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Abstract. Diric hlet process(DP) mixture models are the cornerstone of non-
parametric Bayesianstatistics, and the development of Monte-Carlo Mark ov chain
(MCMC) sampling methods for DP mixtures has enabled the application of non-
parametric Bayesian methods to a variety of practical data analysis problems.
However, MCMC sampling can be prohibitiv ely slow, and it is important to ex-
plore alternativ es. One classof alternativ es is provided by variational methods, a
classof deterministic algorithms that convert inferenceproblems into optimization
problems (Opp er and Saad 2001; Wainwright and Jordan 2003). Thus far, varia-
tional methods have mainly beenexplored in the parametric setting, in particular
within the formalism of the exponential family (A ttias 2000;Ghahramani and Beal
2001; Blei et al. 2003). In this paper, we present a variational inference algorithm
for DP mixtures. We present experiments that compare the algorithm to Gibbs
sampling algorithms for DP mixtures of Gaussiansand present an application to
a large-scaleimage analysis problem.
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1 Intro duction

The methodologyof Monte Carlo Markov chain (MCMC) samplinghasenergizedBayesian
statistics for more than a decade,providing a systematic approach to the computation
of likelihoods and posterior distributions, and permitting the deployment of Bayesian
methods in a rapidly growing number of applied problems. However, while an unques-
tioned successstory, MCMC is not an unquali�ed one|MCMC methods can be slow
to converge and their convergencecan be di�cult to diagnose. While further research
on sampling is needed,it is also important to explore alternativ es, particularly in the
context of large-scaleproblems.

One such classof alternativ esis provided by variational inferencemethods (Ghahra-
mani and Beal 2001;Jordan et al. 1999;Opper and Saad2001;Wainwright and Jordan
2003;Wiegerinck 2000). Like MCMC, variational inferencemethods have their roots in
statistical physics,and, in contradistinction to MCMC methods, they are deterministic.
The basic idea of variational inference is to formulate the computation of a marginal
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2 Variational inference for Diric hlet pro cess mixtures

or conditional probabilit y in terms of an optimization problem. This (generally in-
tractable) problem is then \relaxed," yielding a simpli�ed optimization problem that
depends on a number of free parameters, known as variational parameters. Solving
for the variational parameters gives an approximation to the marginal or conditional
probabilities of interest.

Variational inferencemethods have beendeveloped principally in the context of the
exponential family, where the convexity properties of the natural parameter spaceand
the cumulant function yield an elegant general variational formalism (Wainwright and
Jordan 2003). For example,variational methods have beendeveloped for parametric hi-
erarchical Bayesianmodelsbasedon generalexponential family speci�cations (Ghahra-
mani and Beal 2001). MCMC methods have seenmuch wider application. In particular,
the development of MCMC algorithms for nonparametric models such as the Dirichlet
processhasled to increasedinterest in nonparametric Bayesianmethods. In the current
paper, we aim to closethis gap by developing variational methods for Dirichlet process
mixtures.

The Dirichlet process(DP), intro ducedin Ferguson(1973), is a measureon measures.
The DP is parameterized by a basedistribution G0 and a positive scaling parameter
� .1 Supposewe draw a random measureG from a Dirichlet process,and independently
draw N random variables � n from G:

G j f G0; � g � DP(G0; � )

� n � G; n 2 f 1; : : : ; N g:

Marginalizing out the random measureG, the joint distribution of f � 1; : : : ; � N g follows
a P�olya urn scheme(Blackwell and MacQueen1973). Positive probabilit y is assignedto
con�gurations in which di�eren t � n take on identical values; moreover, the underlying
random measureG is discrete with probabilit y one. This is seenmost directly in the
stick-breaking representation of the DP, in which G is represented explicitly asan in�nite
sum of atomic measures(Sethuraman 1994).

The Dirichlet processmixture model (Antoniak 1974) adds a level to the hierarchy
by treating � n as the parameter of the distribution of the nth observation. Given the
discretenessof G, the DP mixture has an interpretation as a mixture model with an
unbounded number of mixture components.

Given a samplef x1; : : : ; xN g from a DP mixture, our goal is to compute the predic-
tiv e density:

p(x j x1; : : : ; xN ; � ; G0) =
Z

p(x j � )p(� j x1; : : : ; xN ; � ; G0)d� ; (1)

As in many hierarchical Bayesianmodels,the posterior distribution p(� j x1; : : : ; xN ; G0; � )
is complicated and is not available in a closedform. MCMC provides one classof ap-
proximations for this posterior and the predictive density (MacEachern 1994;Escobar
and West 1995;Neal 2000).

