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Signal/Image Restoration/Representation/Reconstruction

Many signal/image reconstruction/approximation criteria have the form

min ¢(x) := f(x) + 7e(x)

f : R™ — R is smooth and convex (the data fidelity term); usually,
1 2
f(x) = 5|l Ax — yl3

c:R* 5 R isa regularization/penalty function;

typically convex (sometimes not), often non-differentiable.

Examples: TV-based and wavelet-based restoration/reconstruction,
sparse representations, sparse (linear or logistic) regression,

compressive sensing (with A = HD)
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Denoising/shrinkage operators

min ¢(x) :=

xcR*

- | Ax — i3 + 7e(x)

If A =1, we have a denoising problem.

If C is proper and convex , qb IS strictly convex, there is a unique minimizer.

Thus, the so-called shrinkage/thresholding/denoising function

Uy (u) = argmin

1

17— ulld + Ac(z)

Is well defined (Moreau proximal mapping) [Moreau 1962], [Combettes 2001]

Examples: c(z) =

c(z) =

(not convex) C(Z) =

Z

Z

Z

1 = WUa(z) = soft(z, A)
= U\(z) = (I—- Pxs..)z
o = U,(2z) = hard(z, \)
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lterative Shrinkage/Thresholding (IST)

1
Problem: min ¢(x) := = ||Ax — yll% + 7e(x)
x€R™ 2
IST algorithm: xk'H = \Il.,,/,ﬁ.:,‘E (xk — %AT(Axk — Y))

Adequate when products by A and AT are efficiently computable
(e.g., FFT)

since AT (Ax" —y) is the gradient of %”AX —y|5

if 7 = 0, ST is gradient descent with step length 1/

IST also applicale in Bregman iterations to solve constrained problems
[Yin, Osher, Goldfarb, Darbon, 2008]
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IST as Expectation-Maximization [F. and Nowak, 2001, 2003]

Underlying observation model: 'y = Ax + n, n ~ N(O, I)

Equivalent model: y = A(x + Il1) + No, n; ~ N(Oa 1/77)

T meNEI-AAT)

Hidden image: Z = X + nj, p(y|z) = N(y|Az, I-— AAT/"?)
p(z|x) = N (z[x,1/n)

E-step: zk = ]E[z|y, xk] = xk -+ AT(y — Axk)/'q (Wiener)

k+1

M-step: X" 7" = arg min g"zk —x||3 + Te(x) = ¥,/ (2")

)\max(ATA) <7 = monotonicity
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IST as Majorization-Minimization [Daubechies, Defrise, De Mol, 2004]

Majorization function: arg min Q(x, y) — c;b(x) =Y (a)
X

k+1

MM algorithm: x**1 = arg min Q(x, x*) (b)
X

Monotonicity: @ (x**1, xk) — gb(xk'l'l) (2) Q(x*, Xk) — qf)(xk)
Qe+, x¥) < Qe
(@) A (B) = $(x*+) < ¢(x")

If Amax(ATA) <y, we canset Q(x,x") = %’llx — 2|2 + 7e(x)

k;—l—l:\I] /

r/+(2") z" =x" + AT (y — Ax®) /v
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IST as Forward-Backward Splitting

1
[l — w3 + 7e(2)

& 0e70c(a)+ (a—u)

& uc(I+7dc)a
(the minimizer

& a=I+70c) 'u="0T,(u) Iisuniaue)

U, (u)=a & a=argmin

Back to the problem X € arg min f(x) + TC(X) f differentiable
X

C convex
& 0€VIX)+710c(X)+ (X— X))

& (eI -Vfxe (al+100)x

& Xe(al+70c) (al - VFX

& X = ‘If,r/a(i — Vf(i)/cu) (fixed point equation)

~ ]‘ A
Fixed point scheme: x*T1 = \IJ.T’,«UD,E(I'C"C — —Vf(xk))
Q
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IST as Separable Approximation

Recall the problem: HEI%RI'}" d(x) := f(x) + Tc(x)

: Separable approximation to f(Z)
lteration:

x* 1 ¢ argm m{(z—:{ T x )—? z—xhll}l— TC{Z)

