Noisy Group Testing and Boolean Compressed Sensing

Venkatesh Saligrama
Boston University

Collaborator: George Atia
Outline

- Examples ...

- Problem Setup
 - Noiseless Problem
 - Average error,
 - Worst case error
 - Approximate reconstruction
 - Noisy Problem
 - Additive Noise (False Alarms)
 - Dilution Effect (Misses)

- Background Material

- Information-Theoretic Analysis: Achievability & Converse
 - Tradeoffs between #tests, #defectives, Noise
What is Group testing?

- Few soldiers in a large population have disease
 - Detect by testing pooled blood samples
 - Compressed Sensing in 1940s!!
Applications

- DNA Screening (clones) [Du, Hwang'00]
- Streaming [Gilbert-Strauss 08]
 - Telephone Calls
- Compressed Sensing [Muthukrishnan 05]
- Congested IP Link [Nguyen-Thiran07]
- Spectrum Violation in Cognitive Radio [Atia-S-S 08]

MAC layer model of packet drops

XXX XX XXXXXXXX X XXX XX XXX
Medium few large few medium......

Time
The group testing problem

- **Given**
 - N items: $R_1, R_2, R_3, \ldots, R_N \in \{0, 1\}$
 - K defectives: $R_m = 1$
 - $j \in S \subset \{1, 2, \ldots, N\}$

- **Test Matrix**: $C = [X_{mn}]$,
 - $X_{mn} = 1 \rightarrow$ Put nth item in pool(test) m

- **Output (Y_m) - mth test Outcome**: +ve or -ve
 - Channel(noiseless)

$$Y_m = \bigvee_{n=1}^{N} X_{mn} R_n$$

$$Y = C R$$
Illustrative Example

<table>
<thead>
<tr>
<th>Tests</th>
<th>Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Non-Adaptive vs Adaptive
- Algorithm: Greedy (Matching algorithm)
Noiseless Problem

Given, Sample size N, and Defective size K,

- Find a Test Matrix $C \in \{0, 1\}^{N \times T}$
 - Small Misclassification Error
 - \#Tests = $T \rightarrow$ minimum

Misclassification

- Defectives indexed by $s \in \mathcal{D} = \{1, 2, \ldots \binom{N}{K}\}$
- Decoder $g : \mathcal{Y}^T \rightarrow \mathcal{D}$
- Pointwise Error: $\lambda_s = \mathcal{I}(g(\mathcal{Y}^T) \neq s|s)$
- other errors
Problem Statements (Noiseless)

➢ Our Focus: Does a design matrix $C \in \{0, 1\}^{N \times T}$ exist?

- Average Error is small
 \[\lambda_{avg}(C') = \frac{1}{\binom{N}{K}} \sum_s \lambda_s(C') \leq \epsilon \]

- Worst-case error is small
 \[\lambda_{max}(C') = \max_s \lambda_s(C') \leq \epsilon \]

- Asymptotic \rightarrow Approaches Zero with large K and N.

- Distortion:
 \[\lambda_s(C') = \mathcal{I}(d(g(Y^T), s) > \alpha K \mid s) \]
 Distance function
Noisy Case 1

- Additive noise

\[Y_m = \bigvee_{n=1}^{N} X_{mn} R_n \bigvee W_m \]

\(W_m \) Bernoulli(q), \(m=1, 2, \ldots T \)

Motivation:

- False alarms of tests
- Background losses (Wireless)
Noisy case 2: Dilution effect

Situation when item is diluted in the pool

\[Y_m = \bigvee_{n=1}^{N} Z(X_{mn}, R_n) \]

• Dilution effects in blood tests or DNA screening
• Probabilistic adversarial transmission (Asilomar'08)
• Link Losses [Nguyen-Thiran07]