1Ferguson (1973) parameterizes the Diric hlet processby a single base measure, which is �G 0 in our
notation.
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In this paper, we present a variational inference algorithm for DP mixtures based
on the stick-breaking representation of the underlying DP. The algorithm involves two
probabilit y distributions|the posterior distribution p and a variational distribution q.
The latter is endowed with free variational parameters, and the algorithmic problem
is to adjust these parameters so that q approximates p. We also use a stick-breaking
representation for q, but in this casewe truncate the representation to yield a �nite-
dimensional representation. While in principle we could also truncate p, turning the
model into a �nite-dimensional model, it is important to emphasizeat the outset that
this is not our approach|w e truncate only the variational distribution.

The paper is organized as follows. In Section 2 we provide basic background on
DP mixture models, focusing on the caseof exponential family mixtures. In Section 3
we present a variational inference algorithms for DP mixtures. Section 4 overviews
MCMC algorithms for the DP mixture, discussingalgorithms basedboth on the P�olya
urn representation and the stick-breaking representation. Section5 presents the results
of experimental comparisons,Section 6 presents an analysisof natural image data, and
Section 7 presents our conclusions.

2 Dirichlet process mixture models

Let � be a continuous random variable, let G0 be a non-atomic probabilit y distribution
for � , and let � be a positive, real-valued scalar. A random measureG is distributed
according to a Dirichlet process (DP) (Ferguson1973), with scaling parameter � and
basedistribution G0, if for all natural numbers k and k-partitions f B1; : : : ; Bk g,

(G(B1); G(B2); : : : ; G(Bk )) � Dir (� G0(B1); � G0(B2); : : : ; � G0(Bk )) : (2)

Integrating out G, the joint distribution of the collection of variables f � 1; : : : ; � n g ex-
hibits a clustering e�ect; conditioning on n � 1 draws, the nth value is, with positive
probabilit y, exactly equal to one of those draws:

p(� j � 1; : : : ; � n � 1) / � G0(�) +
n � 1X

i =1

� � i (�): (3)

Thus, the variablesf � 1; : : : ; � n � 1g arerandomly partitioned accordingto which variables
are equal to the samevalue, with the distribution of the partition obtained from a P�olya
urn scheme (Blackwell and MacQueen 1973). Let f � �

1 ; : : : ; � �
j cj g denote the distinct

valuesof f � 1; : : : ; � n � 1g, let c = f c1; : : : ; cn � 1g be assignment variables such that � i =
� �

ci
, and let jcj denotethe number of cells in the partition. The distribution of � n follows

the urn distribution:

� n =

(
� �

i with prob. jf j : cj = i gj
n � 1+ �

� ; � � G0 with prob. �
n � 1+ � ;

(4)

where jf j : cj = igj is the number of times the value � �
i occurs in f � 1; : : : ; � n � 1g.



4 Variational inference for Diric hlet pro cess mixtures

In the Dirichlet processmixture model, the DP is usedas a nonparametric prior in
a hierarchical Bayesianspeci�cation (Antoniak 1974):

G j f � ; G0g � DP( � ; G0)

� n j G � G

X n j � n � p(xn j � n ):

Data generatedfrom this model can be partitioned according to the distinct values of
the parameter. Taking this view, the DP mixture has a natural interpretation as a

exible mixture model in which the number of components (i.e., the number of cells in
the partition) is random and grows as new data are observed.

The de�nition of the DP via its �nite dimensional distributions in Equation (2)
reposeson the Kolmogorov consistencytheorem (Ferguson1973). Sethuraman (1994)
providesa more explicit characterization of the DP in terms of a stick-breaking construc-
tion. Consider two in�nite collectionsof independent random variables,Vi � Beta(1; � )
and � �

i � G0, for i = f 1; 2; : : :g. The stick-breaking representation of G is as follows:

� i (v) = vi

i � 1Y

j =1

(1 � vj ) (5)

G =
1X

i =1

� i (v)� � �
i
: (6)

This representation of the DP makesclear that G is discrete (with probabilit y one); the
support of G consistsof a countably in�nite set of atoms, drawn independently from G0.
The mixing proportions � i (v) are given by successively breaking a unit length \stic k"
into an in�nite number of pieces.The sizeof each successive piece,proportional to the
rest of the stick, is given by an independent draw from a Beta(1; � ) distribution.

