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Abstract

A non-parametric Bayesian model is proposed for processinljiple images.

The analysis employs image features and, when present, dngsvassociated
with accompanying annotations. The model clusters the é@nago classes, and
each image is segmented into a set of objects, also allova@gpportunity to

assign a word to each object (localized labeling). Eachabligeassumed to be
represented as a heterogeneous mix of components, wittetized via mixture

models linking image features to object types. The numbenafje classes, num-
ber of object types, and the characteristics of the objatdire mixture models
are inferred nonparametrically. To constitute spatiatintgguous objects, a new
logistic stick-breaking process is developed. Infererscpdarformed efficiently

via variational Bayesian analysis, with example resulespnted on two image
databases.

1 Introduction

There has recently been much interest in developing stafishodels for analyzing and organiz-
ing images, based on image features and, when availabldiaagninformation, such as words
(e.g., annotations). Three important aspects of this problem &k sorting multiple images
into scene-level classeg;j)image annotation, andi¢) segmenting and labeling localized objects
within images. Probabilistic topic models, originally @ééped for text analysis [8, 12], have been
adapted and extended successfully for many image-unddistpproblems [3, 6, 9-11, 16, 23, 24].
Moreover, recent work has also used the Dirichlet proce&y (B] or similar non-parametric pri-
ors to enhance the topic-model structure [2, 20, 26]. Usimgh sstatistical models, researchers
[2, 3, 6, 10, 16, 20, 23, 24, 26] have addressed two or all thfe¢be objectives simultaneously
within a single setting. Such unified formalisms have realimarked improvements in overall al-
gorithm performance. A relatively complete summary of titerature may be found in [16, 23],
where the advantages of the approaches in [16, 23] are dedartlative to previous related ap-
proaches [3, 6, 10, 11, 18, 24, 27]. The work in [16, 23] is Dase the correspondence LDA
(Corr-LDA) model [6]. The approach in [23] integrates therEoDA model and the supervised
LDA (sLDA) model [7] into a single framework. Although goodassification performance was
achieved using this approach, the model is employed in agigpel manner, utilizing scene-labeled
images for scene classification. A class label variableti®dluced in [16] to cluster all images in
an unsupervised manner, and a switching variable to addasg annotations. Nevertheless, to
improve performance, in [16] some images are required fpesused learning, based on the seg-
mented and labeled objects obtained via the method propogé€], with these used to initialize
the algorithm.

The research reported here seeks to build upon and extesut research on unified image-analysis
models. Specifically, motivated by [16, 23], we develop aelamon-parametric Bayesian model



that simultaneously addresses all three objectives discuabove. The four main contributions of
this paper are:

e Each object in an image is represented as a mixture of imeafesie model parameters, account-
ing for the heterogeneous character of individual objettss framework captures the idea that a
particular object may be composed as an aggregation ohdigiarts. By contrast, each object is
only associated with one image-feature component/atoheilCorr-LDA-like models [6, 16, 23].

e Multiple images are processed jointly; all, none or a subé#tie images may be annotated. The
model infers the linkage between image-feature paramatet®bject types, with this linkage used
to yield localized labeling of objects within all images. erhnsupervised framework is executed
withoutthe need for a human to constitute training data.

e A novel logistic stick-breaking process (LSBP) is propgsetposing the belief that proximate
portions of an image are more likely to reside within the saegment (object). This spatially con-
strained prior yields contiguous objects with sharp bouiedaand via the aforementioned mixture
models the segmented objects may be composed of heteragangtaling blocks.

e The proposed model is nonparametric, based on use of sti@ing constructions [13], which
can be easily implemented by fast variational Bayesian (irence [14]. The number of image
classes, number of object types, number of image-featuxeureicomponents per object, and the
linkage between words and image model parameters areadfaonparametrically.

2 TheHierarchical Generative M odel
2.1 Bagof imagefeatures

We jointly process data from/ images, and each image is assumed to come from an associated
class typed.g., city scene, beach scene, office scene, etc.). The clasasgpeiated with image
is denoted by, € {1,..., I}, and itis drawn from the mixture model

I

Zm ~ > widi , u ~ Sticky(ov) (1)
=1
where Stick(«,) is a stick-breaking process [13] that is truncated sticks, with hyper-parameter
a,, > 0. The symbob; represents a unit measure at the integand the parameter; denotes the
probability that image typéwill be observed across the images.

