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Abstract

A non-parametric Bayesian model is proposed for processingmultiple images.
The analysis employs image features and, when present, the words associated
with accompanying annotations. The model clusters the images into classes, and
each image is segmented into a set of objects, also allowing the opportunity to
assign a word to each object (localized labeling). Each object is assumed to be
represented as a heterogeneous mix of components, with thisrealized via mixture
models linking image features to object types. The number ofimage classes, num-
ber of object types, and the characteristics of the object-feature mixture models
are inferred nonparametrically. To constitute spatially contiguous objects, a new
logistic stick-breaking process is developed. Inference is performed efficiently
via variational Bayesian analysis, with example results presented on two image
databases.

1 Introduction
There has recently been much interest in developing statistical models for analyzing and organiz-
ing images, based on image features and, when available, auxiliary information, such as words
(e.g., annotations). Three important aspects of this problem are: (i) sorting multiple images
into scene-level classes, (ii) image annotation, and (iii) segmenting and labeling localized objects
within images. Probabilistic topic models, originally developed for text analysis [8, 12], have been
adapted and extended successfully for many image-understanding problems [3, 6, 9–11, 16, 23, 24].
Moreover, recent work has also used the Dirichlet process (DP) [5] or similar non-parametric pri-
ors to enhance the topic-model structure [2, 20, 26]. Using such statistical models, researchers
[2, 3, 6, 10, 16, 20, 23, 24, 26] have addressed two or all threeof the objectives simultaneously
within a single setting. Such unified formalisms have realized marked improvements in overall al-
gorithm performance. A relatively complete summary of the literature may be found in [16, 23],
where the advantages of the approaches in [16, 23] are described relative to previous related ap-
proaches [3, 6, 10, 11, 18, 24, 27]. The work in [16, 23] is based on the correspondence LDA
(Corr-LDA) model [6]. The approach in [23] integrates the Corr-LDA model and the supervised
LDA (sLDA) model [7] into a single framework. Although good classification performance was
achieved using this approach, the model is employed in a supervised manner, utilizing scene-labeled
images for scene classification. A class label variable is introduced in [16] to cluster all images in
an unsupervised manner, and a switching variable to addressnoisy annotations. Nevertheless, to
improve performance, in [16] some images are required for supervised learning, based on the seg-
mented and labeled objects obtained via the method proposedin [10], with these used to initialize
the algorithm.

The research reported here seeks to build upon and extend recent research on unified image-analysis
models. Specifically, motivated by [16, 23], we develop a novel non-parametric Bayesian model
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that simultaneously addresses all three objectives discussed above. The four main contributions of
this paper are:

• Each object in an image is represented as a mixture of image-feature model parameters, account-
ing for the heterogeneous character of individual objects.This framework captures the idea that a
particular object may be composed as an aggregation of distinct parts. By contrast, each object is
only associated with one image-feature component/atom in the Corr-LDA-like models [6, 16, 23].
• Multiple images are processed jointly; all, none or a subsetof the images may be annotated. The
model infers the linkage between image-feature parametersand object types, with this linkage used
to yield localized labeling of objects within all images. The unsupervised framework is executed
without the need for a human to constitute training data.
• A novel logistic stick-breaking process (LSBP) is proposed, imposing the belief that proximate
portions of an image are more likely to reside within the samesegment (object). This spatially con-
strained prior yields contiguous objects with sharp boundaries, and via the aforementioned mixture
models the segmented objects may be composed of heterogeneous building blocks.
• The proposed model is nonparametric, based on use of stick-breaking constructions [13], which
can be easily implemented by fast variational Bayesian (VB)inference [14]. The number of image
classes, number of object types, number of image-feature mixture components per object, and the
linkage between words and image model parameters are inferred nonparametrically.

2 The Hierarchical Generative Model
2.1 Bag of image features

We jointly process data fromM images, and each image is assumed to come from an associated
class type (e.g., city scene, beach scene, office scene, etc.). The class typeassociated with imagem
is denoted byzm ∈ {1, . . . , I}, and it is drawn from the mixture model

zm ∼
I∑

i=1

uiδi , u ∼ StickI(αu) (1)

where StickI(αu) is a stick-breaking process [13] that is truncated toI sticks, with hyper-parameter
αu > 0. The symbolδi represents a unit measure at the integeri, and the parameterui denotes the
probability that image typei will be observed across theM images.