Can be re-writtenas X° 71 € arg min % |z — z" 15+ 7 c(2)
Z

. 1
If ¢ is convex, xFT1—= U ax (z) , 7" =x* — — Vf(xF)
07>

The objective function in each iteration can be seen as the Lagrangian for
x"t1 ¢ argmin (z — x*)TVf(x*) + 7¢(z)
Z

subject to ||z — x*||3 < A,
...a trust-region method.
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Existence, Uniqueness

G = arg min —IIAX yl3 + Te(x)

7 is non empty if € is coercive (limx||— o0 €(X) = +00)

(3 has at most one element if ¢ is strictly convex or A is invertible

G has exactly one element if A is bounded bellow

[Combettes and Wajs, 2004]
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Convergence Results (I)

_ 1
Problem: :irel}nl}t qﬁ(x) = §”AX — yH% + TC(X)

. 1
IST algorithm: xk+l — \I!T/ak xt — —AT(Axk — y)
873
[Daubechies, Defrise, De Mol, 2004]: (applies in a Hilbert space setting)
Let ¢(X) = ||X||II;, peE|L, 2], ar =1, and ||A||2 < 1;then,

IST converges to a minimizer of ¢

[Combettes and Wajs, 2005]: (applies to a more general version of IST)

Let C be convex and proper (never —o0 , hot +00 everywhere)

A3

and

< a < +00; then, IST converges to a minimizer of ¢
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Convergence Results (Il)

1
Problem: min ¢(x) := —||Ax — .YH% + 7e(x)
xcR™ 2
1

ST algorithm: x*+1 = U,/ an (Xk — —AT(Axk — Y))
X

[Hale, Yin, Zhang, 2007]:
Let ¢(x) = ||x|]1 and ar > Amac(ATA)/2

Then, IST converges to some X € G and,

for all but a finite number of iterations:

Ty =2¥ =0, VieL
sign ((AT(Axk _ y))i) = sign (AT (Ax" — y));). Vic E
where LUE ={1,2,...,n}
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Accelerating IST. Two-Step IST (TwIST)

IST becomes slow when A is very ill-conditioned and 7 is small
Inspired by two-step method for linear systems [Frankel, 1950], [Axelsson, 1996],

TwlIST algorithm [Bioucas-Dias and F., 2007]

= (a = I)x* + (1 —a)x* 1 = 3%, (x* + AT(y - Ax"))

Simplified analysis with 0 < . < /\min(ATA) < /\max(ATA) =1

The minimizer X is unigue and TwIST converges to i lim ||xt — EH = (.
i—00

There is an optimal choice for & and (3 for which

VIt %
\/ﬁ
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Accelerating IST. TwIST (Il)

A one-step method is recovered for X = 1

Xt—l—l _ (1 _ ﬁ)xt + ,B‘I’)\ (xt + KT(Y — th))

which is an over-relaxed version of the original IST.

~ . L—m ~
For the optimal choice of ﬁ: “Xt-l-l — X” < “Xt — X”
1+m
1/1 Lom ber of iterations to d by factor of 10
—1/10 ~ number of iterations to decrease error actor of 10.
510 1+m y
Example:
1—m 1—+vm
m=10"7 — —1/log ~ 1150 —1/log vm 35

1+ m 1—/m

Another two-step method was recently proposed in [Beck and Teboulle, 2008]
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Accelerating IST: TwIST (lll)

original Blurred, 9x9, 40db noise restored

a:B:l _
—B=B,
Second order

1.8 — Second order

S 14 - -
o
o
§ > 12-
= 16 n
=
o 10~ over-relaxed IST
[«B]
= over-relaxed IST
© 14 8-
TwIST IST
0 200 400 600 800 1000 % 500 400 600 800 1000
iterations iterations

CS Workshop, Duke, 2009



Accelerating IST. The SpaRSA Algorithmic Framework

0

Initialization: choose 7 > 1, Qi K Qpax, and X ; set kK «— 0

repeat:
choose Qf € [amim amin]

repeat: o 1 "
X — \I!-r/ak ( — a—ka(x ))
g — 11Ok
until ACC(Xk'H) ==1 (* acceptance criterion *)

k—k+1

until stopping criterion is satisfied.

