
Deconvolutional Paragraph Representation Learning

Yizhe Zhang Dinghan Shen Guoyin Wang Zhe Gan Ricardo Henao

Lawrence Carin
Department of Electrical & Computer Engineering, Duke University

Abstract

Learning latent representations from long text sequences is an important first step
in many natural language processing applications. Recurrent Neural Networks
(RNNs) have become a cornerstone for this challenging task. However, the qual-
ity of sentences during RNN-based decoding (reconstruction) decreases with the
length of the text. We propose a sequence-to-sequence, purely convolutional and
deconvolutional autoencoding framework that is free of the above issue, while
also being computationally efficient. The proposed method is simple, easy to
implement and can be leveraged as a building block for many applications. We
show empirically that compared to RNNs, our framework is better at reconstruct-
ing and correcting long paragraphs. Quantitative evaluation on semi-supervised
text classification and summarization tasks demonstrate the potential for better
utilization of long unlabeled text data.

1 Introduction

A central task in natural language processing is to learn representations (features) for sentences or
multi-sentence paragraphs. These representations are typically a required first step toward more
applied tasks, such as sentiment analysis [1, 2, 3, 4], machine translation [5, 6, 7], dialogue systems
[8, 9, 10] and text summarization [11, 12, 13]. An approach for learning sentence representations
from data is to leverage an encoder-decoder framework [14]. In a standard autoencoding setup, a
vector representation is first encoded from an embedding of an input sequence, then decoded to the
original domain to reconstruct the input sequence. Recent advances in Recurrent Neural Networks
(RNNs) [15], especially Long Short-Term Memory (LSTM) [16] and variants [17], have achieved
great success in numerous tasks that heavily rely on sentence-representation learning.

RNN-based methods typically model sentences recursively as a generative Markov process with
hidden units, where the one-step-ahead word from an input sentence is generated by conditioning on
previous words and hidden units, via emission and transition operators modeled as neural networks.
In principle, the neural representations of input sequences aim to encapsulate sufficient information
about their structure, to subsequently recover the original sentences via decoding. However, due to the
recursive nature of the RNN, challenges exist for RNN-based strategies to fully encode a sentence into
a vector representation. Typically, during training, the RNN generates words in sequence conditioning
on previous ground-truth words, i.e., teacher forcing training [18], rather than decoding the whole
sentence solely from the encoded representation vector. This teacher forcing strategy has proven
important because it forces the output sequence of the RNN to stay close to the ground-truth sequence.
However, allowing the decoder to access ground truth information when reconstructing the sequence
weakens the encoder’s ability to produce self-contained representations, that carry enough information
to steer the decoder through the decoding process without additional guidance. Aiming to solve
this problem, [19] proposed a scheduled sampling approach during training, which gradually shifts
from learning via both latent representation and ground-truth signals to solely use the encoded latent
representation. Unfortunately, [20] showed that scheduled sampling is a fundamentally inconsistent

training strategy, in that it produces largely unstable results in practice. As a result, training may fail
to converge on occasion.

During inference, for which ground-truth sentences are not available, words ahead can only be gener-
ated by conditioning on previously generated words through the representation vector. Consequently,
decoding error compounds proportional to the length of the sequence. This means that generated
sentences quickly deviate from the ground-truth once an error has been made, and as the sentence
progresses. This phenomenon was coined exposure bias in [19].

We propose a simple yet powerful purely convolutional framework for learning sentence representa-
tions. Conveniently, without RNNs in our framework, issues connected to teacher forcing training and
exposure bias are not relevant. The proposed approach uses a Convolutional Neural Network (CNN)
[21, 22] as encoder and a deconvolutional (i.e., transposed convolutional) neural network [23] as
decoder. To the best of our knowledge, the proposed framework is the first to force the encoded latent
representation to capture information from the entire sentence via a multi-layer CNN specification, to
achieve high reconstruction quality without leveraging RNN-based decoders. Our multi-layer CNN
allows representation vectors to abstract information from the entire sentence, irrespective of order
or length, making it an appealing choice for tasks involving long sentences or paragraphs. Further,
since our framework does not involve recursive encoding or decoding, it can be very efficiently
parallelized using convolution-specific Graphical Process Unit (GPU) primitives, yielding significant
computational savings compared to RNN-based models.

2 Convolutional Auto-encoding for Text Modeling

2.1 Convolutional encoder

Let wt denote the t-th word in a given sentence. Each word wt is embedded into a k-dimensional
word vector xt = We[wt

], where We 2 Rk⇥V is a (learned) word embedding matrix, V is the
vocabulary size, and We[v] denotes the v-th column of We. All columns of We are normalized
to have unit `

2

-norm, i.e., ||We[v]||2 = 1, 8v, by dividing each column with its `
2

-norm. After
embedding, a sentence of length T (padded where necessary) is represented as X 2 Rk⇥T , by
concatenating its word embeddings, i.e., xt is the t-th column of X.

For sentence encoding, we use a CNN architecture similar to [24], though originally proposed for
image data. The CNN consists of L layers (L� 1 convolutional, and the Lth fully-connected) that
ultimately summarize an input sentence into a (fixed-length) latent representation vector, h. Layer
l 2 {1, . . . , L} consists of pl filters, learned from data. For the i-th filter in layer 1, a convolutional
operation with stride length r(1) applies filter W(i,1)

c 2 Rk⇥h to X, where h is the convolution filter
size. This yields latent feature map, c(i,1) = �(X ⇤W(i,1)

c + b

(i,1)
) 2 R(T�h)/r(1)+1, where �(·) is

a nonlinear activation function, b(i,1) 2 R(T�h)/r(1)+1, and ⇤ denotes the convolutional operator. In
our experiments, �(·) is represented by a Rectified Linear Unit (ReLU) [25]. Note that the original
embedding dimension, k, changes after the first convolutional layer, as c

(i,1) 2 R(T�h)/r(1)+1,
for i = 1, . . . , p

1

. Concatenating the results from p
1

filters (for layer 1), results in feature map,
C(1)

= [c

(i,1) . . . c(i,p1)
] 2 R(T�h)/r(1)+1⇥p1 .