The observed data are image feature vectors, each tied to a local region in the image (for example,
associated with an over-segmented portion of the image). The Lm observed image feature vectors
associated with imagem are{xml}

Lm

l=1, and thelth feature vector is assumed drawnxml ∼ F (θml).
The expressionF (·) represents the feature model, andθml represents the model parameters.

Each image is assumed to be composed of a set of latent objects. An indicator variableζml defines
which object type thelth feature vector from imagem is associated with, and it is drawn

ζml ∼
K∑

k=1

wzmkδk , wi ∼ StickK(αw) (2)

where indexk corresponds to thekth type of object that may reside within an image. The vector
wi defines the probability that each of theK object types will occur, conditioned on the image type
i ∈ {1, . . . , I}; thekth component ofwzm

, wzmk, denotes the probability of observing object type
k in imagem, when imagem was drawn from classzm ∈ {1, . . . , I}.

The image classzm and corresponding objects{ζml}
Lm

l=1 associated with imagem are latent vari-
ables. The generative process for the observed data,{xml}

Lm

l=1, is manifested via mixture models
with respect to model parameterθ. Specifically, a separate such mixture model is manifested for
each of theK object types, motivated by the idea that each object will in general be composed of a
different set of image-feature building blocks. The mixture model for object typek ∈ {1, . . . , K}
is represented as

Gk =

J∑

j=1

hkjδθ∗

j
, hk ∼ StickJ(αh) , θ∗

j ∼ H (3)

whereH is a base measure, usually selected to be conjugate toF (·).
2.2 Bag of clustered image features

While the model described above is straightforward to understand, it has been found to be ineffec-
tive. This is because each of theζml is drawni.i.d. from

∑K

k=1 wzmkδk, and therefore there is
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nothing in the model that encourages the image features,xml andxml′ , which are associated with
the same image-feature atomθ∗

j , to be assigned to the same objectk.

To address this limitation, we add a clustering step within each of the images; this is similar to
the structure of the hierarchical Dirichlet process (HDP) [21]. Specifically, consider the following
augmented model:

xml ∼ F (θml) , θml ∼ Gcml
, cml ∼

T∑

t=1

vmtδζmt
, ζmt ∼

K∑

k=1

wzmkδk , zm ∼
I∑

i=1

uiδi (4)

wherevm ∼ StickT (αv), andGk is as defined in (3). We make truncation levelT < K, to
encourage a relatively small number of objects in a given image.

2.3 Linking words with images

In the above discussion it was assumed that the only observeddata are the image feature vectors
{xml}

Lm

l=1. However, there are situations for which annotations (words) may be available for at
least a subset of theM images. In this setting we assume that we have aK-dimensional dictionary
of words associated with objects in images, and a word is assigned to each of the objectsk ∈
{1, . . . , K}. Of the collection ofM images, some may be annotated and some not, and all will
be processed simultaneously by the joint model; in so doing,annotations will be inferred for the
originally non-annotated images.

For an image for which no annotation is given, the image is assumed generated via (4). When
an annotation is available, the words associated with imagem are represented as a vectorym =
[ym1, · · · , ymK ]T, whereymk denotes the number of times wordk is present in the annotation to
imagem (typically ymk will either be one or zero), andym is assumed drawn from a multinomial
distribution associated with a parameterϕm: ym ∼ Mult(ϕm). If imagem is in classzm, then we
simply set

ym ∼ Mult(wzm
) , wi ∼ StickK(αw) (5)

Namely, ϕm = wzm
, recalling thatwi defines the probability of observing each object type

for image classi. When a dictionary ofK words is available, we generally usewi ∼
Dir(αw/K, . . . , αw/K), consistent with LDA [8].

