Packaging Consideration for 1 Gbps Si CMOS Optical Driver

Sungyong Jung, Martin A. Brooke, Nan Marie Jokerst

School of Electrical and Computer Engineering
Microelectronic Research Center
Georgia Institute of Technology
Atlanta, GA 30332; Tel. 404-894-3304; Fax. 404-894-0222
Email: sjung@ece.gatech.edu

Recently, attention has been given to using optical interconnection as a solution for overcoming the restrictions of electrical interconnections [1]. These restrictions arise increasing data rates and high density circuits. In optical interconnection systems, a laser driver is one of the key components needed to generate the high current, high speed pulses required for driving a transmitter.

To date, silicon (Si) CMOS drivers for bit rates up to several gigabits per second for low cost, low power consumption implementations have been reported [2]. However, the parasitics of the packaging have not been considered in the design of these laser drivers, although they are bonded into a package. In the presence of parasitics, the output of drivers can be corrupted. Thus, decoupling capacitors are needed near the power supplies to reduce the distortion due to the parasitics. In this paper, a 1 Gbit/s laser driver is presented and the effect of parasitics is discussed.

The CMOS driver circuit described herein was designed for operation at 1 Gbit/s. The driver consists of current mirrors and a current switch, as illustrated in Figure 1. A differential design was employed to reduce power supply ripples. The output current delivered to the laser diode was composed of I_{dc} for dc biasing the laser above the threshold current, and I_{mod} for the modulation current above threshold. In an integrated implementation, one of the diodes would be removed and a laser would be integrated instead of the diode.

The size of the transistors were optimized so that a 180 mA peak-to-peak modulation current and up to 30 mA of laser biasing current could be used. This driver was fabricated using standard 0.25 um Si CMOS technology through the MOSIS foundry. When a driver switches state from low-to-high and high-to-low, the output signal of the driver is degraded, since a sudden current ripple is produced. This current ripple appears in the interconnections to the power supply due to the parasitic inductance of the interconnections. A model of these packaging parasitics is shown in Figure 2.

In Figure 2, Lwire and Rwire are the inductance and the resistance of wires from the external power supply to the internal power supplies (Vdd and Vss) of the chip. Lboard is the inductance of PCB (Printed Circuit Board), and Lbond is the inductance of the bonding wire. Due to these packaging parasitics, decoupling capacitors are required for the reduction of switching. Thus, Cdecouple should be placed near the internal power supply.
supply to provide charge during switching. The packaging model shown in Figure 2 was incorporated into the design of the driver circuit, and the circuit and packaging parasitics were simulated using HSPICE.

The performance of the driver and the packaging parasitics has been simulated. Pseudorandom input data at 1 Gbit/s with 1 volt peak-to-peak was used. First, the output data without parasitics is shown in Figure 3. This is the ideal situation, which is the goal of the properly decoupled packaged laser driver.

![Fig. 3. Top: input signal; Bottom: output signal without parasitics](image)

![Fig. 4. Output signal with parasitics](image)

Next, the output signal was corrupted by the packaging parasitics (as modeled in Figure 2), using typical values of 1nH for Lboard, 10nH for Lwire, 185nH for Lwire, and 0.01 W for Rwire. The output result is shown in Figure 4. To reduce the effect of these packaging parasitics, various capacitance values were used to examine the effect of decoupling capacitors. These results are shown in Figure 5, indicating that larger capacitance values significantly improve the output signal. The minimum capacitance for a clear output waveform was 7 nF in this design, as shown in Figure 5c. Given this value, an on-chip capacitor can be embedded in the laser driver chip design. The fabricated laser driver with the on-chip capacitor is shown in the photomicrograph in Figure 6.

![Fig. 5. Output signal with various capacitances](image)

![Fig. 6. Laser driver chip photograph.](image)

A high-speed laser driver circuit has been designed and fabricated with an on-chip decoupling capacitor to prevent output distortion from packaging parasitics. The suitability of a decoupling capacitor with a minimum capacitance of 7 nF was verified. In the near future, a laser will be integrated onto this driver chip for experimental verification of the design.

References

