Bayesian Analysis (2004) 1, Number 1

Variational inference for Dirichlet process
mixtures

David M. Blei
Sdool of Computer Science
Carnegie Mellon University

Michael I. Jordan
Department of Statistics and Computer ScienceDivision
University of California, Berkeley

Abstract. Diric hlet process(DP) mixture models are the cornerstone of non-
parametric Bayesianstatistics, and the development of Monte-Carlo Mark ov chain
(MCMC) sampling methods for DP mixtures has enabled the application of non-
parametric Bayesian methods to a variety of practical data analysis problems.
However, MCMC sampling can be prohibitiv ely slow, and it is important to ex-
plore alternativ es. One class of alternativ esis provided by variational methods, a
classof deterministic algorithms that convert inference problems into optimization
problems (Opper and Saad 2001; Wainwright and Jordan 2003). Thus far, varia-
tional methods have mainly beenexplored in the parametric setting, in particular
within the formalism of the exponertial family (Attias 2000; Ghahramani and Beal
2001; Blei et al. 2003). In this paper, we presert a variational inference algorithm
for DP mixtures. We presert experiments that compare the algorithm to Gibbs
sampling algorithms for DP mixtures of Gaussiansand presert an application to
a large-scaleimage analysis problem.
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processing,Bayesian computation

1 Intro duction

The methodology of Monte Carlo Markov chain (MCMC) sampling hasenergizedBayesian
statistics for more than a decade,providing a systematic approad to the computation
of likelihoods and posterior distributions, and permitting the deployment of Bayesian
methods in a rapidly growing number of applied problems. However, while an unques-
tioned successstory, MCMC is not an unqualied one|]MCMC methods can be slow
to corverge and their corvergencecan be dicult to diagnose. While further researt
on sampling is needed, it is alsoimportant to explore alternativ es, particularly in the
context of large-scaleproblems.

One sud classof alternativ esis provided by variational inferencemethods (Ghahra-
mani and Beal 2001;Jordan et al. 1999;Opper and Saad2001; Wainwright and Jordan
2003;Wiegerinck 2000). Like MCMC, variational inferencemethods have their roots in
statistical physics,and, in cortradistinction to MCMC methods, they are deterministic.
The basic idea of variational inferenceis to formulate the computation of a marginal
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2 Variational inference for Diric hlet pro cess mixtures

or conditional probability in terms of an optimization problem. This (generally in-
tractable) problem is then \relaxed," yielding a simplied optimization problem that
depends on a number of free parameters, known as variational parameters. Solving
for the variational parameters gives an approximation to the marginal or conditional
probabilities of interest.

Variational inferencemethods have beendewveloped principally in the context of the
exponertial family, where the corvexity properties of the natural parameter spaceand
the cumulant function yield an elegan generalvariational formalism (Wainwright and
Jordan 2003). For example, variational methods have beendeveloped for parametric hi-
erarchical Bayesianmodels basedon generalexponertial family speci cations (Ghahra-
mani and Beal 2001). MCMC methods have seenmuch wider application. In particular,
the dewvelopmert of MCMC algorithms for nonparametric models such as the Dirichlet
processhasled to increasedinterest in nonparametric Bayesianmethods. In the current
paper, we aim to closethis gap by dewveloping variational methods for Diric hlet process
mixtures.

The Dirichlet procesgDP), introducedin Ferguson(1973), is a measureon measures.
The DP is parameterized by a basedistribution Go and a positive scaling parameter
.1 Supposewe draw a random measureG from a Diric hlet process,and independertly
draw N random variables ,, from G:

GjfGo; ¢ DP(Go; )
n G, n2fl:::;Ng:

a Polya urn scheme (Blackwell and MacQueen1973). Positive probability is assignedto
con gurations in which dierent | take on identical values; moreover, the underlying
random measureG is discrete with probability one. This is seenmost directly in the
stick-breaking represertation of the DP, in which G is represerted explicitly asanin nite
sum of atomic measures(Sethuraman 1994).

The Dirichlet processmixture model (Antoniak 1974) adds a level to the hierarchy
by treating , asthe parameter of the distribution of the nth obsenation. Given the
discretenessof G, the DP mixture has an interpretation as a mixture model with an
unbounded humber of mixture componerts.

Given a samplefxy;:::; Xy g from a DP mixture, our goalis to compute the predic-
tive density:
z
P(XjX1;:iiiXns 1Go) = p(X] )P( jX1iiiiiXn; Go)d ; 1)
As in many hierarchical Bayesianmodels,the posterior distribution p( jxq1;:::;Xn; Go;

is complicated and is not available in a closedform. MCMC provides one classof ap-
proximations for this posterior and the predictive density (MacEachern 1994; Escobar
and West 1995; Neal 2000).

1Ferguson (1973) parameterizes the Diric hlet processby a single base measure, which is G ¢ in our
notation.
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In this paper, we presern a variational inference algorithm for DP mixtures based
on the stick-breaking represenation of the underlying DP. The algorithm involvestwo
probability distributions|the  posterior distribution p and a variational distribution q.
The latter is endowved with free variational parameters, and the algorithmic problem
is to adjust these parameters so that q approximates p. We also use a stick-breaking
represenation for g, but in this casewe truncate the represertation to yield a nite-
dimensional represeniation. While in principle we could also truncate p, turning the
model into a nite-dimensional model, it is important to emphasizeat the outset that
this is not our approach|w e truncate only the variational distribution.