3 Encouraging Spatially Contiguous Objects
3.1 Logistic stick-breaking process (LSBP)
In (5), note that once the image classzm is drawn for imagem, the order/location of thexml within
the image may be interchanged, and nothing in the generativeprocess will change. This is because
the indicator variablecml, which defines the object class associated with feature vector l in imagem,
is drawni.i.d. cml ∼

∑T

t=1 vmtδζmt
. It is therefore desirable to impose that if two feature vectors

are proximate within the image, they are likely to be associated with the same object.

With each feature vectorxml there is an associated spatial location, which we denotesml (this is a
two-dimensional vector). We wish to draw

cml ∼
T∑

t=1

vmt(sml)δζmt
, ζmt ∼

K∑

k=1

wzmkδk (6)

where the cluster probabilitiesvmt(sml) are now a function of positionsml (theζmt ∈ {1, . . . , K}
correspond to object types). The challenge, therefore, becomes development of a means of construct-
ingvmt(s) to encourage nearby feature vectors to come from the same object type. Toward this goal,
let σ[gmt(s)] represent a logistic link function, which is a function ofs. For t = 1, . . . , T − 1 we
impose

vmt(s) = σ[gmt(s)]
t−1∏

τ=1

{1 − σ[gmτ (s)]} (7)

where vmT (s) = 1 −
∑T−1

t=1 vmt(s). We definegmt(s) =
∑Lm

l=1 W
(m)
tl K(s, sml) + W

(m)
t0

whereK(s, sml) is a kernel, and here we utilize the radial basis function kernel K(s, sml) =
exp[−‖s − sml‖2/φmt]. The parameter kernel widthφmt plays an important role in dictating the
size of segments associated with stickt, and therefore these parameters should belearnedby the
data in the analysis. In practice we define a library of discrete kernel widthsφ∗ = {φ∗

d}
D
d=1, and

infer eachφmt, placing a uniform prior on the elements ofφ∗.
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We desire that a given stickvmt(s) has importance (at most) over a localized region, and therefore

we impose sparseness priors on parameters{W
(m)
tl }Lm

l=0. Specifically,W (m)
tl ∼ N (0, (η

(m)
tl )−1), and

η
(m)
tl is drawn from a gamma prior, with hyper-parameters set to encourage mostη(m)

tl → ∞. Such a
Student-t prior is also applied in [4]. The model described above is termed a logistic stick-breaking
process (LSBP). For notational convenience,cml ∼

∑T

t=1 vmt(sml)δζmt
andζmt ∼

∑K

k=1 wzmkδk

constructed as above is represented as a draw from LSBPT (wzm
). Figure 1 depicts the detailed

generative process of the proposed model with LSBP.
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Figure 1:Depiction of the generative process. (i) A scene-class indicatorzm ∈ {1, . . . , I} is drawn to define
the image class; (ii) conditioned onzm, and using the LSBP, contiguous segmented blocks are constituted,
with associated words defined by object indicatorcml ∈ {1, · · · , K}, wherewi defines the probability of
observing each object type for image classi; (iii) conditioned oncml, image-feature atoms are drawn from
appropriate mixture modelsGcml

, linked to over-segmented regions within each of the objectclusters; (iv) the
image-feature model parameters are responsible for generating the image features, via the modelF (θ), where
θ is the image-feature parameter.

3.2 Discussion of LSBP properties and comparison with KSBP

There are two key components of the LSBP construction: (i) sparseness promotion on theW
(m)
tl ,

and (ii ) the use of a logistic link function to define spatial stick weights. A particular non-zeroW (m)
tl

is (via the kernel) associated with thelth local spatial region, with spatial extent defined byφmt. If
W

(m)
tl is sufficiently large, the “clipping” property of the logistic link yields a spatially contiguous

and extended region over which thetth LSBP layer will dominate. Specifically,c(t)
ml will likely be

the same for data samples located near (defined byφmt) where a largeW (m)
tl resides, since in this

regionσ[gmt(s)] → 1. All locationss for which (roughly)gmt(s) ≥ 4 will have – via the “clipping”
manifested via the logistic – nearly the same high probability of being associated with model layer
t. Sharp segment boundaries are also encouraged by the steep slope of the logistic function.