The observed data are image feature vectors, each tied takrémion in the image (for example,
associated with an over-segmented portion of the imageg.LThobserved image feature vectors
associated with image are{ccmz}f;’i, and thdth feature vector is assumed drawp; ~ F(0.,).
The expressio’(-) represents the feature model, &g, represents the model parameters.

Each image is assumed to be composed of a set of latent obfecisdicator variable,,,; defines
which object type théth feature vector from image: is associated with, and it is drawn
K

Cmi ~ Y Wa, k06, wi ~ Stick (on) )
k=1
where indext corresponds to thith type of object that may reside within an image. The vector
w; defines the probability that each of theobject types will occur, conditioned on the image type

1 €{1,...,I}; thekth componentotv,  , w., ;, denotes the probability of observing object type

k inimagem, when imagen was drawn from class,, € {1,...,I}.

The image class,, and corresponding objec{sz{ml}f:"i associated with image: are latent vari-

ables. The generative process for the observed @at@s}f:"i, is manifested via mixture models
with respect to model paramet@r Specifically, a separate such mixture model is manifesied f
each of theK object types, motivated by the idea that each object willeneyal be composed of a
different set of image-feature building blocks. The mietanodel for object typé& € {1,..., K}

is represented as

J
Gy = Z hkjég; , hg ~ StiCkJ(Oéh) , 0; ~H 3)
=1

whereH is a base measure, usually selected to be conjugdté jo

2.2 Bagof clustered image features

While the model described above is straightforward to ustded, it has been found to be ineffec-
tive. This is because each of tlyg,; is drawni.i.d. from Zszl ws, k0K, and therefore there is



nothing in the model that encourages the image featurgsandx,,;,, which are associated with
the same image-feature at@h, to be assigned to the same object

To address this limitation, we add a clustering step wittanoheof the images; this is similar to
the structure of the hierarchical Dirichlet process (HD®)][ Specifically, consider the following

augmented model:
T K

I
Tml ~ F(eml) 5 Oml ~ Gcml y Cmil ™~ vatéQM 5 Cmt ~ szmkék y Bm Zuiéi (4)
i=1

t=1 k=1

wherewv,,, ~ Stickr(a,), and Gy, is as defined in (3). We make truncation lel< K, to
encourage a relatively small number of objects in a givergena

2.3 Linking wordswith images

In the above discussion it was assumed that the only obselatadare the image feature vectors
{mmz}f:";. However, there are situations for which annotations (wprday be available for at
least a subset of th&/ images. In this setting we assume that we hay&-dimensional dictionary

of words associated with objects in images, and a word igasdito each of the objects
{1,...,K}. Of the collection ofM images, some may be annotated and some not, and all will
be processed simultaneously by the joint model; in so dangptations will be inferred for the
originally non-annotated images.

For an image for which no annotation is given, the image isiragsl generated via (4). When
an annotation is available, the words associated with imagee represented as a vectpy, =
[Ym1, " Ymi| T, Wherey,,, denotes the number of times wokds present in the annotation to
imagem (typically v, will either be one or zero), ang,,, is assumed drawn from a multinomial
distribution associated with a paramefgr: y,,, ~ Mult(¢,,). If imagem is in classz,,, then we
simply set

Y,, ~ Mult(w,, ), w; ~ Stickg (a,) (5)

Namely, ¢,, = w., , recalling thatw, defines the probability of observing each object type
for image classi. When a dictionary of K words is available, we generally use; -~
Dir(aw, /K, ..., a,/K), consistent with LDA [8].

3 Encouraging Spatially Contiguous Objects

3.1 Logistic stick-breaking process (L SBP)

In (5), note that once the image class is drawn for imagen, the order/location of the,,,; within
the image may be interchanged, and nothing in the genegibgess will change. This is because
the indicator variable,,;, which defines the object class associated with featur@rkictimagem,

is drawni.i.d. ¢,,; ~ Zthl Umt6c,... Itis therefore desirable to impose that if two feature vest
are proximate within the image, they are likely to be asgediavith the same object.