In the DP mixture, the vector � (v) comprises the in�nite vector of mixing pro-
portions and f � �

1 ; � �
2 ; : : :g are the atoms representing the mixture components. Let Zn

be an assignment variable of the mixture component with which the data point xn is
associated. The data can be described as arising from the following process:

1. Draw Vi j � � Beta(1; � ), i = f 1; 2; : : :g

2. Draw � �
i j G0 � G0, i = f 1; 2; : : :g

3. For the nth data point:

(a) Draw Zn j f v1; v2; : : :g � Mult (� (v)).

(b) Draw X n j zn � p(xn j � �
zn

).

In this paper, we restrict ourselves to DP mixtures for which the observable data
are drawn from an exponential family distribution, and where the basedistribution for
the DP is the corresponding conjugate prior.
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Figure 1: Graphical model representation of an exponential family DP mixture. Nodes
denote random variables, edgesdenote possibledependence,and plates denote replica-
tion.

The stick-breaking construction for the DP mixture is depicted asa graphical model
in Figure 1. The conditional distributions of Vk and Zn are as described above. The
distribution of X n conditional on Zn and f � �

1 ; � �
2 ; : : :g is

p(xn j zn ; � �
1 ; � �

2 ; : : :) =
1Y

i =1

�
h(xn ) expf � �

i
T xn � a(� �

i )g
� 1[zn = i ]

;

where a(� �
i ) is the appropriate cumulant function and we assumefor simplicit y that x

is the su�cien t statistic for the natural parameter � .

The vector of su�cien t statistics of the corresponding conjugatefamily is (� � T ; � a(� � ))T .
The basedistribution is

p(� � j � ) = h(� � ) expf � T
1 � � + � 2(� a(� � )) � a(� )g; (7)

where we decompose the hyperparameter � such that � 1 contains the �rst dim(� � )
components and � 2 is a scalar.

3 Variational inference for DP mixtures

There is no direct way to compute the posterior distribution under a DP mixture prior.
Approximate inferencemethods are required for DP mixtures and Markov chain Monte
Carlo (MCMC) samplingmethodshavebecomethe methodology of choice(MacEachern
1994;Escobarand West 1995;MacEachern 1998;Neal 2000;Ishwaran and James2001).

Variational inference provides an alternativ e, deterministic methodology for ap-
proximating likelihoods and posteriors (Wainwright and Jordan 2003). Consider a
model with hyperparameters� , latent variables W = f W1; : : : ; WM g, and observations
x = f x1; : : : ; xN g. The posterior distribution of the latent variables is:

p(w j x; � ) = expf logp(x; w j � ) � logp(x j � )g: (8)
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Working directly with this posterior is typically precluded by the need to compute
the normalizing constant. The log marginal probabilit y of the observations is:

logp(x j � ) = log
Z

p(w; x j � )dw; (9)

which may be di�cult to compute given that the latent variables becomedependent
when conditioning on observed data.

MCMC algorithms circumvent this computation by constructing an approximate
posterior basedon samplesfrom a Markov chain whosestationary distribution is the
posterior of interest. Gibbs sampling is the simplest MCMC algorithm; one iterativ ely
sampleseach latent variable conditioned on the previously sampledvaluesof the other
latent variables:

p(wi j w � i ; x ; � ) = expf logp(w; x j � ) � logp(w � i ; x j � )g: (10)

The normalizing constants for theseconditional distributions areassumedto beavailable
analytically for settings in which Gibbs sampling is appropriate.

Variational inferenceis basedon reformulating the problem of computing the poste-
rior distribution as an optimization problem, perturbing (or, \relaxing") that problem,
and �nding solutions to the perturb ed problem (Wainwright and Jordan 2003). In this
paper, wework with a particular classof variational methods known asmean-�eld meth-
ods. These are basedon optimizing Kullback-Leibler (KL) divergencewith respect to
a so-calledvariational distribution . In particular, let q� (w) be a family of distributions
indexed by a variational parameter � . We aim to minimize the KL divergencebetween
q� (w) and p(w j x; � ):

D(q� (w)jjp(w j x; � )) = Eq [logq� (W )] � Eq [logp(W ; x j � )] + logp(x j � ); (11)

wherehereand elsewherein the paper we omit the variational parameters� when using
q as a subscript of an expectation. Notice that the problematic marginal probabilit y
doesnot depend on the variational parameters; it can be ignored in the optimization.