A related use of spatial information is constituted via the kernel stick-breaking process (KSBP) [2].
With the KSBP, rather than assuming exchangeable data, thevmt(s) in (6) is defined as:

vmt(s) = VmtK(s, Γmt)
t−1∏

τ

[1 − VmtK(s, Γmτ ; φ)] , Vmt ∼ Beta(1, α0) (8)

whereK(s, Γmt) represents a kernel distance between the feature-vector spatial coordinates and a
local basis locationΓmt associated with thetth stick. Although such a model also establishes spatial
dependence within local regions, the form of the prior has not been found explicit enough to impose
smooth segments with sharp boundaries, as demonstrated in [2].

4 Using the Proposed Model
4.1 Inference

Bayesian inference seeks to estimate the posterior distribution of the latent variablesΨ , given the
observed dataD and hyper-parametersΥ. We employ variational Bayesian (VB) [14] inference as a
compromise between accuracy and efficiency. This method approximates an intractable joint poste-
rior p(Ψ|D) of all the hidden variables by a product of marginal distributionsq(Ψ) =

∏
f qf (Ψf ),

each over only a single hidden variableΨf . The optimal parameterization ofqf (Ψf ) for each
variable is obtained by minimizing the Kullback-Leibler divergence between the variational approx-
imationq(Ψ) and the true joint posteriorp(Ψ).
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4.2 Processing images with no words given

If one is givenM images, all non-annotated, then the model may be employed onthe data{xml}
Lm

l=1,
for m = 1, . . . , M , from which a posterior distribution is inferred on the image model parameters
{θ∗

j}
J
j=1, and on{Gk}K

k=1. Note that properties of the image classes and of the objectswithin
images is inferred by processing allM images jointly. By placing all images within the context of
each other, the model is able to infer which building blocks (classes and objects) are responsible for
all of the data. In this sense the simultaneous processing ofmultiple images is critical: the learning
of properties of objects in one image is aided by the properties being learned for objects in all other
images, through the inference of inter-relationships and commonalities.

After theM images are analyzed in the absence of annotations, one may observe example portions
of the M images, to infer the link between actual object characteristics within imagery and the
associated latent object indicator to which it was assigned. With this linkage made, one may assign
words to all or a subset of theK object types. After words are assigned to previously latentobject
types, the results of the analysis (with no additional processing) may be used to automatically label
regions (objects) inall of the images. This is manifested because each of the clusterindicatorscml

is associated with a latent localized object type (to which aword may now be assigned).

4.3 Joint processing of images and annotations

We may consider problems for which a subset of the images are provided withannotations(but not
the explicit location and segmented-out objects); the words are assumed to reside in a prescribed
dictionary of object types. The generation of the annotations (and images) is constituted via the
model in (5), with the LSBP employed as discussed. We do not require that all images are annotated
(the non-annotated images help learn the properties of the image features, and are therefore useful
even if they do not provide information about the words). It is desirable that the same word be
annotated for multiple images. The presence of the same wordwithin the annotations of multiple
images encourages the model to infer what objects (represented in terms of image features) are
common to the associated images, aiding the learning. Hence, the presence of annotations serves as
a learning aid (encourages looking for commonalities between particular images, if words are shared
in the associated annotations). Further, the annotations associated with images may disambiguate
objects that appear similar in image-feature space (because they will have different annotations).

From the above discussion, the model performance will improve as more images are annotated
with each word, but presumably this annotation is much easier for the human than requiring one to
segment out and localize words within a scene.

5 Experimental Results
Experiments are performed on two real-world data sets: subsets of Microsoft Research (MSRC)
data ( http://research.microsoft.com/en-us/projects/objectclassrecognition/) and UIUC-Sport data from
[15, 16], the latter images originally obtained from the Flickr website and available online (
http://vision.cs.princeton.edu/lijiali/eventdataset/).