With each feature vecta,,,; there is an associated spatial location, which we desgidthis is a
two-dimensional vector). We wish to draw

T K
Cml ™~ vat(sml)éCmt ) <mt ~ szmkék (6)
t=1 k=1
where the cluster probabilities,; (s,,;) are now a function of positios,; (the¢,,; € {1,..., K}

correspond to object types). The challenge, thereforarhes development of a means of construct-
ingv.,+(s) to encourage nearby feature vectors to come from the saraettyype. Toward this goal,

let o[g.¢(s)] represent a logistic link function, which is a functionofFort = 1,...,7 — 1 we
impose t—1
Vit (8) = olgme()] [ [{1 = olgmr ()]} (")
T=1
where v, p(s) = 1 — S i = Skl (m)
mr(8) = 1 = >, 1 vme(s). We definegn,:(s) = >, W, "K(s, 8m1) + Wy

where (s, s,,;) is @ kernel, and here we utilize the radial basis functiom&eK(s, s,,;) =
exp|—||s — Smill2/dmt]. The parameter kernel widh,,; plays an important role in dictating the
size of segments associated with sticland therefore these parameters shouldebenedby the
data in the analysis. In practice we define a library of disckernel widthsp* = {¢%}7_,, and
infer eachg,,;, placing a uniform prior on the elementsf.



We desire that a given stiak,,; (s) has importance (at most) over a localized region, and theref

we impose sparseness priors on paraméﬁéft%m)}f:”g. Specifically,Wt(lm) ~ N(0, (nt(lm))*l), and
ngn) is drawn from a gamma prior, with hyper-parameters set to@rage most;ﬁlm) — o0. Sucha
Student-t prior is also applied in [4]. The model describleove is termed a logistic stick-breaking
process (LSBP). For notational conveniengg, ~ >"1—, vt (Smi)dc,., andCone ~ Sor w.. k0%
constructed as above is represented as a draw from £GBP, ). Figure 1 depicts the detailed
generative process of the proposed model with LSBP.

(i) Scene 1 Scene 2 Scene i Scene /

0,~G

Sky m Building

G,

¢,, ~ LSBP, T(W_.m) 0,,~ G, 0,1 ~ Ggrass

Figure 1:Depiction of the generative process$) A scene-class indicates,, € {1, ..., I} is drawn to define
the image class;i{) conditioned onz,,, and using the LSBP, contiguous segmented blocks are tdesii
with associated words defined by object indicatpr € {1, -, K}, wherew; defines the probability of
observing each object type for image clasg¢iii) conditioned orc,,;, image-feature atoms are drawn from
appropriate mixture modetS.,,,, linked to over-segmented regions within each of the olgrstters; {v) the
image-feature model parameters are responsible for gergethe image features, via the mode(0), where

6 is the image-feature parameter.

3.2 Discussion of L SBP propertiesand comparison with KSBP
There are two key components of the LSBP constructionsparseness promotion on tﬁét(lm),

and (i) the use of a logistic link function to define spatial stickigfgs. A particular non-zerWt(lm)
is (via the kernel) associated with tfte local spatial region, with spatial extent defineddyy;. If

Wt(lm) is sufficiently large, the “clipping” property of the logistink yields a spatially contiguous
and extended region over which tkita LSBP layer will dominate. Specifically;?l will likely be

the same for data samples located near (definegl,hy where a IargeWt(lm) resides, since in this
regiono[gm+(s)] — 1. Alllocationss for which (roughly)g,,:(s) > 4 will have —via the “clipping”
manifested via the logistic — nearly the same high prohgtoli being associated with model layer
t. Sharp segment boundaries are also encouraged by the kipep#&the logistic function.