The paper is organized as follows. In Section 2 we provide basic badkground on
DP mixture models, focusing on the caseof exponertial family mixtures. In Section 3
we present a variational inference algorithms for DP mixtures. Section 4 overviews
MCMC algorithms for the DP mixture, discussingalgorithms basedboth on the Polya
urn represertation and the stick-breaking represertation. Section5 preserts the results
of experimental comparisons,Section 6 preseris an analysis of natural image data, and
Section 7 preseris our conclusions.

2 Dirichlet processmixture models

Let bea continuousrandom variable, let Go be a non-atomic probability distribution
for , andlet be a positive, real-valued scalar. A random measureG is distributed
according to a Dirichlet process (DP) (Ferguson1973), with scaling parameter and

basedistribution Gy, if for all natural nhumbers k and k-partitions fBq;:::; B0,
(G(B1);G(B2);:::;G(Bk)) Dir( Go(B1); Go(B2);:::; Go(Bk)): (2)
Integrating out G, the joint distribution of the collection of variablesf 1;:::; ng ex-

hibits a clustering e ect; conditioning on n 1 draws, the nth value is, with positive
probability, exactly equalto one of those draws:

K1

P(J 15505 n 1) ! Go()+ (O): ©))

i=1

urn sdheme (Blackwell and MacQueen 1973). Let f ,;:::; ici9 denote the distinct
valuesof f 1;:::; n 10, let c = fcy;:::;¢, 19 be assignmen variables suc that ;| =
¢ » and let jcj denotethe number of cellsin the partition. The distribution of  follows

the urn distribution:

( o
. fj:ci=
= i with prob. s @)
; Go with prob. ~——;

wherejfj : ¢ = igjis the number of times the value ; occursin f 1;:::; »n 10.
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In the Dirichlet processmixture model, the DP is usedas a nhonparametric prior in
a hierarchical Bayesianspeci cation (Antoniak 1974):

Gjf ;Gog DP( ;Go)
njG G
Xnj n P(Xnj n):

Data generatedfrom this model can be partitioned accordingto the distinct values of
the parameter. Taking this view, the DP mixture has a natural interpretation as a
exible mixture model in which the number of componerts (i.e., the number of cellsin
the partition) is random and grows as new data are obsened.

The de nition of the DP via its nite dimensional distributions in Equation (2)
reposeson the Kolmogorov consistencytheorem (Ferguson1973). Sethuraman (1994)
provides a more explicit characterization of the DP in terms of a stick-breaking construc-
tion. Considertwo in nite collectionsof independert random variables,V;, Beta(1; )

and ; G, fori = f1;2;:::9. The stick-breaking represeration of G is as follows:
1
iv)y=vi 1 v) ®)
i=1
X
G= i(v) - (6)

i=1

This represertation of the DP makesclear that G is discrete (with probability one); the
support of G consistsof a countably in nite setof atoms, drawn independertly from Gy.
The mixing proportions (v) are given by successiely breaking a unit length \stic k"
into an in nite  number of pieces. The size of eat successie piece, proportional to the
rest of the stick, is given by an independert draw from a Beta(1; ) distribution.

In the DP mixture, the vector (v) comprisesthe in nite vector of mixing pro-
portions and f ;; ,;:::g are the atoms represering the mixture componerts. Let Z,
be an assignmen variable of the mixture componert with which the data point x, is
assciated. The data can be described as arising from the following process:

1. Draw V; j Beta(1; ), i=f12::0
2. Draw ;jGo Gp, i=112::g
3. For the nth data point:
(@) Draw Z, jfvy;ve;ii:g  Mult ( (v)).
(b) Draw Xnjzn  P(Xnj ,)-

In this paper, we restrict ourselvesto DP mixtures for which the obsenable data
are drawn from an exponertial family distribution, and where the basedistribution for
the DP is the corresponding conjugate prior.
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Figure 1. Graphical model represertation of an exponertial family DP mixture. Nodes
denote random variables, edgesdenote possibledependence,and plates denote replica-
tion.

The stick-breaking construction for the DP mixture is depicted asa graphical model
in Figure 1. The conditional distributions of V and Z, are as described above. The
distribution of X,, conditional on Z, andf ;; ,;:::gis

' Y T 1[zn =]
P(XnJzZn; 15 25ii0) = h(xn)expf | "xn a()g ;
i=1

where a( ;) is the appropriate cumulant function and we assumefor simplicity that x
is the su cien t statistic for the natural parameter .

The vector of su cien t statistics of the corresponding conjugatefamily is( T; a( )T.
The basedistribution is

P( j)=h( Jexpf [ + 2( a( ) a()g (7)

where we decompose the hyperparameter suc that ; contains the rst dim( )
componerts and , is a scalar.

