{GHz} \rightarrow 9\text{Hz} \]
\[f = 9 \text{GHz} \rightarrow 10 \text{Hz}. \]
\[f = 9\,GHz \rightarrow 10\,GHz \]
Outline

• Summary of Progress
• Joint EM/Acoustic Multi-Modality Inversion
• Through-Wall Imaging Results
• Inversion of data collected by Institut Fresnel in June 2004
• Inversion of data collected by Georgia Tech (W. Scott) in Dec. 2004
NUFFT for Subsurface Imaging

Nonuniform Fast Fourier Transform (NUFFT)
- To enable the discrete Fourier analysis of non-uniformly sampled data
- To take advantage of the Fast Fourier Transform (FFT) algorithm
- To retain the accuracy of DFT

Application in GPR Migration Signal Processing
- To enable Fourier reconstruction directly without linear interpolation
- To retain the computation accuracy with down-sampled data
NUFFT Method

DFT

\[f_j = \sum_{k=0}^{N} \alpha_k e^{i \omega_k \cdot 2\pi t_j} \]

\[\omega_k \in [-N/2, N/2], t_j = j/N \]

Non-uniform \(\omega_k \)

\[\min \left| W_0^{m \omega_k j} - s^{-1} \sum_{l=[m \omega_k] - q/2}^{[m \omega_k] + q/2} \rho_{k-l} W_0^{lj} \right| \]

Uniform \(q+1 \)

\[W_0 = e^{i 2\pi / mN} \]
NUFFT Method

Approximate each $W_0^{m\omega_kj}$ in terms of a $q+1$-term Fourier series

$$s_j W_0^{m\omega_kj} = \sum_{l=[m\omega_k]-q/2}^{[m\omega_k]+q/2} \rho_{k-l} W_0^{lj}$$

Approximate the value of a Fourier series at each in terms of values at the nearest q uniform nodes

New Fourier coefficient:

$$\tau_l = \sum \alpha_k \rho_{k-[m\omega_k]}$$

Regular FFT:

$$\{\tau_l\} \rightarrow \{T_j\}$$
NUFFT Numerical Results

Graph showing the real part of the Fourier Transform for different methods: DFT, NUFFT, and Linear Interp., plotted against frequency.
NUFFT Numerical Results

![Graph showing numerical results for NUFFT and Linear Interp. The x-axis represents frequency, and the y-axis represents real part error. The graph compares the error for NUFFT and Linear Interp across different frequency ranges, with error values ranging from 10^{-8} to 10^0.](image-url)
Formulation

\[U(k_x, 0, \omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, 0, t)e^{-i(k_x x - \omega t)} \, dx \, dt \]

Wave-number Space (Non-uniform*)

\[\omega^2 = v_0 (k_x^2 + k_z^2) \]
Formulation (Cont)

- **Inverse 2D Fourier Transform**

\[
u(x, z, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(k_x, z, \omega) \exp[i(k_x x - \omega t)] dk_x \, d\omega
\]

Phase Shift

\[
U(k_x, z, \omega) = U(k_x, 0, \omega) \exp[i \int k_z \, dz] = U(k_x, 0, \omega) \exp[i k_z z]
\]

Migration

\[
u(x, z, 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(k_x, 0, \omega) \exp[i(k_x x + k_z z)] dk_x \, d\omega
\]

NUFFT

\[
u(x, z, 0) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} U(k_x, 0, \omega) \exp[i k_z z] \, d\omega \right) \exp[i k_x x] \, dk_x
\]

\[
= \text{FFT} \left\{ \text{NUFFT} \left[U(k_x, 0, \omega) \right] \right\}
\]
2D Results (Niitek)

Raw data

Migrated
Fast data acquisition by NUFFT

*NUFFT migration has good performance with down-sampled data, due to the non-uniformity of the wave-number space
3D NUFFT Imaging Results

- Niitek data: metallic and plastic landmines
- Georgia Tech data: GT plywood and chamber
- Cross section (horizontal plane) interested
- 3D animation

GT plywood

Chamber in sand
Acquisition Configuration (Georgia Tech)

Free space acquisition

![Diagram showing antenna configuration with phase center, array coordinate reference point, unit in cm, target, and styrofoam pedestal.]
3D Results (GT plywood)

Raw data

Migrated image

Migration
3D Results (GT plywood)

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>width</td>
<td>38.5cm</td>
<td>38cm</td>
</tr>
<tr>
<td>height</td>
<td>46.5cm</td>
<td>44cm</td>
</tr>
<tr>
<td>thick</td>
<td>1.8cm</td>
<td>1.76cm</td>
</tr>
</tbody>
</table>

* Note: 1 pixel resolution = 2 cm (horizontal), 0.29 cm (vertical)
Acquisition Configuration (Georgia Tech)

Buried object acquisition

Chamber
3D Results (Buried chamber)

Raw data | Migrated image

At an estimated depth of 12cm from interface
3D Results (Buried chamber)

Raw data

Migrated image

At an estimated depth of 17 cm from interface
3D Results (Buried Chamber)

Numerical verification

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>40.64 cm</td>
<td>42 cm</td>
</tr>
<tr>
<td>length</td>
<td>30.48 cm</td>
<td>34 cm</td>
</tr>
<tr>
<td>height</td>
<td>20.32 cm</td>
<td>16.1 cm</td>
</tr>
<tr>
<td>depth</td>
<td>9.5 cm</td>
<td>10.5 cm</td>
</tr>
</tbody>
</table>

Note: 1 pixel resolution = 2 cm (horizontal), 0.16 cm (vertical)
Summary

• 2D, 3D and multimodality inversion methods have been developed
• Inversion methods have been successfully applied to image some difficult targets from Institut Fresnel. These are 2D measured results for TM polarization.
• NUFFT has been applied to obtain high-fidelity 3D images from Georgia Tech data
• Through-wall imaging is investigated and is highly promising.