After this first convolutional layer, we apply the convolution operation to the feature map, C(1), using
the same filter size, h, with this repeated in sequence for L� 1 layers. Each time, the length along
the spatial coordinate is reduced to T (l+1)

= b(T (l) � h)/r(l) + 1c, where r(l) is the stride length,
T (l) is the spatial length, l denotes the l-th layer and b·c is the floor function. For the final layer, L,
the feature map C(L�1) is fed into a fully-connected layer, to produce the latent representation h.
Implementation-wise, we use a convolutional layer with filter size equals to T (L�1) (regardless of
h), which is equivalent to a fully-connected layer; this implementation trick has been also utilized in
[24]. This last layer summarizes all remaining spatial coordinates, T (L�1), into scalar features that
encapsulate sentence sub-structures throughout the entire sentence characterized by filters, {W(i,l)

c }
for i = 1, . . . , pl and l = 1, . . . , L, where W(i,l)

c denotes filter i for layer l. This also implies that
the extracted feature is of fixed-dimensionality, independent of the length of the input sentence.

2

300 x	60

Deconvolution	LayersConvolution	Layers

(k,h,p1,r(1))
(300, 5, 300, 2)

28 x 300 12 x 600
(k x T)

300 600
500

600 300

(T(1) x p1) (T(2) x p2) (T(2) x p2)
12 x 600 28 x 300

(T(1) x p1)
300 x	60
(k x T)

(k,h,p2,r(2))
(1, 5, 600, 2)

(k,T(2),p3,r(3))
(1, 12, 500, 1)

C(1)
C(2)

Figure 1: Convolutional auto-encoding architecture. Encoder: the input sequence is first expanded to an
embedding matrix, X, then fully compressed to a representation vector h, through a multi-layer convolutional
encoder with stride. In the last layer, the spatial dimension is collapsed to remove the spatial dependency.
Decoder: the latent vector h is fed through a multi-layer deconvolutional decoder with stride to reconstruct X as
X̂, via cosine-similarity cross-entropy loss.

Having pL filters on the last layer, results in pL-dimensional representation vector, h = C(L), for the
input sentence. For example, in Figure 1, the encoder consists of L = 3 layers, which for a sentence
of length T = 60, embedding dimension k = 300, stride lengths {r(1), r(2), r(3)} = {2, 2, 1}, filter
sizes h = {5, 5, 5} and number of filters {p

1

, p
2

, p
3

} = {300, 600, 500}, results in intermediate
feature maps, C(1) and C(2) of sizes {28 ⇥ 300, 12 ⇥ 600}, respectively. The last feature map of
size 1⇥ 500, corresponds to latent representation vector, h.

Conceptually, filters from the lower layers capture primitive sentence information (h-grams, analo-
gous to edges in images), while higher level filters capture more sophisticated linguistic features, such
as semantic and syntactic structures (analogous to image elements). Such a bottom-up architecture
models sentences by hierarchically stacking text segments (h-grams) as building blocks for repre-
sentation vector, h. This is similar in spirit to modeling linguistic grammar formalisms via concrete
syntax trees [26], however, we do not pre-specify a tree structure based on some syntactic structure
(i.e., English language), but rather abstract it from data via a multi-layer convolutional network.

2.2 Deconvolutional decoder
We apply the deconvolution with stride (i.e., convolutional transpose), as the conjugate operation of
convolution, to decode the latent representation, h, back to the source (discrete) text domain. As
the deconvolution operation proceeds, the spatial resolution gradually increases, by mirroring the
convolutional steps described above, as illustrated in Figure 1. The spatial dimension is first expanded
to match the spatial dimension of the (L� 1)-th layer of convolution, then progressively expanded as
T (l+1)

= (T (l) � 1) ⇤ r(l) + h, for l = 1, · · · up to L-th deconvolutional layer (which corresponds to
the input layer of the convolutional encoder). The output of the L-layer deconvolution operation aims
to reconstruct the word embedding matrix, which we denote as ˆX. In line with word embedding
matrix We, columns of ˆX are normalized to have unit `

2

-norm.

Denoting ŵt as the t-th word in reconstructed sentence ŝ, the probability of ŵt to be word v is
specified as

p(ŵt
= v) =

exp[⌧�1D
cos

(

ˆ

x

t,We[v])]P
v02V exp[⌧�1D

cos

(

ˆ

x

t,We[v0])]
, (1)

where D
cos

(x,y) is the cosine similarity defined as, hx,yi
||x||||y|| , We[v] is the v-th column of We,

ˆ

x

t is the t-th column of ˆX, ⌧ is a positive number we denote as Gumbel-softmax parameter [27].
This parameter is akin to the concentration parameter of a Dirichlet distribution, in that it controls
the spread of probability vector [p(ŵt

= 1) . . . p(ŵt
= V)], thus a large ⌧ encourages uniformly

distributed probabilities, whereas a small ⌧ encourages sparse, concentrated probability values. In the
experiments we set ⌧ = 0.01. Note that in our setting, the cosine similarity can be obtained as an
inner product, provided that columns of We and ˆX have unit `

2

-norm by specification.