For the MSRC dataset, 10 categories of images with manual annotations are selected: “tree”, “build-
ing”, “cow”, “face”, “car”, “sheep”, “flower”, “sign”, “book” and “chair”. The number of images
in the “cow” class is 45, and in the “sheep” class there are 35;there are 30 images in all other
classes. From each category, we randomly choose 10 images, and remove the annotations, treating
these as non-annotated images within the analysis (to allowquantification of inferred-annotation
quality). Each image is of size213 × 320 or 320 × 213. In addition, we remove all words that
occur less that 8 times (approximately 1% of all words). There are 14 unique words: “void”, “build-
ing”, “grass”, “tree”, “cow”, “sheep”, “sky”, “face”, “car”, “flower”, “sign”, “book”, “chair” and
“road”. We assume that each word corresponds to a visual object in the image. Regarding the case
in which multiple words may refer to the same object, one may use the method mentioned in [16] to
group synonyms in the preprocessing phase (not necessary here). The following analysis, in which
annotated and non-annotated images are processed jointly,is executed as discussed in Section 4.3.

The UIUC-Sport dataset [15, 16] contains 8 types of sports: “badminton”, “bocce”, “croquet”,
“polo”, “rock climbing”, “rowing”, “sailing” and “snowboarding”. Here we randomly choose 25
images for each category, and each image is resized to a dimension of 240 × 320 or 320 × 240.
Since the annotations are not available at the cited website, the analysis is initially performed with
no words, as discussed in Section 4.2. After performing thisanalysis, and upon examining the
properties of segmented data associated with each (latent)object class on a small subset of the data,
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we can infer words associated with some importantGk, and then label portions (objects) within each
image via the inferred words. This process is different thanin [6, 16, 23], in which annotations were
employed.

When investigating algorithm performance, we make comparisons to Corr-LDA [6]. Our objectives
are related to those in [16, 23], but to the authors’ knowledge the associated software is not currently
available. The Corr-LDA model [6] is relatively simple, andhas been coded ourselves. We also
examine our model with the proposed LSBP replaced with with KSBP.

5.1 Image preprocessing

Each image is first segmented into 800 “superpixels”, which are local, coherent and
preserve most of the structure necessary for segmentation at the scale of interest [19].
The software used for over-segmentation is discussed in [17] and is available online
(http://www.cs.sfu.ca/∼mori/research/superpixels/). Each superpixel is represented by both color and
texture descriptors, based on the local RGB, hue [25] feature vectors and also the output of max-
imum response (MR) filter banks [22] (http://www.robots.ox.ac.uk/∼vgg/research/texclass/filters.html).
We discretize these features using a codebook of size 64 (other codebook sizes gave similar per-
formance), and then calculate the distribution [1] for eachfeature within each superpixel as visual
words [3, 6, 10, 11, 20, 23, 24].

Since each superpixel is represented by three visual words,the mixture atoms
θ∗

j are three multinomial distributions {Mult(Θ∗

1j)
⊗

Mult(Θ∗

2j)
⊗

Mult(Θ∗

3j)} for
j = 1, · · · , J . Accordingly, the variational distribution in the VB [14] analysis is
q(θ∗

j ) = Dir(Θ∗

1j |ρ̃1j)
⊗

Dir(Θ∗

2j |ρ̃2j)
⊗

Dir(Θ∗

3j |ρ̃3j).

The center of each superpixel is recorded as the location coordinatesml. The set of discrete ker-
nel widthsφ∗ are defined by30, 35, · · · , 160, and a uniform multinomial prior is placed on these
parameters (the size of each kernel is inferred, for each of the T LSBP layers, and separately in
each of theM images). To save computational resources, rather than centering a kernel at each of
theLm points associated with the superpixels, the kernel spatialcenters are placed once every 20
superpixels.

We set truncation levelsI = 20, J = 50 andT = 10 (similar results were found for larger trun-
cations). For analysis on UIUC-Sport dataset,K = 40. All gamma priors for precision parameters
αw, αv or {η(m)

tl }T,Lm,M
t=1,l=0,m=1, αu andαh are set as(10−6, 10−6). All these hyper-parameters

and truncation levels have not been optimized or tuned. In the following comparisons, the number
of topics is set to be same as the atom number,J = 50, and the Dirichlet hyperparameters are
set as(1/J, . . . , 1/J)T for Corr-LDA model; a gamma prior is also used for the KSBP precision
parameter,α0 in (8), also set as(10−6, 10−6).