[Wright, Nowak, F., 2008]

Variants of SpaRSA are distinguished by the choice of &g, Wy, and Acc

Examples: Acc =1, e = ¢ yields standard IST.

k+1 ky .
ACC( y X ) — 1¢(x‘=+1)<¢(x’°) yields monotone SpaRSA



Choosing Gk for Speed

The Barzilai-Borwein approach: seek g to mimic a Newton step,

a less conservative choice than in IST:

o I ~ V2 f(x)

With a least-squares criterion over the last step,
. _ _ 2
o = argmin ||a(xk — xF~1) — (VFf(x") — VF(xF 1)“2

1 |A(xF — xF1)||3
it f(x)=z|ly — Ax||§ , then Qi = IxF — xk_1||%

2

Alternative rule (SpaRSA-monotone): v = ﬁozk_l, with ,8 <1
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Compressed Sensing Experiment

1
_ 2
f(x) = S||Ax —y|5 c(x) = ||x]|1
2
A 210 x 212 random (Gaussian), X 160 randomly located non-zeros
y = Ax + e, where e ~ N (0,10™%)
Algorithm CPU time (secs.) | MSE
SpaRSA 0.33 2.89e-3
SpaRSA-monotone 0.34 29l1e-3
_ GPSR-BB-monotone 0.42 2.92e-3
[F., Nowak, Wright, 2007]
GPSR-Basic 0.67 2.93e-3
[Hale, Yin, Zhang, 2007] | FPC 1.55 2.95e-3
[Kim, Koh, Lustig, Boyd, Gorinvesky, 2007] | 11 1s 9.80 2.96e-3
[Nesterov, 2007] | AC 2.83 291e-3
[Bioucas-Dias, F., 2007] | TwIST 0.63 291e-3

GPSR and I1_ls are “hardwired” for ¢(x) = ||x||1
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Non-monotonicity

Objective function
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Convergence of SpaRSA

Problem: min ¢(x) := f(x) + Tc(x)

xcRn

Critical point X if 0 € @¢(X) = Vf(X) + 70¢(X)

Criticality is necessary for optimality.
If both ¢ and f are convex, it is also sufficient.

Safeguarded SpaRSA (S-SParRSA) [wright, Nowak, F., 2008]

8} .
Aﬂﬂ(]{k-l-l)_l & ﬂ(xk 1) {t km%x ( t)_ﬂ- t" I—It_

g

where g €]0, 1], usualy o < 1,e.9.,0 = 107°

Let f be Lipschitz continuously differentiable, € convex and finite-valued, and ¢
bounded below. Then, all accumulation points of S-SpaRSA are critical points of ¢
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Warm Starting and Continuation

SpaRSA (as GPSR, IST, etc) is slow for small T

SpaRSA (as GPSR and IST) is “warm-startable”,

l.e., it benefits (a lot) from a good initialization.

Continuation scheme: start with large T

slowly decrease T while tracking the solution.

IST + continuation = fixed point continuation (FPC) [Hale, Yin, Zhang, 2007]
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Continuation Experiment

3

I.D- F T T T T T ML T T L T L
i SpaRSA monot.
—#— SpaRSA
. =— GPSR-BB
100 F | ——FPC E
i SpaRSA monot. w/ cont.
# - SpaRSA w/ cont.

—_ GPSR-BB w/ cont.
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)
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10’ 10" 10° 10" 10" 10°
T /T
max
T
Tmax = HA y“oo For T 2 T...x, the solution is the zero vector
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Conclusions

- Reviewed several ways to derive the IST algorithm

- Reviewed several convergence results for IST

- Described recent accelerated versions: TwIST, SpaRSA

- IST and SpaRSA benefits (a lot) from a continuation scheme.

-State-of-the-art performance for a variety of problems:
MRI reconstruction (TV and wavelets), MEG imaging, deconvolution,
compressed sensing, ...
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