3 Variational inference for DP mixtures

There is no direct way to compute the posterior distribution under a DP mixture prior.
Approximate inferencemethods are required for DP mixtures and Markov chain Monte
Carlo (MCMC) sampling methods have becomethe methodology of choice (MacEachern
1994;Escobarand West 1995; MacEachern 1998;Neal 2000; Ishwaran and James2001).

Variational inference provides an alternative, deterministic methodology for ap-
proximating likelihoods and posteriors (Wainwright and Jordan 2003). Consider a

p(wjx; )= expflogp(x;wj ) logp(xj )g: 8
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Working directly with this posterior is typically precluded by the needto compute
the normalizing constart. The log marginal probability of the obsenations is:

z
logp(xj ) =log p(w;xj )dw; ()]

which may be dicult to compute given that the latent variables becomedependert
when conditioning on obsened data.

MCMC algorithms circumvert this computation by constructing an approximate
posterior based on samplesfrom a Markov chain whose stationary distribution is the
posterior of interest. Gibbs sampling is the simplest MCMC algorithm; one iterativ ely
samplesead latent variable conditioned on the previously sampledvaluesof the other
latent variables:

p(wijw i;x; ) = expflogp(w;xj ) logp(w i;xj )o: (10)

The normalizing constarts for theseconditional distributions areassumedo be available
analytically for settings in which Gibbs sampling is appropriate.

Variational inferenceis basedon reformulating the problem of computing the poste-
rior distribution asan optimization problem, perturbing (or, \relaxing") that problem,
and nding solutions to the perturb ed problem (Wainwright and Jordan 2003). In this
paper, wework with a particular classof variational methods known asmean- eld meth-
ods. These are basedon optimizing Kullback-Leibler (KL) divergencewith respect to
a so-calledvariational distribution . In particular, let g (w) be a family of distributions
indexed by a variational parameter . We aim to minimize the KL divergencebetween
q (w) and p(wjx; ):

D(g (W)jip(wjx; )) = Eqflogg (W)] Eqllogp(W ;xj )]+ logp(xj ); (11)

where here and elsewherein the paper we omit the variational parameters when using
g as a subscript of an expectation. Notice that the problematic marginal probability
doesnot depend on the variational parameters;it can be ignored in the optimization.

The minimization in Equation (11) can be cast alternativ ely asthe maximization of
a lower bound on the log marginal likelihood:

logp(xj ) Eqllogp(W;xj )] Eqllogq (W)]: (12)

The gap in this bound is the divergencebetweenq (w) and the true posterior.

For the mean- eld framework to yield a computationally e ectiv e inferencemethod,
it is necessaryto choose a family of distributions g (w) such that we can tractably
optimize Equation (11). In constructing that family, one typically breaks someof the
dependenciesbetweenlatent variablesthat make the true posterior di cult to compute.
In the next sections, we consider fully-factorized variational distributions which break
all of the dependencies.
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3.1 Mean eld variational inference in exponential families

For ead latent variable, let us assumethat the conditional distribution p(w; jw ;Xx; )
is a member of the exponertial family?:

p(wi jw i;x; )= h(w)expfag(w i;x; )Twi aGw i;x; ))g; (13)

wheregi(w i;X; ) isthe natural parameter for w; when conditioning on the remaining
latent variables and the obsenations.

In this setting it is natural to considerthe following family of distributions as mean-
eld variational approximations (Ghahramani and Beal 2001):

'
qw)= expf [w a(w)g; (14)
i=1

where = f 1; 5;:::; m g are variational parameters. Indeed, it turns out that the
variational algorithm that we obtain using this fully-factorized family is reminiscen
of Gibbs sampling. In particular, aswe show in Appendix 7, the optimization of KL
divergencewith respect to a single variational parameter ; is achieved by computing
the following expectation:

i = Eqla(W ;x5 )]: (15)

Repeatedly updating ead parameter in turn by computing this expectation amounts
to performing coordinate ascert in the KL divergence.

Notice the interesting relationship of this algorithm to the Gibbs sampler. In Gibbs
sampling, we iterativ ely draw the latent variablesw; from the distribution p(w; jw i;x; ).
In mean- eld variational inference, we iterativ ely update the variational parameter ;
by setting it equalto the expectedvalue of g;(w ;;x; ). This expectation is computed
under the variational distribution.

3.2 DP mixtures

In this section we develop a mean- eld variational algorithm for the DP mixture. Our
algorithm is basedon the stick-breaking represetation of the DP mixture (seeFigure 1).
In this represenation the latent variablesarethe stick lengths, the atoms, and the cluster
assignmems: W = fV; ;Zg. The hyperparametersare the scaling parameter and the
parameter of the conjugate basedistribution: =1f ; g.