5.2 Scene clustering

The proposed model automatically learns a posterior distribution on mixture-weightsu and in so
doing infers an estimate of the proper number of scene classes. As shown in Figure 2, although we
initialized the truncation level toI = 20, for the MSRC dataset only the first 10 clusters are selected
as being important (the mixture weights for other clusters are very small); recall that “truth” indi-
cated that there were 10 classes. In addition, based on the learned posterior word distributionwi

for each image classi, we can further infer which words/objects are probable for each scene class.
In Figure 2, we show two examplewi for the MSRC “building” and “cow” classes. Although not
shown here for brevity, the analysis on UIUC features correctly inferred the 8 image classes asso-
ciated with that data (without using annotations). By examining the words and segmented objects
extracted with high probability as represented bywi, we may also assign names to each of the 18
image classes across both the MSRC and UIUC data, consistentwith the associated class labels
provided with the data.

For each imagem ∈ {1, . . . , M} we also have a posterior distribution on the associated class
indicatorzm. We approximate the membership for each image by assigning it to the mixture with
largest probability. This “hard” decision is employed to provide scene-level label for each image (the
Bayesian analysis can also yield a “soft” decision in terms of a full posterior distribution). Figure 3
presents the confusion matrices for the proposed model withand without LSBP, on both the MSRC
and UIUC datasets. Both forms of the model yield relatively good results, but the average accuracy
indicates that the model with LSBP performs better than thatwithout LSBP for both datasets. Note
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that the results in Figure 3 for the UIUC-Sport data cannot bedirectly compared with those in [6, 16],
since our experiments were performed on non-annotated images.

Using the concepts discussed in Section 4.2, and employing results from the processed non-
annotated UIUC-Sport data, we examined the properties of segmented data associated with each
(latent) object type. We inferred the presence of 12 unique objects, and these objects were assigned
the following words: “human”, “horse”, “grass”, “sky”, “tree”, “ground”,“water”, “rock”, “court”,
“boat”, “sailboat” and “snow”. Using these words, we annotated each image and re-trained our
model in the presence of annotations. After doing so, the average accuracies of scene-level clus-
tering are improved to 72.0% and 69.0% with and without LSBP,respectively. The improvement
in performance, relative to processing the images without annotations, is attributed to the ability of
words to disambiguate distinct objects that have similar properties in image-feature space (e.g., the
distinct use of “boat” and “sailboat”, which helps distinguish rowing and sailing).
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Figure 2: Example inferred latent properties associated with MSRC dataset. Left: Posterior distribution on
the mixture-weightsu, quantifying the probability of scene classes (10 classes are inferred). Middle and Right:
Example probability of objects for a given class,wi (probability of object/words); here we only give the top 5
words for each class.
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Figure 3:Comparisons using confusion matrices for all images in eachdataset (all of the annotated and non-
annotated images in MSRC; all the non-annotated images in UIUC-Sport). The left two results are for MSRC,
and the right two for UIUC-Sport. In each pair, the result is without LSBP, and the right is with LSBP. Average
performance, left to right: 82.90%, 86.80%, 60.50% and 63.50%.

5.3 Image annotation

The proposed model infers a posterior distribution for the indicator variablescml (defining the ob-
ject/word for super-pixell in imagem). Similar to the “hard” image-class assignment discussed
above, a “hard” segmentation is employed here to provide object labels for each super-pixel. For the
MSRC images for which annotations were held out, we evaluatewhether the words associated with
objects in a given image were given in the associated annotation (thus, our annotation is defined by
the words we have assigned to objects in an image).

Table 1:Comparison of precision and recall values for annotation and segmentation with Corr-LDA [6], our
model without LSBP (Simp. Model) and the extended models with KSBP (Ext. with KSBP) and LSBP (Ext.
with LSBP) on MSRC datasets. To evaluate annotation performance, the results are just calculated based on
non-annotated images; while for segmentation, the resultsare based on all images.