3

2.3 Model learning

The objective of the convolutional autoencoder described above can be written as the word-wise
log-likelihood for all sentences s 2 D, i.e.,

Lae

=

P
d2D

P
t log p(ŵ

t
d = wt

d) , (2)

where D denotes the set of observed sentences. The simple, maximum-likelihood objective in (2)
is optimized via stochastic gradient descent. Details of the implementation are provided in the
experiments. Note that (2) differs from prior related work in two ways: i) [22, 28] use pooling and
un-pooling operators, while we use convolution/deconvolution with stride; and ii) more importantly,
[22, 28] do not use a cosine similarity reconstruction as in (1), but a RNN-based decoder. A further
discussion of related work is provided in Section 3. We could use pooling and un-pooling instead
of striding (a particular case of deterministic pooling/un-pooling), however, in early experiments
(not shown) we did not observe significant performance gains, while convolution/deconvolution
operations with stride are considerably more efficient in terms of memory footprint. Compared to a
standard LSTM-based RNN sequence autoencoders with roughly the same number of parameters,
computations in our case are considerably faster (see experiments) using single NVIDIA TITAN X
GPU. This is due to the high parallelization efficiency of CNNs via cuDNN primitives [29].

Comparison between deconvolutional and RNN Decoders The proposed framework can be seen
as a complementary building block for natural language modeling. Contrary to the standard LSTM-
based decoder, the deconvolutional decoder imposes in general a less strict sequence dependency
compared to RNN architectures. Specifically, generating a word from an RNN requires a vector of
hidden units that recursively accumulate information from the entire sentence in an order-preserving
manner (long-term dependencies are heavily down-weighted), while for a deconvolutional decoder,
the generation only depends on a representation vector that encapsulates information from throughout
the sentence without a pre-specified ordering structure. As a result, for language generation tasks, a
RNN decoder will usually generate more coherent text, when compared to a deconvolutional decoder.
On the contrary, a deconvolutional decoder is better at accounting for distant dependencies in long
sentences, which can be very beneficial in feature extraction for classification and text summarization
tasks.

2.4 Semi-supervised classification and summarization

Identifying related topics or sentiments, and abstracting (short) summaries from user generated content
such as blogs or product reviews, has recently received significant interest [1, 3, 4, 30, 31, 13, 11]. In
many practical scenarios, unlabeled data are abundant, however, there are not many practical cases
where the potential of such unlabeled data is fully realized. Motivated by this opportunity, here we
seek to complement scarcer but more valuable labeled data, to improve the generalization ability of
supervised models. By ingesting unlabeled data, the model can learn to abstract latent representations
that capture the semantic meaning of all available sentences irrespective of whether or not they are
labeled. This can be done prior to the supervised model training, as a two-step process. Recently,
RNN-based methods exploiting this idea have been widely utilized and have achieved state-of-the-art
performance in many tasks [1, 3, 4, 30, 31]. Alternatively, one can learn the autoencoder and classifier
jointly, by specifying a classification model whose input is the latent representation, h; see for
instance [32, 33].

In the case of product reviews, for example, each review may contain hundreds of words. This poses
challenges when training RNN-based sequence encoders, in the sense that the RNN has to abstract
information on-the-fly as it moves through the sentence, which often leads to loss of information,
particularly in long sentences [34]. Furthermore, the decoding process uses ground-truth information
during training, thus the learned representation may not necessarily keep all information from the
input text that is necessary for proper reconstruction, summarization or classification.

We consider applying our convolutional autoencoding framework to semi-supervised learning from
long-sentences and paragraphs. Instead of pre-training a fully unsupervised model as in [1, 3], we cast
the semi-supervised task as a multi-task learning problem similar to [35], i.e., we simultaneously train
a sequence autoencoder and a supervised model. In principle, by using this joint training strategy,
the learned paragraph embedding vector will preserve both reconstruction and classification ability.

4

Specifically, we consider the following objective:

Lsemi

= ↵
P

d2{Dl+Du}
P

t log p(ŵ
t
d = wt

d) +
P

d2Dl
Lsup

(f(hd), yd) , (3)

where ↵ > 0 is an annealing parameter balancing the relative importance of supervised and unsu-
pervised loss; Dl and Du denote the set of labeled and unlabeled data, respectively. The first term
in (3) is the sequence autoencoder loss in (2) for the d-th sequence. Lsup

(·) is the supervision loss
for the d-th sequence (labeled only). The classifier function, f(·), that attempts to reconstruct yd
from hd can be either a Multi-Layer Perceptron (MLP) in classification tasks, or a CNN/RNN in text
summarization tasks. For the latter, we are interested in a purely convolutional specification, however,
we also consider an RNN for comparison. For classification, we use a standard cross-entropy loss,
and for text summarization we use either (2) for the CNN or the standard LSTM loss for the RNN.

In practice, we adopt a scheduled annealing strategy for ↵ as in [36, 37], rather than fixing it a
priori as in [1]. During training, (3) gradually transits from focusing solely on the unsupervised
sequence autoencoder to the supervised task, by annealing ↵ from 1 to a small positive value ↵

min

.
We set ↵

min

= 0.01 in the experiments. The motivation for this annealing strategy is to first focus on
abstracting paragraph features, then to selectively refine learned features that are most informative to
the supervised task.

3 Related Work

Previous work has considered leveraging CNNs as encoders for various natural language processing
tasks [22, 28, 21, 38, 39]. Typically, CNN-based encoder architectures apply a single convolution
layer followed by a pooling layer, which essentially acts as a detector of specific classes of h-grams,
given a convolution filter window of size h. The deep architecture in our framework will, in principle,
enable the high-level layers to capture more sophisticated language features. We use convolutions
with stride rather than pooling operators, e.g., max-pooling, for spatial downsampling following
[24, 40], where it is argued that fully convolutional architectures are able to learn their own spatial
downsampling. Further, [41] uses a 29-layer CNN for text classification. Our CNN encoder is
considerably simpler in structure (convolutions with stride and no more than 4 layers) while still
achieving good performance.

Language decoders other than RNNs are less well studied. Recently, [42] proposed a hybrid model
by coupling a convolutional-deconvolutional network with an RNN, where the RNN acts as decoder
and the deconvolutional model as a bridge between the encoder (convolutional network) and decoder.
Additionally, [37, 43, 44, 45] considered CNN variants, such as pixelCNN [46], for text generation.
Nevertheless, to achieve good empirical results, these methods still require the sentences to be
generated sequentially, conditioning on the ground truth historical information, akin to RNN-based
decoders, thus still suffering from the exposure bias.