Following the generalrecipe in Equation (12), we write the variational bound on the

2Examples of models in which p(wj jw ;x; ) is an exponential family distribution include hidden
Mark ov models, mixture models, state space models, and hierarchical Bayesian models with conjugate
and mixture of conjugate priors.
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log marginal probability of the data:
logp(xj ; ) Eqllogp(Vj )+ Eqllogp( | )]

X
+  (Eqllogp(znjV)]+ Eqllogp(xnjZn)l) (16)

n=1

Eqlloga(Vv;: ;2):

To exploit this bound, we must nd a family of variational distributions that approxi-
matesthe distribution of the in nite-dimensional random measureG, wherethe random
measureis expressedn terms of the in nite setsV = fVy;Vy;:iiigand =1 4; 5500
We do this by consideringtruncated stick-breaking represenations. Thus,we x avalue
T and let q(vr = 1) = 1, this implies that the mixture proportions (v) are equal to
zerofor t > T (seeEquation 5).

Truncated stick-breaking represerations have been considered previously by Ish-
waran and James(2001) in the context of sampling-basedinferencefor an approxima-
tion to the DP mixture model. Note that our use of truncation is rather dierent. In
our case,the model is a full Dirichlet processand is not truncated; only the variational
distribution is truncated. The truncation level T is a variational parameter which can
be freely set; it is not a part of the prior model speci cation (seeSectionb).

Wethus proposethe following factorized family of variational distributions for mean-
eld variational inference:

Y1 Y s
av; ;2)= qa.(v) a.(¢)  a,.(z) (17)

t=1 t=1 n=1

where g , (v¢) are beta distributions, q,( ;) are exponertial family distributions with
natural parameters , and q , (z,) are multinomial distributions. In the notation of
Section 3.1, the free variational parametersare

=f oo i T i NG

It is important to note that there is a di erent variational parameter for ead latent
variable under the variational distribution. For example,the choice of the mixture com-
ponert z, for the nth data point is governed by a multinomial distribution indexed by
a variational parameter . This re ects the conditional nature of variational inference.

Coordinate ascent algorithm

In this section we presen an explicit coordinate ascen algorithm for optimizing the
bound in Equation (16) with respect to the variational parameters.

All of the terms in the bound involve standard computations in the exponertial
family, except for the third term. We rewrite the third term using indicator random
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variables:

h
Eqlogp(Zn V)] Qs

i
Eq log ! Vi)l[zn>i ]Vil[Zn:|]
P i .
=1 0(z0 > DEqllogd V)] + oz = )Eqllog i]:

Recallthat Eq[log(1 V)] = Oandq(z, > T) = 0. Consequetly, we cantruncate this
summationatt= T:

X
Eqllogp(ZnjV)l = d(zn > i)Eqflog(l Vi) + o(zn = 1)Eq[logVi];
i=1

where
Ad(zn = f) = Pn;_:_
d(zn > i) = jzi+l N
EqllogVil] = ( 1) ( i1+ i2)

Eqllog(l W)l ( i2) ( g1+ g2

The digammafunction, denotedby , arisesfrom the derivative of the log normalization
factor in the beta distribution.

We now usethe generalexpressionin Equation (15) to derive a mean- eld coordinate
ascen algorithm. This yields:

P
t1 = 1+ n o_n;t (18)
P P
t2 = + pn =t n;j (19)
t1 = 1+ pn n:t Xn (20)
t2 = 2t omt: (21)
mt [ exp(S); (22)

P
St = EqllogVi]+ ;' Eqllog(l Vi)l + Eq[ (1" X Egla( )]

Iterating theseupdates optimizes Equation (16) with respect to the variational param-
etersde ned in Equation (17).

Practical applications of variational methods must addressinitialization of the vari-
ational distribution. While the algorithm yields a bound for any starting values of the
variational parameters,poor choicesof initialization canleadto local maxima that yield
poor bounds. We initialize the variational distribution by incrementally updating the
parametersaccordingto a random permutation of the data points. (This can be viewed
asa variational versionof sequetial importance sampling). We run the algorithm mul-
tiple times and choosethe nal parameter settings that give the best bound on the
marginal likelihood.
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To compute the predictive distribution, we usethe variational posterior in a manner
analogousto the way that the empirical approximation is usedby an MCMC sampling
algorithm. The predictive distribution is:

Z
P(Xn+1 JX; 5 )= t(V)P(Xn+1 ] ¢) dP(v;  jx;; ):

t=1

Under the factorized variational approximation to the posterior, the distribution of
the atoms and the stick lengths are decoupledand the in nite sumis truncated. Conse-
quertly, we can approximate the predictive distribution with a product of expectations
which are straightforward to compute under the variational approximation,

X
pP(Xn+1 jX; ;) Eql t(V)IEqlp(Xn+1 ] )15 (23)
t=1

where g dependsimplicitly on x, , and

Finally, we remark on two possible extensions. First, when Gy is not conjugate, a
simple coordinate ascern update for ; may not beavailable, particularly whenp( ; jz;x; )
is not in the exponertial family. Howewer, such an update is available for the special
caseof Gy being a mixture of conjugate distributions. Second,it is often important in
applications to integrate over a di use prior on the scaling parameter . As we show
in Appendix 7, it is straightforward to extend the variational algorithm to include a
gamma prior on

4  Gibbs sampling

For comparison to variational inference, we review the collapsed Gibbs sampler and
blocked Gibbs sampler for DP mixtures.

