Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling

Ricardo Henao, Xin Yuan and Lawrence Carin
Department of Electrical and Computer Engineering
Duke University, Durham, NC 27708
{r.henao,xin.yuan,lcarin}@duke.edu

Skewed Laplace distribution

Defining \(u_n = 1 - y_n \beta^T x_n \) we can write

\[
L(u_n | \gamma, \gamma_0) = \int_0^\infty N(u_n | -\lambda_n, \gamma^{-1} \lambda_n) \text{Exp}(\lambda_n | \gamma_0) d\lambda_n
\]

\[
= \frac{\gamma_0}{c} e^{-\gamma(c|u_n|+u_n)} = \frac{\gamma_0}{c} \begin{cases} e^{-\gamma(c+1)u_n} & \text{if } u_n \geq 0 \\ e^{-\gamma(c-1)|u_n|} & \text{if } u_n < 0 \end{cases}
\]

(1)

where \(c = \sqrt{1 + 2\gamma \gamma^{-1}} > 1 \).

We can rewrite the integral in (1) as

\[
L(u_n | \gamma, \gamma_0) = \int_0^\infty \frac{\gamma_0}{\sqrt{2\pi} \lambda_n} e^{-\frac{1}{2}(u_n^2 + \lambda_n^2)} e^{-\gamma \lambda_n} d\lambda_n = \int_0^\infty \frac{\gamma_0}{\sqrt{2\pi} \lambda_n} e^{-\frac{1}{2}(u_n^2 \lambda_n^{-1} + c^2 \lambda_n)} e^{-\gamma u_n} d\lambda_n.
\]

(2)

Using the identity [1]

\[
\int_0^\infty \frac{a}{\sqrt{2\pi} \lambda} e^{-\frac{1}{2}(b^2 \lambda^{-1} + a^2 \lambda)} d\lambda = e^{-|ab|},
\]

we can see that by making \(b^2 = \gamma u_n^2 \), \(a^2 = \gamma c^2 \) and multiplying through by \(c^{-1} \), (2) reduces to

\[
L(u_n | \gamma, \gamma_0) = \frac{\gamma_0}{c} e^{-\gamma(c|u_n|+u_n)}.
\]

Verifying that (1) integrates to one can be seen from

\[
\int_{-\infty}^\infty e^{-\gamma(c|u_n|+u_n)} du_n = \int_{-\infty}^0 e^{-\gamma(1-c)u_n} du_n + \int_0^\infty e^{-\gamma(c+1)u_n} du_n = \frac{1}{\gamma(c-1)} + \frac{1}{\gamma(c+1)} = \frac{c}{\gamma_0}.
\]

Support vectors

We can write the posterior of parameters \(f \) and \(\lambda \) as

\[
p(f, \lambda | K, \gamma, \gamma_0) \propto p(f | K) \prod_{n=1}^N L(y_n | f_n, \lambda_n, \gamma) p(\lambda_n | \gamma_0).
\]

The maximum a posteriori solution can be obtained as

\[
\arg\max_{f, \lambda} \log p(f | K) + \sum_{n=1}^N \log L(y_n | f_n, \lambda_n, \gamma) p(\lambda_n | \gamma_0).
\]

\[
H(f, \lambda)
\]
Solving for λ_n and f_n with prior $\lambda_n \sim \text{Ga}(3/2, \gamma_0)$ we have

$$\frac{\partial H(f, \lambda_n)}{\partial \lambda_n} = 0, \implies \lambda_n = \frac{|1 - y_n f_n|}{\sqrt{1 + 2\gamma_0 \gamma^{-1}}} \tag{3}$$

$$\frac{\partial H(f, \lambda_n)}{\partial f} = 0, \implies f = K \alpha, \tag{4}$$

where $\alpha = (K + \gamma^{-1}A)^{-1}Y(1 + \lambda)$, Note that (3) and (4) are means of the conditional posterior of λ_n and f_n, respectively. We can rewrite α as

$$[K_{\lambda,n}, \lambda + \gamma^{-1}A_{\lambda,n}, n \lambda + \gamma^{-1}A_{\lambda,n}] [\alpha_{\lambda,n}] = \left[Y_{\lambda,n} - (1 + \lambda_n) \right],$$

where we have split α in two blocks, $\alpha_{\lambda,n}$ and α_n of size $N - 1$ and 1, respectively. For α_n we have

$$\alpha_n = (k_{n,n} + \gamma^{-1}n_{n,n})(y_n(1 + \lambda_n) - k_{n,n}\alpha_{\lambda,n}). \tag{5}$$