Other efforts have been made to improve embeddings from long paragraphs using unsupervised
approaches [2, 47]. The paragraph vector [2] learns a fixed length vector by concatenating it with
a word2vec [48] embedding of history sequence to predict future words. The hierarchical neural
autoencoder [47] builds a hierarchical attentive RNN, then it uses paragraph-level hidden units of
that RNN as embedding. Our work differs from these approaches in that we force the sequence to be
fully restored from the latent representation, without aid from any history information.

Previous methods have considered leveraging unlabeled data for semi-supervised sequence classifica-
tion tasks. Typically, RNN-based methods consider either i) training a sequence-to-sequence RNN
autoencoder, or a RNN classifier that is robust to adversarial perturbation, as initialization for the en-
coder in the supervised model [1, 4]; or, ii) learning latent representation via a sequence-to-sequence
RNN autoencoder, and then using them as inputs to a classifier that also takes features extracted from
a CNN as inputs [3]. For summarization tasks, [49] has considered a semi-supervised approach based
on support vector machines, however, so far, research on semi-supervised text summarization using
deep models is scarce.

4 Experiments

Experimental setup For all the experiments, we use a 3-layer convolutional encoder followed by a
3-layer deconvolutional decoder (recall implementation details for the top layer). Filter size, stride

5

Ground-truth: on every visit to nyc , the hotel beacon is the place we love to stay . so conveniently located to central park , lincoln
center and great local restaurants . the rooms are lovely . beds so comfortable , a great little kitchen and new wizz
bang coffee maker . the staff are so accommodating and just love walking across the street to the fairway supermarket
with every imaginable goodies to eat .

Hier. LSTM [47] every time in new york , lighthouse hotel is our favorite place to stay . very convenient , central park , lincoln center
, and great restaurants . the room is wonderful , very comfortable bed , a kitchenette and a large explosion of coffee
maker . the staff is so inclusive , just across the street to walk to the supermarket channel love with all kinds of what
to eat .

Our LSTM-LSTM on every visit to nyc , the hotel beacon is the place to relax and wanting to become conveniently located . hotel , in
the evenings out good budget accommodations . the views are great and we were more than two couples . manny the
doorman has a great big guy come and will definitly want to leave during my stay and enjoy a wonderfully relaxing
wind break in having for 24 hour early rick’s cafe . oh perfect ! easy easy walking distance to everything imaginable
groceries . if you may want to watch yours !

Our CNN-DCNN on every visit to nyc , the hotel beacon is the place we love to stay . so closely located to central park , lincoln center
and great local restaurants . biggest rooms are lovely . beds so comfortable , a great little kitchen and new UNK
suggestion coffee maker . the staff turned so accommodating and just love walking across the street to former fairway
supermarket with every food taxes to eat .

Table 1: Reconstructed paragraph of the Hotel Reviews example, used in [47].

and word embedding are set to h = 5, rl = 2, for l = 1, . . . , 3 and k = 300, respectively. The
dimension of the latent representation vector varies for each experiment, thus is reported separately.

For notational convenience, we denote our convolutional-deconvolutional autoencoder as CNN-
DCNN. In most comparisons, we also considered two standard autoencoders as baselines: a) CNN-
LSTM: CNN encoder coupled with LSTM decoder; and b) LSTM-LSTM: LSTM encoder with
LSTM decoder. An LSTM-DCNN configuration is not included because it yields similar performance
to CNN-DCNN while being more computationally expensive. The complete experimental setup and
baseline details is provided in the Supplementary Material (SM). CNN-DCNN has the least number
of parameters. For example, using 500 as the dimension of h results in about 9, 13, 15 million total
trainable parameters for CNN-DCNN, CNN-LSTM and LSTM-LSTM, respectively.

Model BLEU ROUGE-1 ROUGE-2
LSTM-LSTM [47] 24.1 57.1 30.2

Hier. LSTM-LSTM [47] 26.7 59.0 33.0
Hier. + att. LSTM-LSTM [47] 28.5 62.4 35.5

CNN-LSTM 18.3 56.6 28.2
CNN-DCNN 94.2 97.0 94.2

Table 2: Reconstruction evaluation results on the Hotel Reviews
Dataset.

Figure 2: BLEU score vs. sentence
length for Hotel Review data.

Paragraph reconstruction We first investigate the performance of the proposed autoencoder in
terms of learning representations that can preserve paragraph information. We adopt evaluation
criteria from [47], i.e., ROUGE score [50] and BLEU score [51], to measure the closeness of the
reconstructed paragraph (model output) to the input paragraph. Briefly, ROUGE and BLEU scores
measures the n-gram recall and precision between the model outputs and the (ground-truth) references.
We use BLEU-4, ROUGE-1, 2 in our evaluation, in alignment with [47]. In addition to the CNN-
LSTM and LSTM-LSTM autoencoder, we also compared with the hierarchical LSTM autoencoder
[47]. The comparison is performed on the Hotel Reviews datasets, following the experimental setup
from [47], i.e., we only keep reviews with sentence length ranging from 50 to 250 words, resulting
in 348,544 training data samples and 39,023 testing data samples. For all comparisons, we set the
dimension of the latent representation to h = 500.

From Table 1, we see that for long paragraphs, the LSTM decoder in CNN-LSTM and LSTM-LSTM
suffers from heavy exposure bias issues. We further evaluate the performance of each model with
different paragraph lengths. As shown in Figure 2 and Table 2, on this task CNN-DCNN demonstrates
a clear advantage, meanwhile, as the length of the sentence increases, the comparative advantage
becomes more substantial. For LSTM-based methods, the quality of the reconstruction deteriorates
quickly as sequences get longer. In constrast, the reconstruction quality of CNN-DCNN is stable and
consistent regardless of sentence length. Furthermore, the computational cost, evaluated as wall-clock,
is significantly lower in CNN-DCNN. Roughly, CNN-LSTM is 3 times slower than CNN-DCNN,
and LSTM-LSTM is 5 times slower on a single GPU. Details are reported in the SM.

