Electromagnetic/Seismic Joint Inversion in Multilayered Media

Co-PI: Qing H. Liu
Fenghua Li, Lin-Ping Song
Department of Electrical and Computer Engineering
Duke University
Durham, NC 27708

Email: qhliu@ee.duke.edu
www.ee.duke.edu/~qhliu

MURI Review
February 25, 2004
Outline

- I. Introduction
- II. Theory of Forward and Inverse Solution in Layered Media
- III. 3D Single-Frequency EM Inversion
- IV. 2D Multi-Frequency EM and Seismic Inversion
- V. 2D EM/Seismic Joint Inversion in Layered Media
- VI. Summary and Future Work
I. Introduction

- Motivation
 - Electromagnetic and seismic measurements are complementary
 - Especially beneficial to combine these measurements for underground structures
 - Joint inversion can significantly improve inversion resolution

- Problem Considered
 - 2D and 3D EM/seismic scattering in multilayered media
 - Arbitrary number of layers are allowed
 - Such a model is necessary for the realistic situation where the soil and rock are heterogeneous
Problem Geometry

Layer 1 \(\varepsilon_1 \mu_1 \sigma_1 \)

\[\vdots \]

Layer i \(\varepsilon_i \mu_i \sigma_i \)

\[\vdots \]

Layer M \(\varepsilon_M \mu_M \sigma_M \)

Sensor Array A

\[\circ \]

Sensor Array B

\[\circ \]

Target \(\varepsilon_r \sigma \)

Figure 1: EM/Seismic measurements in a multilayer environment.

- Sources and receivers are located above, on, or under the surface.
- Parameters for seismic properties are not shown but are similar.
- The objective is to obtain a high-resolution image of the target.
II. Theory

- Electromagnetic Waves: The electric field satisfies

\[-\nabla \times \mu_r^{-1} \nabla \times \mathbf{E} + k_0^2 \epsilon_r \mathbf{E} = -j\omega\mu_0 \mathbf{J}\]

(1)

- Seismic Waves: The displacement vector satisfies

\[\frac{1}{2} \nabla \cdot \left[\mathbf{C} \cdot \{\nabla \mathbf{u} + (\nabla \mathbf{u})^T\} \right] + \omega^2 \rho \mathbf{u} = -\mathbf{f}\]

(2)

- Seismic Waves Become Scalar Acoustic Waves if Shear Waves are Neglected: The pressure field satisfies

\[\rho \nabla \cdot (\rho^{-1} \nabla p) + k^2 p = -j\omega c^{-2} f_s\]

(3)
The Fast Forward Method: BCGS-FFT

- A stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) method has been developed for fast and accurate forward simulations of EM and acoustic waves in 3D and 2D multilayered media:

\[
\mathcal{L} [\mathbf{D}(\mathbf{r})] = \mathbf{E}_{\text{inc}}(\mathbf{r}), \quad \mathbf{r} \in V
\]

\[
\mathcal{L}[] = \left[\frac{1}{\varepsilon_i} \right] - (k_i^2 + \nabla \nabla \cdot) \frac{1}{\varepsilon_i} \int_V \mathbf{G}^{ii}(\mathbf{r}, \mathbf{r}') \cdot \chi[] d\mathbf{r}'.
\]

The BCGS-FFT method requires only \(O(N \log N) \) CPU time and \(O(N) \) memory.

Refs:

The Nonlinear Inverse Scattering Methods

- Three methods have been developed:
 - The Born Iterative Method (BIM)
 - The Distorted Born Iterative Method (DBIM)
 - The Contrast Source Inversion (CSI) Method

- Notations
 - $\chi = (\tilde{\varepsilon}_r/\tilde{\varepsilon}_{rb} - 1)$ defines the contrast of the target
 - $\delta\chi_{n+1} = \chi_{n+1} - \chi_n$ denotes the $(n + 1)$-th iteration’s update
 - D denotes an enclosing box around the target domain; S denotes the sensor surface.
- \mathcal{L} denotes BIM’s nonlinear mapping from the contrast to the scattered field

$$E^{scat} = \mathcal{L}_D \chi, \quad r \in D$$

$$E^{scat} = \mathcal{L}_S \chi, \quad r \in S$$

- \mathcal{G} denotes DBIM’s nonlinear mapping from the contrast to the scattered field

$$\delta E^{scat} = \mathcal{G}_D \delta \chi, \quad r \in D$$

$$\delta E^{scat} = \mathcal{G}_S \delta \chi, \quad r \in S$$
• Born Iterative Method

\[F = \| f_{n+1} - \mathcal{L}_n \chi_{n+1} \|^2 + \gamma \| \chi_{n+1} \|^2 \]