Annotation Segmentation

Corr-LDA Simp. Model Ext. with LSBP Corr-LDA Simp. Model Ext. with KSBP Ext. with LSBP

Object Prec Rec F Prec Rec F Prec Rec F Prec Rec F Prec Rec F Prec Rec F Prec Rec F

car .18 .60 .28 .70 .70 .70 .70 .70 .70 .13 .08 .10 .49 .38 .43 .56 .50 .53 .61 .58 .60

tree .30 .50 .38 .50 .60 .55 .55 .60 .57 .06 .03 .04 .43 .38 .40 .48 .44 .46 .51 .48 .50

sheep .17 .60 .27 .70 .70 .70 .70 .70 .70 .02 .02 .02 .53 .63 .58 .57 .63 .60 .60 .62 .61

sky .38 .65 .48 .66 .60 .63 .68 .60 .64 .39 .29 .33 .40 .51 .45 .49 .54 .51 .55 .55 .55

chair .14 .60 .22 .70 .70 .70 .70 .70 .70 .13 .16 .15 .57 .55 .56 .58 .55 .57 .59 .55 .57

Mean .23 .63 .32 .65 .63 .64 .67 .65 .65 .17 .18 .16 .49 .51 .50 .53 .53 .53 .56 .54 .54

We use precision-recall and F-measures [16, 23] to quantitatively evaluate the annotation perfor-
mance. The left part of Table 1 lists detailed annotation results for five objects, as well as the overall
scores from all objects classes for the MSRC data. Our annotation results consistently and signifi-
cantly outperform Corr-LDA, especially for the precision values.

7



5.4 Object segmentation

Figure 4 shows some detailed object-segmentation results of Corr-LDA and the proposed model
(with and without LSBP). We observe that our models generally yield visibly better segmentation
relative to Corr-LDA. For example, for complicated objectsthe Corr-LDA segmentation results are
very sensitive to the feature variance, and an object is generally segmented into many small, detailed
parts. By contrast, due to the imposed mixture structure on each object, our models cluster small
parts into one aggregate object. Furthermore, LSBP encourages local contiguous regions to be
grouped in the same segment, and therefore it is less sensitive to localized variability. In addition,
compared with results shown in [2], which also used the MSRC dataset, one may observe KSBP
cannot do as well as LSBP in maintaining spatial contiguity,as discussed in Section 3.2. Due to
space limitations, detailed example comparison between LSBP and KSBP will be shown elsewhere
in a longer report; the quantitative comparison in Table 1 further demonstrate the advantages of
LSBP over KSBP.t r e e b u i l d i n g s i g n c r o q u e t p o l o r o c k cR o a d G r a s sV o i dB u i l d i n gT r e e C a rS k y C o w B u i l d i n g T r e e B u i l d i n gS k y W a t e r B o a t H u m a nS a i l b o a t W a t e rH u m a n R o c k S a i l b o a tH u m a n R o c k C o u r tT r e eS k y G r a s s S k y B u i l d i n gT r e e G r a s s S i g nB u i l d i n g H u m a nT r e e G r a s s G r a s sH o r s e T r e e R o c kH u m a nT r e e G r a s sS k y S k y B u i l d i n gT r e e G r a s s S i g nB u i l d i n g T r e e H u m a n G r a s s H o r s e G r a s sT r e e R o c kH u m a n
Figure 4:Example segmentation and labeling results. First row: original images; second row: Corr-LDA [6];
third row: proposed model without LSBP; fourth row: proposed model with LSBP. Columns 1-3 from MSRC
dataset; Columns 4-6 from UIUC-Sport dataset. The name of original images are inferred by scene-level
classification via our model. The UIUC-Sport results are based on the words inferred by our model.

The MSRC database provides manually defined segmentations,to which we quantitatively compare.
The right part of Table 1 compares results of the proposed model with Corr-LDA. As indicated in
Table 1, the proposed model (with and without LSBP) significantly outperforms Corr-LDA for all
objects. Moreover, due to imposed spatial contiguity, the models with KSBP and LSBP are better
than without.