4.1 Collapsed Gibbs sampling

The collapsal Gibbssampler for a DP mixture with conjugatebasedistribution (MacEach-

conditional on the other cellsin the partition, ¢ ,. The assignmen C, can be one of
jc nj + 1 values: either the nth data point is in a cell with other data points, or in a
cell by itself.

Exchangeability implies that C,, hasthe following multinomial distribution:

p(ch = kjx;c n; s )/ p(XnjX niC niCh =k )p(ch = kjc n; ) (24)
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The rst term is aratio of normalizing constarts of the posterior distribution of the kth
parameter, one including and one excluding the nth data point:
P(XnjX n;C n;Ch =Kk; )=
n P P [0}
exp a( 1+ epllom = KIXm + Xn; 2+ gnd[Cm = K]+ 1) (25)
n o :

P P
eXp a( l+ ml[cm:k]xmr 2+ m@nl[cm:k])
The secondterm is given by the Polya urn scheme:

ifi ¢ n; = kgj if kisan existing cell in the partition

PCn = kjc n)/ if k is a new cell in the partition,

(26)

wherejfj : ¢ nj = kgj denotesthe number of data points in the kth cell of the partition
C n-

to approximate the posterior. The approximate predictive distribution is an averageof
the predictive distributions acrossthe Monte Carlo samples:

. 1% .
PN+t JXaitinixng 3 )= 5 P(Xnsn jCoixs )
b=1
For a given sample,that distribution is
jc,Xj+l
P(XN+1 JCor X 5 )= p(cn+1 = KjCp; )P(Xn+1 jChiX;Cn+1 = K; )
k=1

When Gy is not conjugate, the distribution in Equation (25) doesnot have a simple
closedform. E ectiv e algorithms for handling this caseare given in Neal (2000).

4.2 Blocked Gibbs sampling

In the collapsedGibbs sampler,the assignmen variable C,, is drawn from a distribution
that dependson the most recertly sampled values of the other assignmen variables.
Consequetly, thesevariables must be updated one at a time which can potentially slow
down the algorithm when comparedto a blocking strategy. To this end, Ishwaran and
James(2001) developed a blocked Gibbs sampling algorithm basedon the stick-breaking
represertation of Figure 1.

The main issueto facein developing a blocked Gibbs sampler for the stick-breaking
DP mixture is that one needsto samplethe in nite collection of stick lengths V before
sampling the nite collection of cluster assignmeis Z. Ishwaran and James(2001) face
this issueby de ning atruncated Dirichlet process(TDP) in which Vi 1 is setequalto
one for some xed value K. This yields (V)= 0fori K, and corverts the in nite
sumin Equation (5) into a nite sum. Ishwaran and James(2001) justify substituting a
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TDP mixture model for a full DP mixture model by shawing that the truncated process
closely approximates a true Dirichlet processwhen the truncation level is chosenlarge
relative to the number of data points.

In the TDP mixture, the state of the Markov chain consists of the beta variables
V = fVi;::1;Vk 10, the mixture componert parameters = f ;;:::; (g, and the

P(zn = kjv; x) = «(V)P(Xn] «);

P
k;l = 1+ n=1 1[Zn = k]
ke =+ itk o= L[z =L
This step follows from the conjugacy between the multinomial distribution and
the truncated stick-breaking construction, which is a generalizedDirichlet distri-
bution (Connor and Mosimann 1969).

in the samefamily asthe basedistribution, with parameters

P
kil = 1+Pi§n1[zi:k]xi

ki2 = 2t ign 1z K]: 27)

After the chain has reaced its stationary distribution, we collect B samplesand
construct an approximate predictive distribution. Again, this distribution is an aver-
age of the predictive distributions for ead of the collected samples. The predictive
distribution for a particular sampleis

X
PXn+1JziX; 5 )= E[i(V)] aiin kIp(Xn+t ] )s (28)
k=1
whereE[ ] 1;:::; «]isthe expectation of the product of independert beta variables

given in Equation (5). This distribution only depends on z; the other variables are
neededin the Gibbs sampling procedure,but can be integrated out here. Note that this
approximation hasa form similar to the approximate predictive distribution under the
variational distribution in Equation (23). In the variational case,however, the averaging
is done parametrically via the variational distribution rather than by a Monte Carlo
integral.

The TDP sampler readily handles non-conjugacy of Gg, provided that there is a
method of sampling ; from its posterior.
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initial iteration 2 iteration 5

Figure 2: The approximate predictive distribution given by variational inference at
di erent stagesof the algorithm. The data are 100 points generatedby a GaussianDP
mixture model with xed diagonal covariance.

5 Empirical comparison

Qualitativ ely, variational methods o er sewral potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be usedto assesscorvergence. In cortrast, assessingconvergence
of a Gibbs sampler|[namely , determining when the Markov chain has readed its sta-
tionary distribution]is an active eld of researd. Theoretical bounds on the mixing

time are of little practical use, and there is no consensuson how to chooseamong the

seweral empirical methods deweloped for this purpose(Robert and Casella2004).

But there are seweral potential disadvantages of variational methods as well. First,
the optimization procedure can fall prey to local maxima in the variational parameter
space. Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
genceof the procedure. Second,any given xed variational represettation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational represenations that approac the posterior in the limit, but these methods
may againincur seriouscomputational costs. Lacking a theory by which theseissuescan
be evaluated in the generalsetting of DP mixtures, we turn to experimental evaluation.