A related use of spatial information is constituted via teenlel stick-breaking process (KSBP) [2].
With the KSBP, rather than assuming exchangeable data,,th@) in (6) is defined as:
t—1

'Umt(s) = thIC(S, Fmt) H[l - th’C(S, | I (b)] s Ving ~ Betdlv 010) 8

T

whereK (s, T',,,:) represents a kernel distance between the feature-veettalspoordinates and a
local basis locatiof',,,; associated with th&h stick. Although such a model also establishes spatial
dependence within local regions, the form of the prior hasieen found explicit enough to impose
smooth segments with sharp boundaries, as demonstratgd in [

4 Usingthe Proposed M odel
4.1 Inference

Bayesian inference seeks to estimate the posterior distsibof the latent variable® , given the
observed dat® and hyper-paramete®s. We employ variational Bayesian (VB) [14] inference as a
compromise between accuracy and efficiency. This methoajpates an intractable joint poste-
rior p(¥|D) of all the hidden variables by a product of marginal disttitwsq(¥) = [], q7(Vy),
each over only a single hidden variablg. The optimal parameterization af; (¥ ;) for each
variable is obtained by minimizing the Kullback-Leiblevdigence between the variational approx-
imationg(®) and the true joint posterign ).



4.2 Processing imageswith no words given

If one is givenM images, all non-annotated, then the model may be employﬂfdaaiata{:cmz}f;’i,
form = 1,..., M, from which a posterior distribution is inferred on the inreapodel parameters
{0;‘-}3]:1, and on{G}£ ,. Note that properties of the image classes and of the obyeithin
images is inferred by processing all images jointly. By placing all images within the context of
each other, the model is able to infer which building bloakagses and objects) are responsible for
all of the data. In this sense the simultaneous processingutiiple images is critical: the learning
of properties of objects in one image is aided by the propglieing learned for objects in all other
images, through the inference of inter-relationships ardroonalities.

After the M images are analyzed in the absence of annotations, one rsayetexample portions
of the M images, to infer the link between actual object charadtesisvithin imagery and the
associated latent object indicator to which it was assighi¢ith this linkage made, one may assign
words to all or a subset of thE object types. After words are assigned to previously ladéject
types, the results of the analysis (with no additional psst®y) may be used to automatically label
regions (objects) imll of the images. This is manifested because each of the cinslieatorsc,,;

is associated with a latent localized object type (to whigload may now be assigned).

4.3 Joint processing of images and annotations

We may consider problems for which a subset of the imagesraxéded withannotationgbut not

the explicit location and segmented-out objects); the wane assumed to reside in a prescribed
dictionary of object types. The generation of the annotetiand images) is constituted via the
model in (5), with the LSBP employed as discussed. We do npiire that all images are annotated
(the non-annotated images help learn the properties ofhthge features, and are therefore useful
even if they do not provide information about the words). slidesirable that the same word be
annotated for multiple images. The presence of the same witihéh the annotations of multiple
images encourages the model to infer what objects (repesém terms of image features) are
common to the associated images, aiding the learning. Hémeeresence of annotations serves as
alearning aid (encourages looking for commonalities betwgarticular images, if words are shared
in the associated annotations). Further, the annotatiestcated with images may disambiguate
objects that appear similar in image-feature space (bedaey will have different annotations).

From the above discussion, the model performance will im@ras more images are annotated
with each word, but presumably this annotation is much e#ésighe human than requiring one to
segment out and localize words within a scene.

5 Experimental Results

Experiments are performed on two real-world data sets: etsliff Microsoft Research (MSRC)
data (http://research.microsoft.com/en-us/projects/oljastsrecognitiony and UIUC-Sport data from
[15, 16], the latter images originally obtained from theckti website and available online (
http://vision.cs.princeton.edul/lijiali/eventataset).