Character-level and word-level correction This task seeks to evaluate whether the deconvolu-
tional decoder can overcome exposure bias, which severely limits LSTM-based decoders. We consider

6

a denoising autoencoder where the input is tweaked slightly with certain modifications, while the
model attempts to denoise (correct) the unknown modification, thus recover the original sentence.

For character-level correction, we consider the Yahoo! Answer dataset [52]. The dataset description
and setup for word-level correction is provided in the SM. We follow the experimental setup in
[53] for word-level and character-level spelling correction (see details in the SM). We considered
substituting each word/character with a different one at random with probability ⌘, with ⌘ = 0.30.
For character-level analysis, we first map all characters into a 40 dimensional embedding vector, with
the network structure for word- and character-level models kept the same.

Figure 3: CER comparison.
Black triangles indicate the end
of an epoch.

Original cOriginal aOriginal nOriginal Original aOriginal nOriginal yOriginal oOriginal nOriginal eOriginal Original sOriginal uOriginal gOriginal gOriginal eOriginal sOriginal tOriginal Original sOriginal oOriginal mOriginal eOriginal Original gOriginal oOriginal oOriginal dOriginal Original bOriginal oOriginal oOriginal kOriginal sOriginal Original ?

Modified cModified aModified pModified Modified aModified nModified yModified oModified nModified kModified Modified wModified uModified gModified gModified eModified sModified tModified Modified xModified oModified hModified eModified Modified iModified oModified rModified dModified Modified yModified oModified oModified kModified uModified Modified ?

ActorCritic cActorCritic aActorCritic nActorCritic ActorCritic aActorCritic nActorCritic yActorCritic oActorCritic nActorCritic eActorCritic ActorCritic wActorCritic iActorCritic tActorCritic hActorCritic eActorCritic sActorCritic tActorCritic ActorCritic tActorCritic oActorCritic ActorCritic eActorCritic ActorCritic fActorCritic oActorCritic rActorCritic dActorCritic ActorCritic yActorCritic oActorCritic uActorCritic ActorCritic uActorCritic ActorCritic ?

LSTM-LSTM cLSTM-LSTM aLSTM-LSTM nLSTM-LSTM LSTM-LSTM aLSTM-LSTM nLSTM-LSTM yLSTM-LSTM oLSTM-LSTM nLSTM-LSTM eLSTM-LSTM LSTM-LSTM sLSTM-LSTM uLSTM-LSTM gLSTM-LSTM gLSTM-LSTM eLSTM-LSTM sLSTM-LSTM tLSTM-LSTM LSTM-LSTM jLSTM-LSTM oLSTM-LSTM kLSTM-LSTM eLSTM-LSTM LSTM-LSTM fLSTM-LSTM oLSTM-LSTM oLSTM-LSTM dLSTM-LSTM LSTM-LSTM yLSTM-LSTM oLSTM-LSTM uLSTM-LSTM nLSTM-LSTM gLSTM-LSTM LSTM-LSTM ?

CNN-LSTM cCNN-LSTM aCNN-LSTM nCNN-LSTM CNN-LSTM aCNN-LSTM nCNN-LSTM yCNN-LSTM oCNN-LSTM nCNN-LSTM eCNN-LSTM CNN-LSTM gCNN-LSTM uCNN-LSTM iCNN-LSTM tCNN-LSTM eCNN-LSTM sCNN-LSTM CNN-LSTM sCNN-LSTM oCNN-LSTM mCNN-LSTM eCNN-LSTM CNN-LSTM oCNN-LSTM wCNN-LSTM eCNN-LSTM CNN-LSTM pCNN-LSTM oCNN-LSTM oCNN-LSTM kCNN-LSTM sCNN-LSTM CNN-LSTM ?CNN-LSTM CNN-LSTM

CNN-DCNN cCNN-DCNN aCNN-DCNN nCNN-DCNN CNN-DCNN aCNN-DCNN nCNN-DCNN yCNN-DCNN oCNN-DCNN nCNN-DCNN eCNN-DCNN CNN-DCNN sCNN-DCNN uCNN-DCNN gCNN-DCNN gCNN-DCNN eCNN-DCNN sCNN-DCNN tCNN-DCNN CNN-DCNN sCNN-DCNN oCNN-DCNN mCNN-DCNN eCNN-DCNN CNN-DCNN wCNN-DCNN oCNN-DCNN oCNN-DCNN dCNN-DCNN CNN-DCNN bCNN-DCNN oCNN-DCNN oCNN-DCNN kCNN-DCNN sCNN-DCNN CNN-DCNN ?

Original wOriginal hOriginal aOriginal tOriginal Original sOriginal Original yOriginal oOriginal uOriginal rOriginal Original iOriginal dOriginal eOriginal aOriginal Original oOriginal fOriginal Original aOriginal Original sOriginal tOriginal eOriginal pOriginal pOriginal iOriginal nOriginal gOriginal Original sOriginal tOriginal oOriginal nOriginal eOriginal Original tOriginal oOriginal Original bOriginal eOriginal tOriginal tOriginal eOriginal rOriginal Original tOriginal hOriginal iOriginal nOriginal gOriginal sOriginal Original tOriginal oOriginal Original cOriginal oOriginal mOriginal eOriginal Original ?