We studied the performanceof the variational algorithm of Section3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussianswith xed inverse
covariance matrix  (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate basedistribution for the DP is Gaussian,with covariancegivenby = , (see
Equation 7).

Figure 2 provides an illustrativ e example of variational inferenceon a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the gure plots the data and preseris the
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Figure 3: Mean corvergencetime and standard error acrossten data setsper dimension
for variational inference, TDP Gibbs sampling, and the collapsedGibbs sampler.

predictive distribution given by the variational inferencealgorithm at a given iteration
(seeEquation (23)). The truncation level was setto 20. As seenin the rst panel, the
initialization of the variational parametersyields a largely at distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
corvergence,it has further re ned those modes. Even though 20 mixture componerts
are represerted in the variational distribution, the tted approximate posterior only
uses v e of them.

To comparethe variational inferencealgorithm to the Gibbs sampling algorithms, we
conducteda systematic set of simulation experimerts in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a rst-order autoregressie process,chosensothat the componerts are highly
dependent ( = 0:9). The basedistribution was a zero-meanGaussianwith covariance
appropriately scaledfor comparison acrossdimensions. The scaling parameter was
set equal to one.

In ead case,we generated100 data points from a DP mixture of Gaussiansmodel
of the chosendimensionality and generated 100 additional points as held-out data. In
testing on the held-out data, we treated ead point as the 101st data point in the
collection and computed its conditional probability using ead algorithm's approximate
predictiv e distribution.
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Dim

Mean held out log probabilit y (Std err)
Variational CollapsedGibbs Truncated Gibbs

5

10
20
30
40
50

-147.96(4.12)  -148.08(3.93)  -147.93(3.88)
-266.59(7.69)  -266.29(7.64)  -265.89(7.66)
-494.12(7.31)  -492.32(7.54)  -491.96(7.59)
-721.55(8.18)  -720.05(7.92)  -720.02(7.96)
-943.39(10.65)  -941.04(10.15)  -940.71(10.23)
-1151.01(15.23) -1148.51(14.78) -1147.48(14.55)

Table 1: Averageheld-out log probability for the predictive distributions given by vari-
ational inference, TDP Gibbs sampling, and the collapsedGibbs sampler.

-1300

Log marginal probability bound
-1380

-1340
| |

2.88e-15
11.468-10

9.81e-05

Held-out score
-340
!

-360
1

-1420
|

T T T T T T T T T T T
6 8 10 0 10 20 30 40 50 60 70

Truncation level Iteration

Figure 4: The optimal bound on the log probability as a function of the truncation
level (left). There are v e clusters in the simulated 20-dimensional DP mixture of
Gaussiansdata set which was used. Held-out probability as a function of iteration of
variational inferencefor the samesimulated data set (right). The relative changein the
log probability bound of the obsenations is labeled at selectediterations.
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Figure 5: Auto correlation plots on the size of the largest componert for the truncated
DP Gibbs sampler (left) and collapsedGibbs sampler (right) in an example dataset of
50-dimensionalGaussiandata.

The TDP approximation wastruncated at K = 20 componerts. For the variational
algorithm, the truncation level was also T = 20 componerts. Note that in the latter
case the truncation level is simply another variational parameter. While weheld T xed
in our simulations, it is also possibleto optimize T with respect to the KL divergence.
Indeed, Figure 4 (left) shows how the optimal KL divergencechangesas a function of
the truncation level for one of the simulated data sets.

We ran all algorithms to convergenceand measuredthe computation time.® For the
collapsed Gibbs sampler, we assesseatorvergenceto the stationary distribution with
the diagnostic given by Raftery and Lewis (1992), and collected 25 additional samplesto
estimate the predictive distribution (the samediagnostic provides an appropriate lag at
which to collect uncorrelated samples). We assesseaorvergenceof the blocked Gibbs
sampler using the samestatistic as for the collapsedGibbs sampler and usedthe same
number of samplesto form the approximate predictive distribution. 4

Finally, for variational inference,we measuredconvergenceusing the relative change
in the log marginal probability bound (Equation 16), stopping the algorithm when it
was lessthan 1e 0.

There is a certain inevitable arbitrariness in these choices;in generalit is di cult
to envisagemeasuresof computation time that allow stochastic MCMC algorithms and
deterministic variational algorithms to be comparedin a standardizedway. Nonetheless,
we have made what we considerto be reasonable pragmatic choices. In particular, our
choice of stopping time for the variational algorithm is quite consenative, asillustrated
in Figure 4 (right).

Figure 3 illustrates the averagecorvergencetime acrossten datasetsper dimension.
With the caveatsin mind regarding corvergencetime measuremety it appearsthat the
variational algorithm is quite competitiv e with the MCMC algorithms. The variational

SAll timing computations were made on a Pentium |11 1GHZ desktop machine.