For the MSRC dataset, 10 categories of images with manuatations are selected: “tree”, “build-
ing”, “cow”, “face”, “car”, “sheep”, “flower”, “sign”, “book” and “chair”. The number of images
in the “cow” class is 45, and in the “sheep” class there aretB&re are 30 images in all other
classes. From each category, we randomly choose 10 imagksgmove the annotations, treating
these as non-annotated images within the analysis (to a@lleamtification of inferred-annotation
quality). Each image is of siz213 x 320 or 320 x 213. In addition, we remove all words that
occur less that 8 times (approximately 1% of all words). e 14 unique words: “void”, “build-
ing”, “grass”, “tree”, “cow”, “sheep”, “sky”, “face”, “cat, “flower”, “sign”, “book”, “chair” and
“road”. We assume that each word corresponds to a visuatbipj¢he image. Regarding the case
in which multiple words may refer to the same object, one nsgythe method mentioned in [16] to
group synonyms in the preprocessing phase (not necess&jy e following analysis, in which

annotated and non-annotated images are processed j@mkecuted as discussed in Section 4.3.
The UIUC-Sport dataset [15, 16] contains 8 types of sportsdinton”, “bocce”, “croquet”,

“polo”, “rock climbing”, “rowing”, “sailing” and “snowboading”. Here we randomly choose 25
images for each category, and each image is resized to a siomenf 240 x 320 or 320 x 240.
Since the annotations are not available at the cited weltb#geanalysis is initially performed with
no words, as discussed in Section 4.2. After performing dnialysis, and upon examining the

properties of segmented data associated with each (latiejedt class on a small subset of the data,



we can infer words associated with some impor@ptand then label portions (objects) within each
image via the inferred words. This process is different thd6, 16, 23], in which annotations were
employed.

When investigating algorithm performance, we make conspas to Corr-LDA [6]. Our objectives
are related to those in [16, 23], but to the authors’ knowtetthig associated software is not currently
available. The Corr-LDA model [6] is relatively simple, ahds been coded ourselves. We also
examine our model with the proposed LSBP replaced with wiBBR.

5.1 Image preprocessing

Each image is first segmented into 800 “superpixels”, whide #ocal, coherent and
preserve most of the structure necessary for segmentatiothea scale of interest [19].
The software used for over-segmentation is discussed i H is available online
(http://www.cs.sfu.ca/mori/research/superpixely/ Each superpixel is represented by both color and
texture descriptors, based on the local RGB, hue [25] featactors and also the output of max-
imum response (MR) filter banks [22ht{p://www.robots.ox.ac.ukigg/research/texclass/filters.himl
We discretize these features using a codebook of size 6&r(otdebook sizes gave similar per-
formance), and then calculate the distribution [1] for eedture within each superpixel as visual
words [3, 6, 10, 11, 20, 23, 24].

Since each superpixel is represented by three visual wortlee mixture atoms
#; are three multinomial distributions {Mult(©7;) @ Mult(®3;) ® Mult(©3;)} for
' 1,---,J. Accordingly, the variational d|str|but|on in the VB [14]naIyS|s is

J
Q(Oj) DIV(GL [P1;) Q Dir(05;p,;) & Dir(©3;ps;)-

The center of each superpixel is recorded as the locatiordowies,,;. The set of discrete ker-
nel widths¢™ are defined by0, 35, - - - , 160, and a uniform multinomial prior is placed on these
parameters (the size of each kernel is inferred, for eacheTtLSBP layers, and separately in
each of thelM images). To save computational resources, rather thaeroegi kernel at each of
the L,,, points associated with the superpixels, the kernel spegiaiers are placed once every 20
superpixels.

We set truncation levels = 20, J = 50 andT" = 10 (similar results were found for larger trun-

cations). For analysis on UIUC-Sport datadét= 40. All gamma priors for precision parameters

Qy, iy OF {n tTLll zgm 1» &y anday, are set ag10%,107%). All these hyper-parameters

and truncation levels have not been optimized or tuned. érfdhlowing comparisons, the number
of topics is set to be same as the atom number: 50, and the Dirichlet hyperparameters are
setas(1/J,...,1/J)T for Corr-LDA model; a gamma prior is also used for the KSBPcizien
parametergy in (8), also set ag10—%,10~°).