Allowable transmission pattern

0 1 1 0 1 0 0 0 1 0 ……

Dilution

Actual transmission pattern

0 0 1 0 1 0 0 0 0 0 ……
Problem

Does there exist a matrix C

$$\bar{\lambda}_s(C) = E(\lambda_s(C)) = \text{Prob}(g(Y^T) \neq s|s))$$

- Small misclassification error
- worst-case, average-case, distortion, asymptotics
Prior Work: Noiseless Cases

- Adaptive and non adaptive group testing (Du, Hwang’2000)

- Non Adaptive
 - Superimposed codes (Kautz and Singleton’64)
 - Deterministic designs (Dyachkov and Rykov’83) (Ruszinko’94)(Erdos’85)(Ngyuen’88)(Porat’08)
 - Random Designs (Dyachkov’76,’82)(Sebo’85)(Macula’96)
 - Compressed sensing and approximate identification(Gilbert’08)
 - Two-Stage Disjuntive Testing: (Berger-Levenshtein 2002)
Our Approach/Contribution

- Random Coding perspective
 - Information theoretic relationship
 - Misclassification vs. Existence of Random Matrix
 - Mutual Information Formula for different problems
 - Meets existing bounds
 - Extensions to new problems → Noisy Case
Main Result

- Theorem (average error → 0 asymptotically) if:

\[T = \max_i \left\{ \log \frac{(N-K) \binom{K}{i}}{I(X(i); X(K-i), Y)} \right\} \quad \text{sufficiency} \]

\[T \geq \frac{\log \binom{N}{K}}{I(X(K), Y)} \quad \text{Necessity} \]

- \(X_{mn} \) generated i.i.d. Bernoulli \(p \)
- \(X_{(K)} \) corresponds to collection associated with \(K \) defective items
- \(X_{(i)} \) subset of \(i \) defective items in \(K \) (that are mis-classified)
- Necessity: FANO Bound
Avg Error Interpretation

\[T = \max_i \left\{ \frac{\log \binom{N-K}{i} \binom{K}{i}}{I(X_i; X_{(K-i)}, Y)} \right\} \]

#ways \(i \) of the K items are mis-classified

Amount of Info if K-i items revealed

Noiseless Case Computation

\[I(X_1; X_{(K-1)} Y) = H(Y/X_{(K-1)}) - H(Y/X_K) \]

\[\text{Prob}(X_{(K-1)} = 0) = (1-p)^{K-1} H(p) \]

\[T = O(K \log N) \]

Noiseless- average P_e
Typical Set Decoding

1 error typical, 2 errors typical ...

Main Difficulty:
- Channel Coding: Another Codeword is Typical is Independent of Test Output Y.
- Here: Another Collection can be overlapping with True Collection

Errors:
- True collection not typical
- Another collection typical

\[P_e \leq P(E_0^c) + \sum_i P(E_i) \]

\(P(E_i) \): Probability that a set which differs from true coalition in exactly \(i \) users is jointly typical
Summary of Results

- **N** items; **K** defectives; **T** Pools/Tests

\[T = O(K \log N) \]
Noiseless- average \(P_e \)

\[T = O(K^2 \log N) \]
Noiseless- Max \(P_e \) (exact reconstruction)
Compare with CS

\[T = O(K \log N) \]
With distortion (approximate reconstruction)

\[T = O\left(\frac{K \log N}{\log 1/q}\right) \]
Additive Noise (False alarms)

\[T = O(K \log N) \]
Dilution Effects
Conclusions

- Random Coding Analysis of Group Testing
- Mutual Info Expression
- Easy to Compute
- Extensions to Noisy Cases
Identity through interference fingerprints

MAC layer model of packet drops

- Medium few large few medium......
- Time

Primary observation $y(t)$ of packet drops

- Violation?
- identify culprits

Discrimination step Identification step

Our Data is: Collision/No collision in the different time slots

$100110011100010...$

Atia, Sahai and Saligram, Dyspan’08
Atia, Saligrama and Sahai, Asilomar ‘08
Theorem

For constant time till conviction T_c and sparse number of culprits (K) we can support as many users N with throughput of order $p*N$ (i.e. fixed utilization)