The experiments have been performed in non-optimized software written in Matlab, on a Pentium
PC with 1.73 GHz CPU and 4G RAM. One VB run of our model with LSBP, for 70 VB iterations,
required nearly 7 hours for 320 images from MSRC dataset. Typically 50 VB iterations are required
to achieve convergence. The UIUC-Sport data required comparable CPU time. It typically took less
than half the CPU time for our model without LSBP on a same dataset. All results are based on a
single VB run, with random initialization.

6 Conclusions
A nonparametric Bayesian model has been developed for clusteringM images into classes; the im-
ages are represented as a aggregation of distinct localizedobjects, to which words may be assigned.
To infer the relationships between image objects and words (labels), we only need to make the asso-
ciation between inferred model parameters and words. This may be done as a post-processing step if
no words are provided, and it may donein situ if all or a subset of theM images are annotated. Spa-
tially contiguous objects are realized via a new logistic stick-breaking process. Quantitative model
performance is highly competitive relative to competing approaches, with relatively fast inference
realized via variational Bayesian analysis. The authors acknowledge partial support from ARO,
AFOSR, DOE, NGA and ONR.
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[1] T. Ahonen and M. Pietikäinen. Image description using joint distribution of filter bank responses.Pattern
Recogntion Letters, 30:368–376, 2009.

[2] Q. An, C. Wang, I. Shterev, E. Wang, L. Carin, and D. B. Dunson. Hierarchical kernel stick-breaking
process for multi-task image analysis. InICML, 2008.

[3] K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. M. Blei, and M. I. Jordan. Matching words and
pictures.JMLR, 3:1107–1135, 2003.

[4] C. M. Bishop and M. E. Tipping. Variational relevance vector machines. InUAI, 2000.

[5] D. Blackwell and J. B. MacQueen. Ferguson distributionsvia Polya urn schemes.Ann. Statist., 1(2):353–
355, 1973.

[6] D. M. Blei and M. Jordan. Modeling annotated data. InSIGIR, 2003.

[7] D. M. Blei and J. D. McAuliffe. Supervised topic model. InNIPS, 2007.

[8] D. M. Blei, A. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 3:993–1022, 2003.

[9] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via plsa. InECCV, 2006.

[10] L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent segmentation and classification
of objects and scenes. InICCV, 2007.

[11] L. Fei-Fei and P. Perona. A Bayesian hieratchical modelfor learning natural scence categories. InCVPR,
2005.

[12] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis.Mach. Learn., 42(1-2):177–
196, 2001.

[13] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors.JASA, 96(453):161–173,
2001.

[14] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. Saul.An introduction to variational methods for
graphical models.Mach. Learn., 37(2):183–233, 1999.

[15] J. Li and L. Fei-Fei. What, where and who? classfying events by scene and object recognition. InICCV,
2007.

[16] J. Li, R. Socher, and L. Fei-Fei. Towards total scene understaning: classification, annotation and segmen-
tation in an automatic framework. InCVPR, 2009.

[17] G. Mori. Guiding model search using segmentation. InICCV, 2005.

[18] A. Rabinovich, A. Vedaldi, C. Galleguillos, and E. Wiewiora. Objects in context. InICCV, 2007.

[19] X. Ren and J. Malik. Learning a classification model foe segmentation. InICCV, 2003.

[20] E. B. Sudderth and M. I. Jordan. Shared segementation ofnatural scenes using dependent pitman-yor
processes. InNIPS, 2008.

[21] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes.JASA, 101:1566–1582, 2005.

[22] M. Varma and A. Zisserman. Classifying images of materials: Achieving viewpoint and illumination
independence. InECCV, 2002.

[23] C. Wang, D. M. Blei, and L. Fei-Fei. Simultaneous image classification and annotation. InCVPR, 2009.

[24] X. Wang and E. Grimson. Spatial latent dirichlet allocation. In NIPS, 2007.

[25] J. V. D. Weijer and C. Schmid. Coloring local feature extraction. InECCV, 2006.

[26] O. Yakhnenko and V. Honavar. Multi-modal hierarchicalDirichlet process model for predicting image
annotation and image-object label correspondence. InSIAM SDM, 2009.

[27] Z.-H. Zhou and M.-L. Zhang. Mutlti-instance multi-label learning with application to scene classification.
In NIPS, 2006.

9