The minimization in Equation (11) can be cast alternativ ely as the maximization of
a lower bound on the log marginal likelihood:

logp(x j � ) � Eq [logp(W ; x j � )] � Eq [logq� (W )] : (12)

The gap in this bound is the divergencebetweenq� (w) and the true posterior.

For the mean-�eld framework to yield a computationally e�ectiv e inferencemethod,
it is necessaryto choose a family of distributions q� (w) such that we can tractably
optimize Equation (11). In constructing that family, one typically breaks someof the
dependenciesbetweenlatent variablesthat make the true posterior di�cult to compute.
In the next sections,we consider fully-factorized variational distributions which break
all of the dependencies.
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3.1 Mean �eld variational inference in exponential families

For each latent variable, let us assumethat the conditional distribution p(wi j w � i ; x ; � )
is a member of the exponential family 2:

p(wi j w � i ; x ; � ) = h(wi ) expf gi (w � i ; x ; � )T wi � a(gi (w � i ; x ; � ))g; (13)

wheregi (w � i ; x ; � ) is the natural parameter for wi when conditioning on the remaining
latent variables and the observations.

In this setting it is natural to considerthe following family of distributions asmean-
�eld variational approximations (Ghahramani and Beal 2001):

q� (w) =
MY

i =1

expf � T
i wi � a(wi )g; (14)

where � = f � 1; � 2; : : : ; � M g are variational parameters. Indeed, it turns out that the
variational algorithm that we obtain using this fully-factorized family is reminiscent
of Gibbs sampling. In particular, as we show in Appendix 7, the optimization of KL
divergencewith respect to a single variational parameter � i is achieved by computing
the following expectation:

� i = Eq [gi (W � i ; x ; � )] : (15)

Repeatedly updating each parameter in turn by computing this expectation amounts
to performing coordinate ascent in the KL divergence.

Notice the interesting relationship of this algorithm to the Gibbs sampler. In Gibbs
sampling,weiterativ ely draw the latent variableswi from the distribution p(wi j w � i ; x ; � ).
In mean-�eld variational inference, we iterativ ely update the variational parameter � i

by setting it equal to the expected value of gi (w � i ; x ; � ). This expectation is computed
under the variational distribution.

3.2 DP mixtures

In this section we develop a mean-�eld variational algorithm for the DP mixture. Our
algorithm is basedon the stick-breaking representation of the DP mixture (seeFigure 1).
In this representation the latent variablesarethe stick lengths, the atoms,and the cluster
assignments: W = f V ; � � ; Zg. The hyperparametersare the scalingparameter and the
parameter of the conjugate basedistribution: � = f � ; � g.

Following the generalrecipe in Equation (12), we write the variational bound on the

2Examples of models in which p(w i j w � i ; x ; � ) is an exponential family distribution include hidden
Mark ov models, mixture models, state space models, and hierarchical Bayesian models with conjugate
and mixture of conjugate priors.
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log marginal probabilit y of the data:

logp(x j � ; � ) � Eq [logp(V j � )] + Eq [logp(� � j � )]

+
NX

n =1

(Eq [logp(Zn j V )] + Eq [logp(xn j Zn )])

� Eq [logq(V ; � � ; Z)] :

(16)

To exploit this bound, we must �nd a family of variational distributions that approxi-
matesthe distribution of the in�nite-dimensional random measureG, wherethe random
measureis expressedin terms of the in�nite setsV = f V1; V2; : : :g and � � = f � �

1 ; � �
2 ; : : :g.

We do this by consideringtruncated stick-breaking representations. Thus, we �x a value
T and let q(vT = 1) = 1; this implies that the mixture proportions � t (v) are equal to
zero for t > T (seeEquation 5).

Truncated stick-breaking representations have been consideredpreviously by Ish-
waran and James(2001) in the context of sampling-basedinferencefor an approxima-
tion to the DP mixture model. Note that our use of truncation is rather di�eren t. In
our case,the model is a full Dirichlet processand is not truncated; only the variational
distribution is truncated. The truncation level T is a variational parameter which can
be freely set; it is not a part of the prior model speci�cation (seeSection 5).