Modified wModified uModified aModified tModified Modified sModified Modified yModified oModified gModified rModified Modified iModified dModified eModified mModified Modified oModified fModified Modified tModified Modified sModified tModified eModified pModified uModified kModified nModified gModified Modified jModified tModified zModified nModified eModified Modified tModified iModified Modified bModified eModified tModified tModified eModified rModified Modified tModified hModified iModified nModified gModified zModified Modified tModified tModified Modified cModified oModified eModified eModified Modified ?

ActorCritic wActorCritic hActorCritic aActorCritic tActorCritic ActorCritic sActorCritic ActorCritic yActorCritic oActorCritic uActorCritic rActorCritic ActorCritic iActorCritic dActorCritic eActorCritic mActorCritic ActorCritic oActorCritic fActorCritic ActorCritic tActorCritic ActorCritic sActorCritic tActorCritic eActorCritic pActorCritic uActorCritic aActorCritic nActorCritic gActorCritic ActorCritic jActorCritic oActorCritic kActorCritic nActorCritic eActorCritic ActorCritic tActorCritic iActorCritic ActorCritic bActorCritic eActorCritic tActorCritic tActorCritic eActorCritic rActorCritic ActorCritic tActorCritic hActorCritic iActorCritic nActorCritic gActorCritic ActorCritic iActorCritic tActorCritic tActorCritic ActorCritic cActorCritic oActorCritic mActorCritic eActorCritic ActorCritic ?

LSTM-LSTM wLSTM-LSTM hLSTM-LSTM aLSTM-LSTM tLSTM-LSTM LSTM-LSTM sLSTM-LSTM LSTM-LSTM yLSTM-LSTM oLSTM-LSTM uLSTM-LSTM rLSTM-LSTM LSTM-LSTM iLSTM-LSTM dLSTM-LSTM eLSTM-LSTM aLSTM-LSTM LSTM-LSTM oLSTM-LSTM fLSTM-LSTM LSTM-LSTM aLSTM-LSTM LSTM-LSTM sLSTM-LSTM pLSTM-LSTM eLSTM-LSTM aLSTM-LSTM kLSTM-LSTM iLSTM-LSTM nLSTM-LSTM gLSTM-LSTM LSTM-LSTM sLSTM-LSTM tLSTM-LSTM aLSTM-LSTM nLSTM-LSTM dLSTM-LSTM LSTM-LSTM tLSTM-LSTM oLSTM-LSTM LSTM-LSTM bLSTM-LSTM eLSTM-LSTM tLSTM-LSTM tLSTM-LSTM eLSTM-LSTM rLSTM-LSTM LSTM-LSTM tLSTM-LSTM hLSTM-LSTM iLSTM-LSTM nLSTM-LSTM gLSTM-LSTM sLSTM-LSTM LSTM-LSTM tLSTM-LSTM oLSTM-LSTM LSTM-LSTM cLSTM-LSTM oLSTM-LSTM mLSTM-LSTM eLSTM-LSTM LSTM-LSTM ?

CNN-LSTM wCNN-LSTM hCNN-LSTM aCNN-LSTM tCNN-LSTM CNN-LSTM sCNN-LSTM CNN-LSTM yCNN-LSTM oCNN-LSTM uCNN-LSTM rCNN-LSTM CNN-LSTM iCNN-LSTM dCNN-LSTM eCNN-LSTM mCNN-LSTM CNN-LSTM oCNN-LSTM fCNN-LSTM CNN-LSTM aCNN-LSTM CNN-LSTM sCNN-LSTM tCNN-LSTM eCNN-LSTM pCNN-LSTM pCNN-LSTM iCNN-LSTM nCNN-LSTM gCNN-LSTM CNN-LSTM sCNN-LSTM tCNN-LSTM aCNN-LSTM rCNN-LSTM tCNN-LSTM CNN-LSTM tCNN-LSTM oCNN-LSTM CNN-LSTM bCNN-LSTM eCNN-LSTM tCNN-LSTM tCNN-LSTM eCNN-LSTM rCNN-LSTM CNN-LSTM tCNN-LSTM hCNN-LSTM iCNN-LSTM nCNN-LSTM gCNN-LSTM CNN-LSTM tCNN-LSTM oCNN-LSTM CNN-LSTM cCNN-LSTM oCNN-LSTM mCNN-LSTM eCNN-LSTM CNN-LSTM ?CNN-LSTM

CNN-DCNN wCNN-DCNN hCNN-DCNN aCNN-DCNN tCNN-DCNN CNN-DCNN sCNN-DCNN CNN-DCNN yCNN-DCNN oCNN-DCNN uCNN-DCNN rCNN-DCNN CNN-DCNN iCNN-DCNN dCNN-DCNN eCNN-DCNN aCNN-DCNN CNN-DCNN oCNN-DCNN fCNN-DCNN CNN-DCNN aCNN-DCNN CNN-DCNN sCNN-DCNN tCNN-DCNN eCNN-DCNN pCNN-DCNN pCNN-DCNN iCNN-DCNN nCNN-DCNN gCNN-DCNN CNN-DCNN sCNN-DCNN tCNN-DCNN oCNN-DCNN nCNN-DCNN eCNN-DCNN CNN-DCNN tCNN-DCNN oCNN-DCNN CNN-DCNN bCNN-DCNN eCNN-DCNN tCNN-DCNN tCNN-DCNN eCNN-DCNN rCNN-DCNN CNN-DCNN tCNN-DCNN hCNN-DCNN iCNN-DCNN nCNN-DCNN gCNN-DCNN sCNN-DCNN CNN-DCNN tCNN-DCNN oCNN-DCNN CNN-DCNN cCNN-DCNN oCNN-DCNN mCNN-DCNN eCNN-DCNN CNN-DCNN ?

Figure 4: Spelling error denoising compar-
ison. Darker colors indicate higher uncer-
tainty. Trained on modified sentences.