From (3) we also have

$$f_n = k_{n,n} \alpha_n + k_{n,n} \alpha_{\lambda,n}. \tag{6}$$

From (4) we can see that

$$f_n = \begin{cases} y_n(1 + c \lambda_n) & \text{if } y_n f_n > 1 \\ y_n & \text{if } y_n f_n = 1 (\lambda_n = 0) \\ y_n(1 - c \lambda_n) & \text{if } y_n f_n < 1 \end{cases} \tag{7}$$

where $c = \sqrt{1 + 2\gamma_0 \gamma^{-1}} > 1$.

Replacing (7) and (6) in (5) we have

$$\alpha = \begin{cases} y_n \gamma(1 + c), & \text{if } y_n f_n < 1 \\ \alpha_n^0, & \text{if } y_n f_n = 1 (\lambda_n = 0) \\ y_n \gamma(1 - c), & \text{if } y_n f_n > 1 \end{cases} \tag{8}$$

with

$$\alpha_0 = (K_{0,0}^{-1})(y_0 - \gamma(1 + c)K_{0,0}Y_n - \gamma(1 - c)K_{0,0}Y_n),$$

where α_0^0 is an element of α_0, and a and b are subsets of $\{1, \ldots, N\}$ for which $\lambda_n = 0$, $y_n f_n < 1$ and $y_n f_n > 1$, respectively.

Provided that the mode of the conditional posterior of λ_n for $\lambda_n \sim \text{Ga}(3/2, \gamma_0)$ matches the mean of the conditional posterior of λ_n for $\lambda_n \sim \text{Exp}(\gamma_0)$, α as in (3) also holds for the latter scenario because

$$E[\lambda_n^{-1} | y_n, f_n, \gamma] = \frac{\sqrt{1 + 2\gamma_0 \gamma^{-1}}}{|1 - y_n f_n|},$$

as in (3).

Convexity of $-H(\lambda, f)$

The Hessian matrix of $-H(\lambda, f)$ can be written as

$$H = \begin{bmatrix} A & B \\ B & C \end{bmatrix},$$

where $A = K^{-1} + \gamma A^{-1}$, and B and C are diagonal matrices with elements $b_n = \gamma y_n(1 - y_n f_n)^{-2}$ and $c_n = \gamma(1 - y_n f_n)^2 \lambda_n^{-3}$, respectively. From the Schur complement condition, we have that H is positive semidefinite (PSD) if both A and

$$U = C - BA^{-1}B,$$
are PSD. Since K and Λ are PSD, A is as well. We need to show that U is PSD. We can rewrite U as

$$U = \gamma D \left(\Lambda - \gamma (K^{-1} + \gamma \Lambda^{-1})^{-1} \right) D,$$

where $D = \Lambda^{-1}(I - YF)\Lambda^{-1}$, $Y = \text{diag}(y)$ and $F = \text{diag}(f)$. Because DD is diagonal with elements $d_{ii} \geq 0$, we only have to show that

$$G = \Lambda - \gamma (K^{-1} + \gamma \Lambda^{-1})^{-1} = (\Lambda^{-1} + \gamma \Lambda^{-1}K^{-1})^{-1},$$

where we have applied the matrix inversion lemma, is PSD. Since K in (9) is PSD, G, U and H are too, thus the negative log-posterior $-H(f, \lambda)$ is convex.