5.2 Sceneclustering

The proposed model automatically learns a posterior bigign on mixture-weights. and in so
doing infers an estimate of the proper number of scene dagseshown in Figure 2, although we
initialized the truncation level td = 20, for the MSRC dataset only the first 10 clusters are selected
as being important (the mixture weights for other clustees\eery small); recall that “truth” indi-
cated that there were 10 classes. In addition, based onaheelg posterior word distributiow;

for each image class we can further infer which words/objects are probable fatescene class.
In Figure 2, we show two exampte; for the MSRC “building” and “cow” classes. Although not
shown here for brevity, the analysis on UIUC features cdlyecferred the 8 image classes asso-
ciated with that data (without using annotations). By exang the words and segmented objects
extracted with high probability as representeciby, we may also assign names to each of the 18
image classes across both the MSRC and UIUC data, consigtitnthe associated class labels
provided with the data.

For each imagen € {1,...,M} we also have a posterior distribution on the associated clas
indicatorz,,. We approximate the membership for each image by assightnghie mixture with
largest probability. This “hard” decision is employed toyide scene-level label for each image (the
Bayesian analysis can also yield a “soft” decision in terifna full posterior distribution). Figure 3
presents the confusion matrices for the proposed modelamidhwithout LSBP, on both the MSRC
and UIUC datasets. Both forms of the model yield relativedpd results, but the average accuracy
indicates that the model with LSBP performs better thanwlhittout LSBP for both datasets. Note



that the results in Figure 3 for the UIUC-Sport data cannalitertly compared with those in [6, 16],
since our experiments were performed on non-annotatedssnag

Using the concepts discussed in Section 4.2, and employsglts from the processed non-
annotated UIUC-Sport data, we examined the propertiesgrheated data associated with each
(latent) object type. We inferred the presence of 12 unidpjeats, and these objects were assigned
the following words: “human”, “horse”, “grass”, “sky”, “ée”, “ground”,“water”, “rock”, “court”,
“boat”, “sailboat” and “snow”. Using these words, we annetheach image and re-trained our
model in the presence of annotations. After doing so, theageeaccuracies of scene-level clus-
tering are improved to 72.0% and 69.0% with and without LS®BBpectively. The improvement
in performance, relative to processing the images withoobgations, is attributed to the ability of
words to disambiguate distinct objects that have similapprties in image-feature spacey(, the
distinct use of “boat” and “sailboat”, which helps distingfurowing and sailing).

Microsoft Research Data building cow
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Figure 2: Example inferred latent properties associated with MSRi@s#d. Left: Posterior distribution on
the mixture-weighta:, quantifying the probability of scene classes (10 claseeméerred). Middle and Right:
Example probability of objects for a given class; (probability of object/words); here we only give the top 5

words for each class.
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Figure 3:Comparisons using confusion matrices for all images in eathset (all of the annotated and non-
annotated images in MSRC; all the non-annotated imagesWCtBport). The left two results are for MSRC,
and the right two for UIUC-Sport. In each pair, the result itheut LSBP, and the right is with LSBP. Average
performance, left to right: 82.90%, 86.80%, 60.50% and @25

5.3 Image annotation

The proposed model infers a posterior distribution for tididator variables,,; (defining the ob-
ject/word for super-pixel in imagem). Similar to the “hard” image-class assignment discussed
above, a “hard” segmentation is employed here to provideadlgbels for each super-pixel. For the
MSRC images for which annotations were held out, we evalwhtgher the words associated with
objects in a given image were given in the associated anaotdhus, our annotation is defined by
the words we have assigned to objects in an image).

Table 1:Comparison of precision and recall values for annotatiath segmentation with Corr-LDA [6], our
model without LSBP (Simp. Model) and the extended models WBBP (Ext. with KSBP) and LSBP (Ext.
with LSBP) on MSRC datasets. To evaluate annotation pedoo®, the results are just calculated based on
non-annotated images; while for segmentation, the reargtbased on all images.