Model Yahoo(CER)
Actor-critic[53] 0.2284
LSTM-LSTM 0.2621
CNN-LSTM 0.2035
CNN-DCNN 0.1323

Model ArXiv(WER)
LSTM-LSTM 0.7250
CNN-LSTM 0.3819
CNN-DCNN 0.3067

Table 3: CER and WER com-
parison on Yahoo and ArXiv
data.

We employ Character Error Rate (CER) [53] and Word Error Rate (WER) [54] for evaluation. The
WER/CER measure the ratio of Levenshtein distance (a.k.a., edit distance) between model predictions
and the ground-truth, and the total length of sequence. Conceptually, lower WER/CER indicates
better performance. We use LSTM-LSTM and CNN-LSTM denoising autoencoders for comparison.
The architecture for the word-level baseline models is the same as in the previous experiment. For
character-level correction, we set dimension of h to 900. We also compare to actor-critic training
[53], following their experimental guidelines (see details in the SM).

As shown in Figure 3 and Table 3, we observed CNN-DCNN achieves both lower CER and faster
convergence. Further, CNN-DCNN delivers stable denoising performance irrespective of the noise
location within the sentence, as seen in Figure 4. For CNN-DCNN, even when an error is detected
but not exactly corrected (darker colors in Figure 4 indicate higher uncertainty), denoising with future
words is not effected, while for CNN-LSTM and LSTM-LSTM the error gradually accumulates with
longer sequences, as expected.

For word-level correction, we consider word substitutions only, and mixed perturbations from three
kinds: substitution, deletion and insertion. Generally, CNN-DCNN outperforms CNN-LSTM and
LSTM-LSTM, and is faster. We provide experimental details and comparative results in the SM.

Semi-supervised sequence classification & summarization We investigate whether our CNN-
DCNN framework can improve upon supervised natural language tasks that leverage features learned
from paragraphs. In principle, a good unsupervised feature extractor will improve the general-
ization ability in a semi-supervised learning setting. We evaluate our approach on three popular
natural language tasks: sentiment analysis, paragraph topic prediction and text summarization. The
first two tasks are essentially sequence classification, while summarization involves both language
comprehension and language generation.

We consider three large-scale document classification datasets: DBPedia, Yahoo! Answers and
Yelp Review Polarity [52]. The partition of training, validation and test sets for all datasets follows
the settings from [52]. The detailed summary statistics of all datasets are shown in the SM. To
demonstrate the advantage of incorporating the reconstruction objective into the training of text
classifiers, we further evaluate our model with different amounts of labeled data (0.1%, 0.15%, 0.25%,
1%, 10% and 100%, respectively), and the whole training set as unlabeled data.

For our purely supervised baseline model (supervised CNN), we use the same convolutional encoder
architecture described above, with a 500-dimensional latent representation dimension, followed by
a MLP classifier with one hidden layer of 300 hidden units. The dropout rate is set to 50%. Word
embeddings are initialized at random.

As shown in Table 4, the joint training strategy consistently and significantly outperforms the purely
supervised strategy across datasets, even when all labels are available. We hypothesize that during the
early phase of training, when reconstruction is emphasized, features from text fragments can be readily

7

learned. As the training proceeds, the most discriminative text fragment features are selected. Further,
the subset of features that are responsible for both reconstruction and discrimination presumably
encapsulate longer dependency structure, compared to the features using a purely supervised strategy.
Figure 5 demonstrates the behavior of our model in a semi-supervised setting on Yelp Review dataset.
The results for Yahoo! Answer and DBpedia are provided in the SM.

Model DBpedia Yelp P. Yahoo
ngrams TFIDF 1.31 4.56 31.49

Large Word ConvNet 1.72 4.89 29.06
Small Word ConvNet 1.85 5.54 30.02
Large Char ConvNet 1.73 5.89 29.55
Small Char ConvNet 1.98 6.53 29.84

SA-LSTM (word-level) 1.40 - -
Deep ConvNet 1.29 4.28 26.57

Ours (Purely supervised) 1.76 4.62 27.42
Ours (joint training with CNN-LSTM) 1.36 4.21 26.32
Ours (joint training with CNN-DCNN) 1.17 3.96 25.82

Table 4: Test error rates of document classification (%). Results
from other methods were obtained from [52].

Figure 5: Semi-supervised classifica-
tion accuracy on Yelp review data.

For summarization, we used a dataset composed of 58,000 abstract-title pairs, from arXiv. Abstract-
title pairs are selected if the length of the title and abstract do not exceed 50 and 500 words,
respectively. We partitioned the training, validation and test sets into 55000, 2000, 1000 pairs each.

We train a sequence-to-sequence model to generate the title given the abstract, using a randomly
selected subset of paired data with proportion � = (5%, 10%, 50%, 100%). For every value of
�, we considered both purely supervised summarization using just abstract-title pairs, and semi-
supervised summarization, by leveraging additional abstracts without titles. We compared LSTM and
deconvolutional network as the decoder for generating titles for � = 100%.

Obs. proportion � 5% 10% 50% 100% DCNN dec.
Supervised 12.40 13.07 15.87 16.37 14.75
Semi-sup. 16.04 16.62 17.64 18.14 16.83

Table 5: Summarization task on arXiv data, using ROUGE-L
metric. First 4 columns are for the LSTM decoder, and the last
column is for the deconvolutional decoder (100% observed).

Table 5 summarizes quantitative results
using ROUGE-L (longest common sub-
sequence) [50]. In general, the additional
abstracts without titles improve the gen-
eralization ability on the test set. Inter-
estingly, even when � = 100% (all titles
are observed), the joint training objective
still yields a better performance than using Lsup alone. Presumably, since the joint training objective
requires the latent representation to be capable of reconstructing the input paragraph, in addition
to generating a title, the learned representation may better capture the entire structure (meaning) of
the paragraph. We also empirically observed that titles generated under the joint training objective
are more likely to use the words appearing in the corresponding paragraph (i.e., more extractive),
while the the titles generated using the purely supervised objective Lsup, tend to use wording more
freely, thus more abstractive. One possible explanation is that, for the joint training strategy, since the
reconstructed paragraph and title are all generated from latent representation h, the text fragments
that are used for reconstructing the input paragraph are more likely to be leveraged when “building”
the title, thus the title bears more resemblance to the input paragraph.