We thus proposethe following factorized family of variational distributions for mean-
�eld variational inference:

q(v; � � ; z) =
T � 1Y

t =1

q
 t (vt )
TY

t =1

q� t (�
�
t )

NY

n =1

q� n (zn ) (17)

where q
 t (vt ) are beta distributions, q� t (�
�
t ) are exponential family distributions with

natural parameters � t , and q� n (zn ) are multinomial distributions. In the notation of
Section 3.1, the free variational parametersare

� = f 
 1; : : : ; 
 T � 1; � 1; : : : ; � T ; � 1; : : : ; � N g:

It is important to note that there is a di�eren t variational parameter for each latent
variable under the variational distribution. For example,the choiceof the mixture com-
ponent zn for the nth data point is governed by a multinomial distribution indexed by
a variational parameter � n . This re
ects the conditional nature of variational inference.

Coordinate ascent algorithm

In this section we present an explicit coordinate ascent algorithm for optimizing the
bound in Equation (16) with respect to the variational parameters.

All of the terms in the bound involve standard computations in the exponential
family, except for the third term. We rewrite the third term using indicator random
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variables:

Eq [logp(Zn j V )] = Eq

h
log

� Q 1
i =1 (1 � Vi )1[Z n >i ]V 1[Z n = i ]

i

�i

=
P 1

i =1 q(zn > i )Eq [log(1 � Vi )] + q(zn = i )Eq [logVi ] :

Recall that Eq [log(1 � VT )] = 0 and q(zn > T) = 0. Consequently , we can truncate this
summation at t = T:

Eq [logp(Zn j V )] =
TX

i =1

q(zn > i )Eq [log(1 � Vi )] + q(zn = i )Eq [logVi ] ;

where

q(zn = i ) = � n;i

q(zn > i ) =
P T

j = i +1 � n;j

Eq [logVi ] = 	( 
 i; 1) � 	( 
 i; 1 + 
 i; 2)

Eq [log(1 � Vi )] = 	( 
 i; 2) � 	( 
 i; 1 + 
 i; 2):

The digammafunction, denotedby 	, arisesfrom the derivativeof the log normalization
factor in the beta distribution.

Wenow usethe generalexpressionin Equation (15) to derivea mean-�eld coordinate
ascent algorithm. This yields:


 t; 1 = 1 +
P

n � n;t (18)


 t; 2 = � +
P

n

P T
j = t +1 � n;j (19)

� t; 1 = � 1 +
P

n � n;t xn (20)

� t; 2 = � 2 +
P

n � n;t : (21)

� n;t / exp(St ); (22)

for t 2 f 1; : : : ; Tg and n 2 f 1; : : : ; N g, where

St = Eq [logVt ] +
P t � 1

i =1 Eq [log(1 � Vi )] + Eq [� �
t ]T X n � Eq [a(� �

t )] :

Iterating theseupdates optimizes Equation (16) with respect to the variational param-
eters de�ned in Equation (17).

Practical applications of variational methods must addressinitialization of the vari-
ational distribution. While the algorithm yields a bound for any starting valuesof the
variational parameters,poor choicesof initialization can lead to local maxima that yield
poor bounds. We initialize the variational distribution by incrementally updating the
parametersaccording to a random permutation of the data points. (This can be viewed
asa variational versionof sequential importance sampling). We run the algorithm mul-
tiple times and choose the �nal parameter settings that give the best bound on the
marginal likelihood.



10 Variational inference for Diric hlet pro cess mixtures

To compute the predictive distribution, we usethe variational posterior in a manner
analogousto the way that the empirical approximation is usedby an MCMC sampling
algorithm. The predictive distribution is:

p(xN +1 j x ; � ; � ) =
Z  

1X

t =1

� t (v)p(xN +1 j � �
t )

!

dP(v; � � j x ; �; � ):

Under the factorized variational approximation to the posterior, the distribution of
the atoms and the stick lengths are decoupledand the in�nite sum is truncated. Conse-
quently , we can approximate the predictive distribution with a product of expectations
which are straightforward to compute under the variational approximation,

p(xN +1 j x ; � ; � ) �
TX

t =1

Eq [� t (V )] Eq [p(xN +1 j � �
t )] ; (23)

where q dependsimplicitly on x, � , and � .