Annotation Segmentation
Corr-LDA Simp. Model | Ext. with LSBP Corr-LDA Simp. Model | Ext. with KSBP | Ext. with LSBP
Object|| Prec Rec F| Prec Rec F| Prec Rec F Prec Rec F| Prec Rec F| Prec Rec F Prec Rec F

car .18 .60 .28 .70 .70 .70| .70 .70 .70 .13 .08 .10 49 .38 .43 56 .50 .53 | .61 .58 .60
tree .30 50 .34 .50 .60 .55 .55 .60 .57 .06 .03 .04 43 .38 .40 .48 .44 46 | 51 .48 50
sheep || .17 .60 .29 .70 .70 .7Q .70 .70 .70 .02 .02 .04 53 .63 .54 57 .63 .60 | .60 .62 .61
sky .38 .65 .48 66 .60 .63 .68 .60 .64 39 29 33 40 51 45 49 54 51 | 55 55 55

chair || .14 .60 .24 .70 .70 70| .70 .70 70 || 13 .16 .14 57 .55 .54 .58 .55 57 | 59 .55 57
Mean || 23 63 3] 65 63 .64 67 65 65 || .17 18 .14 49 51 .50 .53 53 .53 | .56 54 54

We use precision-recall and F-measures [16, 23] to quéwuétp evaluate the annotation perfor-
mance. The left part of Table 1 lists detailed annotationlts$or five objects, as well as the overall
scores from all objects classes for the MSRC data. Our atiootaesults consistently and signifi-
cantly outperform Corr-LDA, especially for the precisioalwes.
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5.4 Object segmentation

Figure 4 shows some detailed object-segmentation resufow-LDA and the proposed model
(with and without LSBP). We observe that our models gengsaéld visibly better segmentation
relative to Corr-LDA. For example, for complicated objettts Corr-LDA segmentation results are
very sensitive to the feature variance, and an object isrgimesegmented into many small, detailed
parts. By contrast, due to the imposed mixture structureamh ®@bject, our models cluster small
parts into one aggregate object. Furthermore, LSBP engearical contiguous regions to be
grouped in the same segment, and therefore it is less sentwitlocalized variability. In addition,
compared with results shown in [2], which also used the MSR@skt, one may observe KSBP
cannot do as well as LSBP in maintaining spatial contiguty/discussed in Section 3.2. Due to
space limitations, detailed example comparison betwedPL&d KSBP will be shown elsewhere
in a longer report; the quantitative comparison in Table rithier demonstrate the advantages of
LSBP over KSBP.

building sign

-

AL
Motorcycles|
| only

Figure 4:Example segmentation and labeling results. First row:imalgmages; second row: Corr-LDA [6];
third row: proposed model without LSBP; fourth row: propdseodel with LSBP. Columns 1-3 from MSRC
dataset; Columns 4-6 from UIUC-Sport dataset. The name iginat images are inferred by scene-level
classification via our model. The UIUC-Sport results aresbasn the words inferred by our model.

The MSRC database provides manually defined segmentationkjch we quantitatively compare.
The right part of Table 1 compares results of the proposedeimeith Corr-LDA. As indicated in
Table 1, the proposed model (with and without LSBP) signifiyaoutperforms Corr-LDA for all
objects. Moreover, due to imposed spatial contiguity, tleelets with KSBP and LSBP are better
than without.

The experiments have been performed in non-optimized so&written in Matlab, on a Pentium
PC with 1.73 GHz CPU and 4G RAM. One VB run of our model with LSRIP 70 VB iterations,
required nearly 7 hours for 320 images from MSRC dataseticajlg 50 VB iterations are required
to achieve convergence. The UIUC-Sport data required caabpaCPU time. It typically took less
than half the CPU time for our model without LSBP on a sames#rtaAll results are based on a
single VB run, with random initialization.

6 Conclusions

A nonparametric Bayesian model has been developed foecingt)/ images into classes; the im-
ages are represented as a aggregation of distinct localigedts, to which words may be assigned.
To infer the relationships between image objects and waéathels), we only need to make the asso-
ciation between inferred model parameters and words. Taisba done as a post-processing step if
no words are provided, and it may danesitu if all or a subset of thé/ images are annotated. Spa-
tially contiguous objects are realized via a new logisticksbreaking process. Quantitative model
performance is highly competitive relative to competing@@aches, with relatively fast inference
realized via variational Bayesian analysis. The authoknewledge partial support from ARO,
AFOSR, DOE, NGA and ONR.
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