1 Fast inference for discriminative factor model

We use variational Bayes EM (VB-EM) approach. In the E-step, we approximate the posterior of A, $\{\Phi_k\}$, ψ, f, λ and γ by a factorized distribution $q(A) \prod_k q(\Phi_k)q(\psi)q(f)q(\lambda)q(\gamma)$ and in the M-step we optimize W and θ, using L-BFGS [2].

The goal is to minimize the Kullback-Leibler divergence between our factorized approximation and the exact posterior, to do so, we use coordinate ascent, i.e. we update one group of parameters at the time while keeping the remaining ones fixed. The inference algorithm iteratively cycles through updates for all parameters of the model. Updates for A, Φ_k, ψ, λ and γ we can write

$$q(a_{ik}^-) = \mathcal{N}\left(c_{ik}(\psi) \sum_{n=1}^{N} g_{\backslash in} w_{kn}, c_{ik} \right),$$

$$q(\phi_{ik}^-) = \text{IG}\left(\frac{d_{ik}}{2}, \nu \right),$$

$$q(\psi^-) = \text{Ga}\left(a_{\psi} + \frac{1}{2} \sum_{n=1}^{N} b_{n}, \psi_{\psi} + \frac{1}{2} \text{tr}(XX^T) - \text{tr}(X^T(A)W) + \frac{1}{2} \text{tr}\left((A^T A)WW^T\right)\right),$$

$$q(f^-) = \mathcal{N}\left(\langle \gamma \rangle SY(1 + \langle \Lambda^{-1} \rangle), S\right),$$

$$q(\lambda_n^-) = \text{IG}\left(\frac{\langle \gamma \rangle + 2\gamma_0}{\langle \gamma \rangle (1 - 2y_n f_n) + (f_n^2)}, \langle \gamma \rangle + 2\gamma_0 \right),$$

$$q(\gamma^-) = \text{Ga}\left(a_0 + \frac{1}{2} N, b_0 + \sum_{n=1}^{N} \frac{1}{2} \langle \Lambda_n^{-1} \rangle (1 - 2y_n f_n) + (f_n^2) + 1 - y_n f_n + \frac{1}{2} \langle \lambda_n \rangle \right),$$

where

$$G_{\backslash in} = X - (A)W + a_{\psi} w_n,$$

$$c_{ik} = \langle \phi_{ik}^- \rangle + \langle \psi \rangle \sum_{n=1}^{N} \gamma_{n} w_{kn}^2,$$

$$S = (K^{-1} + \langle \gamma \rangle \langle \Lambda^{-1} \rangle)^{-1},$$

and a_{ik}, ϕ_{ik}, $g_{\backslash in}$ and f_n are elements of A, Φ_k, $G_{\backslash in}$ and f, respectively.

We cannot obtain a closed form conditional distribution for the factor scores, W, thus we optimize it by maximizing the following variational lower bound:

$$\mathcal{L}(W) = \langle \psi \rangle \text{tr}(X^T(A)W) - \frac{1}{2} \langle \psi \rangle \text{tr}(A^T A)WW^T - \frac{1}{2} \text{log} U - \frac{1}{2} \text{tr} \left(U^{-1} (I + 2\langle A \rangle + \langle \lambda \Lambda^T \rangle)\right) - \frac{1}{2} \text{tr} (WW^T) + \text{const.,}$$

where $U = K + (\gamma^{-1}) \langle A \rangle$, $\langle \cdot \rangle$ denotes expectation and “const.” encapsulates the terms not depending of W. The gradient of W w.r.t. to $\mathcal{L}(W)$ can be written as

$$\frac{\partial \mathcal{L}}{\partial W} = \langle \psi \rangle (A)^T X - \langle \psi \rangle (A^T A)W - \frac{1}{2} \left(U^{-1} - U^{-1}(I + (A) + \langle \lambda \Lambda^T \rangle)U^{-1}\right) \frac{\partial U}{\partial W} - W,$$

where $\frac{\partial U}{\partial W}$ contains the derivatives of W w.r.t. K and it depends of $k(w_i, w_j, \theta)$.

3
References