• Distorted Born Iterative Method

\[F = \| \delta f_{n+1} - \mathcal{G}_n \delta \chi_{n+1} \|^2 + \gamma \| \delta \chi_{n+1} \|^2 \]

• Contrast Source Inversion: First order approximation

\[F = \frac{\sum_i \| f_i - \mathbf{G}_S \mathbf{w}_i \|^2_S}{\sum_i \| f_i \|^2_S} + \frac{\sum_i \| \chi \mathbf{E}^{inc}_i - \mathbf{w}_i + \chi \mathbf{G}_D \mathbf{w}_i \|^2_D}{\sum_i \| \chi \mathbf{E}^{inc}_i \|^2_D} \]

• The conjugate-gradient method is used to minimize these functionals. FFT is used to accelerate the iterations.

• DBIM is faster than BIM and CSI when the sources and receivers are colocated.
III. 3D EM Inversion

Figure 2: Typical configuration of an inhomogeneous object in a planarly layered medium. Right: Example of two targets ($\varepsilon_r = 10$, $\sigma = 0.3$ S/m).

- 64×64 sources/receivers in air. Single frequency at $f = 1$ GHz.
- The 3-layer medium models the presence of top soil.
Noise Performance of 3D Inversion

Figure 3: BIM (left) and DBIM (right) reconstruction for SNR = 40 dB. Top: dielectric constant ε_r. Bottom: conductivity σ.
SNR is now reduced to 20 dB

Figure 4: BIM (left) and DBIM (right) reconstruction for SNR = 20 dB. Top: dielectric constant ε_r. Bottom: conductivity σ.
Convergence of Data and Model Errors

Figure 5: Left: Data error convergence versus iterations for DBIM (solid) and BIM (dashed) at SNR = 40 dB.
Right: Relative error of inverted complex permittivity as a function of SNR.
Effect of the Aperture Size

Figure 6: Relative error of inverted complex permittivity as a function of aperture size.
Left: source/receiver numbers are 36/36.
Right: source/receiver numbers are 64/64.
IV. 2D Multi-Frequency EM and Seismic Imaging

Figure 7: Configuration for seismic imaging of underground structures.

- 16 × 16 sources/receivers in the soil.
- The 3-layer medium models the presence of top soil.
- Shear Waves are neglected for such deep imaging cases for the seismic case.
DBIM for Multi-Frequency Inversion

For single-frequency inversion, we solve following equation:

$$\delta f_{n+1} = \mathcal{L}_n \delta \chi_{n+1}$$

For multi-frequency inversion, we solve following equations:

$$\delta f_{n+1,\omega_1} = \mathcal{L}_{n,\omega_1} \delta \chi_{n+1}$$
$$\delta f_{n+1,\omega_2} = \mathcal{L}_{n,\omega_2} \delta \chi_{n+1}$$
$$\quad \hdots$$
$$\delta f_{n+1,\omega_K} = \mathcal{L}_{n,\omega_K} \delta \chi_{n+1}$$

The above equations can be further expressed as:

$$\delta F_{n+1} = \mathcal{L}_n \delta \chi_{n+1}$$

where $F_{n+1} = [f_{n+1,\omega_1}, f_{n+1,\omega_2}, \hdots, f_{n+1,\omega_K}]^T$;
$\mathcal{L}_n = [\mathcal{L}_{n,\omega_1}, \mathcal{L}_{n,\omega_2}, \hdots, \mathcal{L}_{n,\omega_K}]^T$
Single-Frequency Seismic Imaging of a Void

Figure 8: Left: 100 Hz. Right: 400 Hz

- The inversion at 100 Hz is reasonably good.
- At 400 Hz there are ghost images because of the inadequate sensors.
Multi-Frequency Seismic Imaging of a Void

Figure 9: Imaging with 5 frequencies between 100–1000 Hz.