Finally, we remark on two possibleextensions. First, when G0 is not conjugate, a
simplecoordinate ascent update for � i may not beavailable, particularly whenp(� �

i j z; x ; � )
is not in the exponential family. However, such an update is available for the special
caseof G0 being a mixture of conjugate distributions. Second,it is often important in
applications to integrate over a di�use prior on the scaling parameter � . As we show
in Appendix 7, it is straightforward to extend the variational algorithm to include a
gamma prior on � .

4 Gibbs sampling

For comparison to variational inference, we review the collapsed Gibbs sampler and
blocked Gibbs sampler for DP mixtures.

4.1 Collapsed Gibbs sampling

The collapsed Gibbssampler for a DP mixture with conjugatebasedistribution (MacEach-
ern 1994)integratesout the random measureG and distinct parametervaluesf � �

1 ; : : : ; � �
j cj g.

The Markov chain is thus de�ned only on the latent partition c = f c1; : : : ; cN g. (Recall
that jcj denotesthe number of cells in the partition.)

The algorithm iterativ ely sampleseach assignment variable Cn , for n 2 f 1; : : : ; N g,
conditional on the other cells in the partition, c� n . The assignment Cn can be one of
jc� n j + 1 values: either the nth data point is in a cell with other data points, or in a
cell by itself.

Exchangeability implies that Cn has the following multinomial distribution:

p(cn = k j x ; c� n ; �; � ) / p(xn j x � n ; c� n ; cn = k; � )p(cn = k j c� n ; � ): (24)
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The �rst term is a ratio of normalizing constants of the posterior distribution of the kth
parameter, one including and one excluding the nth data point:

p(xn j x � n ; c� n ; cn = k; � ) =

exp
n

a(� 1 +
P

m 6= n 1 [cm = k] xm + xn ; � 2 +
P

m 6= n 1 [cm = k] + 1)
o

exp
n

a(� 1 +
P

m 1 [cm = k] xm ; � 2 +
P

m 6= n 1 [cm = k])
o :

(25)

The secondterm is given by the P�olya urn scheme:

p(cn = k j c� n ) /
�

jf j : c� n;j = kgj if k is an existing cell in the partition
� if k is a new cell in the partition,

(26)

wherejf j : c� n;j = kgj denotesthe number of data points in the kth cell of the partition
c� n .

Oncethis chain hasreachedits stationary distribution, wecollect B samplesf c1; : : : ; cB g
to approximate the posterior. The approximate predictive distribution is an averageof
the predictive distributions acrossthe Monte Carlo samples:

p(xN +1 j x1; : : : ; xN ; � ; � ) =
1
B

BX

b=1

p(xN +1 j cb; x ; � ; � ):

For a given sample, that distribution is

p(xN +1 j cb; x ; � ; � ) =
j cb j+1X

k=1

p(cN +1 = k j cb; � )p(xN +1 j cb; x ; cN +1 = k; � ):

When G0 is not conjugate, the distribution in Equation (25) doesnot have a simple
closedform. E�ectiv e algorithms for handling this caseare given in Neal (2000).

4.2 Blocked Gibbs sampling

In the collapsedGibbs sampler, the assignment variable Cn is drawn from a distribution
that depends on the most recently sampled values of the other assignment variables.
Consequently , thesevariablesmust be updated oneat a time which can potentially slow
down the algorithm when comparedto a blocking strategy. To this end, Ishwaran and
James(2001)developeda blockedGibbs samplingalgorithm basedon the stick-breaking
representation of Figure 1.

The main issueto face in developing a blocked Gibbs sampler for the stick-breaking
DP mixture is that one needsto samplethe in�nite collection of stick lengths V before
sampling the �nite collection of cluster assignments Z. Ishwaran and James(2001) face
this issueby de�ning a truncated Dirichlet process(TDP) in which VK � 1 is set equal to
one for some�xed value K . This yields � i (V ) = 0 for i � K , and converts the in�nite
sum in Equation (5) into a �nite sum. Ishwaran and James(2001) justify substituting a
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TDP mixture model for a full DP mixture model by showing that the truncated process
closely approximates a true Dirichlet processwhen the truncation level is chosenlarge
relative to the number of data points.