As expected, the titles produced by a deconvolutional decoder are less coherent than an LSTM
decoder. Presumably, since each paragraph can be summarized with multiple plausible titles, the
deconvolutional decoder may have trouble when positioning text segments. We provide discussions
and titles generated under different setups in the SM. Designing a framework which takes the best of
these two worlds, LSTM for generation and CNN for decoding, will be an interesting future direction.

5 Conclusion

We proposed a general framework for text modeling using purely convolutional and deconvolutional
operations. The proposed method is free of sequential conditional generation, avoiding issues
associated with exposure bias and teacher forcing training. Our approach enables the model to
fully encapsulate a paragraph into a latent representation vector, which can be decompressed to
reconstruct the original input sequence. Empirically, the proposed approach achieved excellent long
paragraph reconstruction quality and outperforms existing algorithms on spelling correction, and
semi-supervised sequence classification and summarization, with largely reduced computational cost.

8

References
[1] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In NIPS, 2015.
[2] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In ICML, 2014.
[3] Rie Johnson and Tong Zhang. Supervised and Semi-Supervised Text Categorization using LSTM for

Region Embeddings. arXiv, February 2016.
[4] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial Training Methods for Semi-Supervised

Text Classification. In ICLR, May 2017.
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning

to Align and Translate. In ICLR, 2015.
[6] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[7] Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang Li, Wenbin Jiang, and Qun Liu. Encoding source
language with convolutional neural network for machine translation. In ACL, 2015.

[8] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke, and Steve Young. Se-
mantically conditioned lstm-based natural language generation for spoken dialogue systems. arXiv,
2015.

[9] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforcement
learning for dialogue generation. arXiv, 2016.

[10] Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural dialogue
generation. arXiv:1701.06547, 2017.

[11] Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre, and Bing Xiang. Abstractive
Text Summarization Using Sequence-to-Sequence RNNs and Beyond. In CoNLL, 2016.

[12] Shashi Narayan, Nikos Papasarantopoulos, Mirella Lapata, and Shay B Cohen. Neural Extractive Summa-
rization with Side Information. arXiv, April 2017.

[13] Alexander M Rush, Sumit Chopra, and Jason Weston. A Neural Attention Model for Abstractive Sentence
Summarization. In EMNLP, 2015.

[14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
NIPS, 2014.

[15] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In INTERSPEECH, 2010.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural computation, 1997.
[17] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv, 2014.
[18] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural

networks. Neural computation, 1(2):270–280, 1989.
[19] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence

prediction with recurrent neural networks. In NIPS, 2015.
[20] Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood, adversary?

arXiv, 2015.
[21] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling

sentences. In ACL, 2014.
[22] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.
[23] Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez, and

Aaron Courville. Pixelvae: A latent variable model for natural images. arXiv, 2016.
[24] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv, 2015.
[25] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,

pages 807–814, 2010.
[26] Ian Chiswell and Wilfrid Hodges. Mathematical logic, volume 3. OUP Oxford, 2007.
[27] Emil Julius Gumbel and Julius Lieblein. Statistical theory of extreme values and some practical applications:

a series of lectures. 1954.
[28] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

Natural language processing (almost) from scratch. In JMLR, 2011.
[29] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and

Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv, 2014.
[30] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical attention

networks for document classification. In NAACL, 2016.
[31] Adji B Dieng, Chong Wang, Jianfeng Gao, and John Paisley. TopicRNN: A Recurrent Neural Network

with Long-Range Semantic Dependency. In ICLR, 2016.
[32] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised

learning with deep generative models. In NIPS, 2014.

9

[33] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and Lawrence Carin.
Variational autoencoder for deep learning of images, labels and captions. In NIPS, 2016.

[34] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies, 2001.

[35] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D Manning. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In EMNLP. Association for
Computational Linguistics, 2011.

[36] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. arXiv, 2015.

[37] Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved Variational
Autoencoders for Text Modeling using Dilated Convolutions. arXiv, February 2017.

[38] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures for
matching natural language sentences. In NIPS, 2014.

[39] Rie Johnson and Tong Zhang. Effective use of word order for text categorization with convolutional neural
networks. In NAACL HLT, 2015.

[40] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity:
The all convolutional net. arXiv, 2014.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

[42] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A Hybrid Convolutional Variational Autoen-
coder for Text Generation. arXiv, February 2017.

[43] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. arXiv, 2016.

[44] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language Modeling with Gated
Convolutional Networks. arXiv, December 2016.

[45] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional Sequence to Sequence
Learning. arXiv, May 2017.

[46] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. In NIPS, pages 4790–4798, 2016.

[47] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoencoder for paragraphs and
documents. In ACL, 2015.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In NIPS, 2013.

[49] Kam-Fai Wong, Mingli Wu, and Wenjie Li. Extractive summarization using supervised and semi-supervised
learning. In ICCL. Association for Computational Linguistics, 2008.

[50] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In ACL workshop, 2004.
[51] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation

of machine translation. In ACL. Association for Computational Linguistics, 2002.
[52] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.

In NIPS, pages 649–657, 2015.
[53] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron

Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv, 2016.
[54] JP Woodard and JT Nelson. An information theoretic measure of speech recognition performance. In

Workshop on standardisation for speech I/O, 1982.
[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[56] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. In AISTATS, 2010.

10

	Introduction
	Convolutional Auto-encoding for Text Modeling
	Convolutional encoder
	Deconvolutional decoder
	Model learning
	Semi-supervised classification and summarization

	Related Work
	Experiments
	Conclusion