4Typically, hundreds or thousands of samples are used in MCMC algorithms to form the approxi-
mate posterior. However, we found that such approximations did not oer any additional predictiv e
performance in the simulated data. To be fair to MCMC in the timing comparisons, we used a small
number of samples to estimate the predictiv e distributions.
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Figure 6: Four sample clusters from a DP mixture analysis of 5000 imagesfrom the
Asscciated Press. The left-most column is the posterior mean of ead cluster followed
by the top ten imagesassaiated with it. These clusters capture patterns in the data,
such as basketball shots, outdoor sceneson gray days, faces, and pictures with blue
badkgrounds.

algorithm was faster and exhibited signi cantly lessvariance in its convergencetime.
Moreover, there s little evidenceof anincreasein corvergencetime acrossdimensionality
for the variational algorithm over the range tested.

Note that the collapsedGibbs samplercornvergedfasterthan the TDP Gibbs sampler.
Though an iteration of collapsedGibbs is slower than an iteration of TDP Gibbs, the
TDP Gibbs sampler required a longer burn-in and greater lag to obtain uncorrelated
samples. This is illustrated in the autocorrelation plots of Figure 5. Comparing the two
MCMC algorithms, we found no advantage to the truncated approximation.

Table 1 illustrates the averagelog likelihood assignedto the held-out data by the
approximate predictive distributions. First, notice that the collapsedDP Gibbs sam-
pler assignedthe samelikelihood as the posterior from the TDP Gibbs sampler|an
indication of the quality of a TDP for approximating a DP. More importantly, however,
the predictive distribution basedon the variational posterior assigneda similar scoreas
thosebasedon samplesfrom the true posterior. Though it is basedon an approximation
to the posterior, the resulting predictive distributions are very accurate for this classof
DP mixtures.

6 Image analysis

Finite Gaussianmixture modelsare widely usedin computer vision to model natural im-
agesfor the purposesof automatic clustering, retrieval, and classi cation (Barnard et al.
2003;Jeonet al. 2003). Theseapplications are often large-scaledata analysisproblems,
involving thousandsof data points (images)in hundreds of dimensions(pixels). The ap-
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Figure 7: The expectednumber of imagesallocatedto eady componert in the variational
posterior (left). The posterior uses79 componerts to describethe data. The prior for the
scalingparameter and the approximate posterior given by its variational distribution

(right).

propriate number of mixture componerts to usein theseproblemsis generally unknown,

and DP mixtures provide an attractiv e alternativ e to current methods. However, a de-
ployment of DP mixtures in sud problems crucially requiresinferential methods that

are computationally e cien t. To demonstrate the applicability of our variational ap-

proach to DP mixtures in the setting of large datasets, we analyzeda collection of 5000
imagesfrom the Asscaciated Pressunder the assumptionsof a DP mixture of Gaussians
model.

Each imagewasreducedto a 192-dimensionalreal-valued vector givenby an8 8 grid
of averagered, green,and blue values. We t a DP mixture model in which the mixture
componerts are Gaussianwith mean and covariancematrix 21 . The basedistribution
Go wasa product measure|Gamma(4,2) for 1= 2 andN (0;5 ?) for . Furthermore, we
placeda Gamma(1,1) prior on the DP scalingparameter , asdescribedin Appendix 7.
We useda truncation level of 150 for the variational distribution.

The variational algorithm required approximately four hours to corverge. The re-
sulting approximate posterior used 79 mixture componerts to describe the collection.
For a rough comparisonto Gibbs sampling, an iteration of collapsed Gibbs takes 15
minutes with this data set. In the samefour hours, one could perform only 16 itera-
tions. This is not enoughfor a chain to convergeto its stationary distribution, let alone
provide a su cien t number of uncorrelated samplesto construct an empirical estimate
of the posterior.

Figure 7 (left) illustrates the expected number of imagesallocated to ead compo-
nent under the variational approximation to the posterior. Figure 6 illustrates the ten
pictures with highest approximate posterior probability assaiated with ead of four of
the componerts. These clusters appear to capture basketball shots, outdoor sceneson
gray days, faces,and blue badgrounds.

Figure 7 (right) illustrates the prior for the scaling parameter as well as the
approximate posterior given by the tted variational distribution. We seethat the
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approximate posterior is peaked and rather di erent from the prior, indicating that the
data have provided information regarding

7 Conclusions

We have dewveloped a mean- eld variational inference algorithm for the Dirichlet pro-
cessmixture model and demonstratedits applicability to the kinds of multiv ariate data
for which Gibbs sampling algorithms can exhibit slow corvergence. Variational infer-
encewas faster than Gibbs sampling in our simulations, and its corvergencetime was
independert of dimensionality for the range which we tested.

Both variational and MCMC methods have strengths and weaknessesand it is un-
likely that onemethodology will dominate the other in general. While MCMC sampling
provides theoretical guaranteesof accuracy variational inferenceprovides a fast, deter-
ministic approximation to otherwise unattainable posteriors. Moreover, both MCMC
and variational methods are computational paradigms, providing a wide variety of spe-
ci ¢ algorithmic approadeswhich trade o speed,accuracyand easeof implemertation
in dierent ways. We have investigated the deployment of the simplest form of varia-
tional method for DP mixtures|a mean- eld variational algorithm|but it worth noting
that other variational approades, such as those described in Wainwright and Jordan
(2003), are also worthy of considerationin the nonparametric context.