In the TDP mixture, the state of the Markov chain consistsof the beta variables
V = f V1; : : : ; VK � 1g, the mixture component parameters � � = f � �

1 ; : : : ; � �
K g, and the

indicator variables Z = f Z1; : : : ; ZN g. The blocked Gibbs sampler iterates betweenthe
following three steps:

1. For n 2 f 1; : : : ; N g, independently sampleZn from

p(zn = k j v ; � � ; x) = � k (v)p(xn j � �
k );

2. For k 2 f 1; : : : ; K g, independently sampleVk from Beta(
 k ;1; 
 k ;2), where


 k ;1 = 1 +
P N

n =1 1 [zn = k]


 k ;2 = � +
P K

i = k+1

P N
n =1 1 [zn = i ] :

This step follows from the conjugacy between the multinomial distribution and
the truncated stick-breaking construction, which is a generalizedDirichlet distri-
bution (Connor and Mosimann 1969).

3. For k 2 f 1; : : : ; K g, independently sample � �
k from p(� �

k j � k ). This distribution is
in the samefamily as the basedistribution, with parameters

� k ;1 = � 1 +
P

i 6= n 1 [zi = k] x i

� k ;2 = � 2 +
P

i 6= n 1 [zi = k] :
(27)

After the chain has reached its stationary distribution, we collect B samplesand
construct an approximate predictive distribution. Again, this distribution is an aver-
age of the predictive distributions for each of the collected samples. The predictive
distribution for a particular sample is

p(xN +1 j z; x ; � ; � ) =
KX

k=1

E [� i (V ) j 
 1; : : : ; 
 k ] p(xN +1 j � k ); (28)

where E [� i j 
 1; : : : ; 
 k ] is the expectation of the product of independent beta variables
given in Equation (5). This distribution only depends on z; the other variables are
neededin the Gibbs sampling procedure,but can be integrated out here. Note that this
approximation has a form similar to the approximate predictive distribution under the
variational distribution in Equation (23). In the variational case,however, the averaging
is done parametrically via the variational distribution rather than by a Monte Carlo
integral.

The TDP sampler readily handles non-conjugacy of G0, provided that there is a
method of sampling � �

i from its posterior.
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Figure 2: The approximate predictive distribution given by variational inference at
di�eren t stagesof the algorithm. The data are 100 points generatedby a GaussianDP
mixture model with �xed diagonal covariance.

5 Empirical comparison

Qualitativ ely, variational methods o�er several potential advantages over Gibbs sam-
pling. They are deterministic, and have an optimization criterion given by Equa-
tion (16) that can be used to assessconvergence. In contrast, assessingconvergence
of a Gibbs sampler|namely , determining when the Markov chain has reached its sta-
tionary distribution|is an active �eld of research. Theoretical bounds on the mixing
time are of little practical use, and there is no consensuson how to chooseamong the
several empirical methods developed for this purpose(Robert and Casella2004).

But there are several potential disadvantagesof variational methods as well. First,
the optimization procedurecan fall prey to local maxima in the variational parameter
space.Local maxima can be mitigated with restarts, or removed via the incorporation
of additional variational parameters, but these strategies may slow the overall conver-
genceof the procedure. Second,any given �xed variational representation yields only
an approximation to the posterior. There are methods for considering hierarchies of
variational representations that approach the posterior in the limit, but thesemethods
may again incur seriouscomputational costs. Lacking a theory by which theseissuescan
be evaluated in the generalsetting of DP mixtures, we turn to experimental evaluation.

We studied the performanceof the variational algorithm of Section3 and the Gibbs
samplers of Section 4 in the setting of DP mixtures of Gaussianswith �xed inverse
covariance matrix � (i.e., the DP mixes over the mean of the Gaussian). The natural
conjugate basedistribution for the DP is Gaussian,with covariance given by � =� 2 (see
Equation 7).

Figure 2 provides an illustrativ e exampleof variational inferenceon a small problem
involving 100 data points sampled from a two-dimensional DP mixture of Gaussians
with diagonal covariance. Each panel in the �gure plots the data and presents the
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Figure 3: Mean convergencetime and standard error acrossten data setsper dimension
for variational inference,TDP Gibbs sampling, and the collapsedGibbs sampler.

predictive distribution given by the variational inferencealgorithm at a given iteration
(seeEquation (23)). The truncation level was set to 20. As seenin the �rst panel, the
initialization of the variational parameters yields a largely 
at distribution. After one
iteration, the algorithm has found the modes of the predictive distribution and, after
convergence,it has further re�ned those modes. Even though 20 mixture components
are represented in the variational distribution, the �tted approximate posterior only
uses�v e of them.