- Significant improvement is observed over the single-frequency imaging.
Multi-Frequency EM Imaging of an Underground Room

Figure 10: Imaging with 4 frequencies between 10–70 MHz. Left: Reconstructed Image from multi-frequency EM data. Right: The ground truth.

- The wall is well reconstructed because of its large EM contrast with background ($\chi = 1.5$).
Multi-Frequency Seismic Imaging of an Underground Room

Figure 11: Imaging with 4 frequencies between 100–1000 KHz. Left: Reconstructed Image from multi-frequency seismic data. Right: The ground truth.

- The air inside is well reconstructed because of its large acoustic contrast with background.
Convergence Curves in Multi-Frequency Imaging

Figure 12: Data fitting error versus iteration number. Left: EM inversion. Right: Seismic inversion.
V. 2D EM/Seismic Joint Inversion

- Joint Inversion using the Mutual Information (MI) Theory

MI of two random variables A and B can be obtained as:

\[I(A, B) = H(A) + H(B) - H(A, B) \]

where \(H(A) \) and \(H(B) \) are the entropies of A and B, and \(H(A, B) \) is their joint entropy

\[
\begin{align*}
H(A) &= \sum -P_A(a) \log P_A(a) \\
H(B) &= \sum -P_B(b) \log P_B(b) \\
H(A, B) &= \sum -P_{A,B}(a, b) \log P_{A,B}(a, b)
\end{align*}
\]

The MI based criterion states that the images shall be registered when \(I(A, B) \) is maximal.
The Mutual Information Theory

The probability density functions

\[P_{A,B}(a, b) = \frac{h(a, b)}{\sum h(a, b)} \]

\[P_A(a) = \sum_b P_{A,B}(a, b) \]

\[P_B(b) = \sum_a P_{A,B}(a, b) \]

\(P \) is the probability density function, \(h(a, b) \) is the number of the corresponding pairs having intensity value \(a \) in the first image and intensity value \(b \) in the second image.
Mutual Information Theory in Joint EM/Seismic Inversion

Two modalities:
A–Seismic
B–EM

There exists an operator L_{BA} such that

$$L_{BA}B = A$$

The MI based criterion states that the images shall be registered when $I(A, L_{B,A}B)$ is maximal.
Mutual Information Theory in Joint EM/Acoustic Inversion

The output image is:

From the view of the “Seismic Contrast”, we have the combined image

\[
\frac{A + L_{BA}B}{2}
\]

From the view of the “EM Contrast”, we have the combined image

\[
\frac{B + L_{AB}A}{2}
\]

The consistency of \(L_{AB}\) and \(L_{BA}\) is measured by

\[
< dp >= \sum \| A - L_{BA}L_{AB}A \|
\]

which is zero if the models are completely consistent. For simplicity we assume that

\[
L_{BA} = LI
\]

in our preliminary study. This is an approximate model.
Joint EM/Seismic Inversion from the Seismic View

Figure 13: Joint inversion in the seismic view.
Left: The mutual information vs. L from the seismic view.
Right: The combined seismic image.
Joint EM/Seismic Inversion from the EM View

Figure 14: Joint inversion in the EM view.
Left: The mutual information vs. L from the EM view.
Right: The combined EM image.
The Joint EM/Seismic Image versus Single-Modality Images

Joint Image $\alpha A + B$. Seismic Image A. EM Image B.

- The joint image is significantly better than single-modality images.
Summary and Future Work

- We have developed several new nonlinear inversion capabilities in layered media
 - 3D single-frequency EM inversion
 - 2D multi-frequency EM and seismic inversion
 - 2D EM/seismic joint inversion
- Multi-frequency inversion can significantly improve the resolution
- Joint inversion of multi-modalities has been demonstrated with EM and seismic data.
- Preliminary results are very encouraging in these new inversion models
- More thorough investigation is needed, especially in the area of combining multiple modalities. Inclusion of *a priori* correlation information.