A  Variational inference in exponential families

In this appendix, we derive the coordinate ascern algorithm for variational inference
described in Section 3.2. Recall that we are considering a latent variable model with
hyperparameters , obsened variables x = fxi;:::;Xn 0, and latent variables W =

p(wjx; )= expflogp(w;xj ) logp(xj )g: (29)

The variational bound on the log marginal probability is

logp(xj ) Eqllogp(x;Wj )] EqlloggW)]: (30)

This bound holds for any distribution g(w).

For the optimization of this bound to be computationally tractable, ijestrict our-
sehes to fully-factorized variational distributions of the form q (w) = :\11 g, (w),
where = f 1; 2;:::; m g are variational parametersand ead distribution is in the
exponertial family (Ghahramani and Beal 2001). We derive a coordinate ascen algo-
rithm in which we iterativ ely maximize the bound with respect to ead ;, holding the
other variational parameters xed.
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Let us rewrite the bound in Equation (30) using the chain rule:

» »
logp(xj ) logp(xj )+ Eq[logp(Wm jX; Wi Wiy 15 )] Eq[logq ,, (Wm)]:

m=1 m=1
(31)
To optimize with respectto ;, reorderw sud that w; is last in the list. The portion
of Equation (31) dependingon ; is

i = Eqllogp(Wi jW i;x; )] Eqllogqg, (Wi)]: (32)
The variational distribution g, (w;) is in the exponertial family,
q,(w) = h(wi)expf fwi a(i)g;
and Equation (32) simpli es asfollows:

Y Eq logp(Wi jW i;x; ) logh(W;) W+ a( i)
Eqllogp(Wi jW i;x; )]  Eqllogh(W)]  TaX i)+ a( i);

becauseEq [Wi] = a¥ ;).

The derivative with respectto ; is

@@i‘i= _@i(Eq“ng(WijW 5% )] Eqllogh(Wi)) — Tati): (33)

The optimal ; satis es

R e logpWiW X )] EqloghW] (39

The result in Equation (34) is general. In many applications of mean eld methods,
including thosein the current paper, a further simpli cation is achieved. In particular,
if the conditional distribution p(w; jw i;X; ) is an exponertial family distribution then

p(wi jw i;x; )= h(w)expfag(w i;x; )'wi aGw i;x; ))g;

where g (w i;X; ) denotesthe natural parameter for w; when conditioning on the
remaining latent variables and the obsenations. This yields simpli ed expressionsfor
the expected log probability of W; and its rst derivative:

Eq [logp(Wi jW i;x; )] Eqllogh(Wi)] + Eq[ai(W 5% )" aY i)  Eqla(@(W i;x; ))]

@@iEq llogh(Wi)] + Eq[g(W i;x; )" aX 1):

@ .
—Eq[logp(Wi jW i;x; )]
@;

Using the rst derivative in Equation (34), the maximum is attained at

i = Eqla(W ;x5 )]: (3%)
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We de ne a coordinate ascen algorithm basedon Equation (35) by iterativ ely updating

Proposition 2.7.1 of Bertsekas (1999), under the condition that the right-hand side of
Equation (32) is strictly corvex.

Relaxing the two assumptions complicates the algorithm, but the basic idea re-
mains the same. If p(w; jw i;X; ) is not in the exponertial family, then there may
not be an analytic expressionfor the update in Equation (34). If g(w) is not a fully
factorized distribution, then the secondterm of the bound in Equation (32) becomes
Eq[logag(wi jw )] and the subsequen simpli cations may not be applicable.

Further perspectiveson algorithms of this kind can be found in Xing et al. (2003),
Ghahramani and Beal (2001), and Wiegerinck (2000). For a more generaltreatment of
variational methods for statistical inference,seeWainwright and Jordan (2003).

B  Placing a prior on the scaling parameter

The scaling parameter  can have a signi cant e ect on the growth of the number of
componerts grows with the data, and it is generally important to consider extended
models which integrate over . For the urn-based samplers, Escobarand West (1995)
placea Gamma(s;; s;) prior on andimplemernt the corresponding Gibbs updateswith
auxiliary variable methods.

In the stick-breaking represenation, the gamma distribution is corveniert because
it is conjugate to the stick lengths. We write the gamma distribution in its canonical
form:

p( jsiisz) = (1= )expf s; +sylog  a(s1;s2)0;
wheres; is the shape parameter and s; is the inversescaleparameter. This distribution
is conjugate to Beta(1; ). The log normalizer is

a(s1;s2) = log ('s1) silogss;

P
& = s < log(l i)
§ = s+ K:

We extend the variational inferencealgorithm to include posterior updates for the
scaling parameter . The variational distribution is Gamma(wi;w,). The variational
parametersare updated as follows:

w;, = s;+T 1
'X 1
Wy = s Eqllog(l Vi)
i=1
and we replace  with its expectation Eq[ ] = wi=w, in the updatesfor ¢, in Equa-
tion (19).
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