To comparethe variational inferencealgorithm to the Gibbs samplingalgorithms, we
conducteda systematic set of simulation experiments in which the dimensionality of the
data was varied from 5 to 50. The covariance matrix was given by the autocorrelation
matrix for a �rst-order autoregressive process,chosensothat the components are highly
dependent (� = 0:9). The basedistribution was a zero-meanGaussianwith covariance
appropriately scaled for comparison acrossdimensions. The scaling parameter � was
set equal to one.

In each case,we generated100 data points from a DP mixture of Gaussiansmodel
of the chosendimensionality and generated100 additional points as held-out data. In
testing on the held-out data, we treated each point as the 101st data point in the
collection and computed its conditional probabilit y using each algorithm's approximate
predictive distribution.
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Dim Mean held out log probabilit y (Std err)
Variational CollapsedGibbs Truncated Gibbs

5 -147.96(4.12) -148.08(3.93) -147.93(3.88)
10 -266.59(7.69) -266.29(7.64) -265.89(7.66)
20 -494.12(7.31) -492.32(7.54) -491.96(7.59)
30 -721.55(8.18) -720.05(7.92) -720.02(7.96)
40 -943.39(10.65) -941.04(10.15) -940.71(10.23)
50 -1151.01(15.23) -1148.51(14.78) -1147.48(14.55)

Table 1: Averageheld-out log probabilit y for the predictive distributions given by vari-
ational inference,TDP Gibbs sampling, and the collapsedGibbs sampler.
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Figure 4: The optimal bound on the log probabilit y as a function of the truncation
level (left). There are �v e clusters in the simulated 20-dimensional DP mixture of
Gaussiansdata set which was used. Held-out probabilit y as a function of iteration of
variational inferencefor the samesimulated data set (right). The relative changein the
log probabilit y bound of the observations is labeled at selectediterations.
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Figure 5: Auto correlation plots on the sizeof the largest component for the truncated
DP Gibbs sampler (left) and collapsedGibbs sampler (right) in an example dataset of
50-dimensionalGaussiandata.

The TDP approximation was truncated at K = 20 components. For the variational
algorithm, the truncation level was also T = 20 components. Note that in the latter
case,the truncation level is simply another variational parameter. While weheld T �xed
in our simulations, it is also possibleto optimize T with respect to the KL divergence.
Indeed, Figure 4 (left) shows how the optimal KL divergencechangesas a function of
the truncation level for one of the simulated data sets.

We ran all algorithms to convergenceand measuredthe computation time.3 For the
collapsedGibbs sampler, we assessedconvergenceto the stationary distribution with
the diagnostic given by Raftery and Lewis (1992), and collected25 additional samplesto
estimate the predictive distribution (the samediagnostic provides an appropriate lag at
which to collect uncorrelated samples). We assessedconvergenceof the blocked Gibbs
sampler using the samestatistic as for the collapsedGibbs sampler and usedthe same
number of samplesto form the approximate predictive distribution. 4

Finally, for variational inference,we measuredconvergenceusing the relative change
in the log marginal probabilit y bound (Equation 16), stopping the algorithm when it
was lessthan 1e� 10.

There is a certain inevitable arbitrariness in these choices; in general it is di�cult
to envisagemeasuresof computation time that allow stochastic MCMC algorithms and
deterministic variational algorithms to becomparedin a standardizedway. Nonetheless,
we have made what we considerto be reasonable,pragmatic choices. In particular, our
choiceof stopping time for the variational algorithm is quite conservative, as illustrated
in Figure 4 (right).

Figure 3 illustrates the averageconvergencetime acrossten datasetsper dimension.
With the caveats in mind regarding convergencetime measurement, it appearsthat the
variational algorithm is quite competitiv e with the MCMC algorithms. The variational

3All timing computations were made on a Pentium I I I 1GHZ desktop machine.
4Typically , hundreds or thousands of samples are used in MCMC algorithms to form the approxi-

mate posterior. However, we found that such approximations did not o�er any additional predictiv e
performance in the simulated data. To be fair to MCMC in the timing comparisons, we used a small
number of samples to estimate the predictiv e distributions.
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Figure 6: Four sample clusters from a DP mixture analysis of 5000 images from the
Associated Press. The left-most column is the posterior mean of each cluster followed
by the top ten imagesassociated with it. Theseclusters capture patterns in the data,
such as basketball shots, outdoor sceneson gray days, faces, and pictures with blue
backgrounds.

algorithm was faster and exhibited signi�cantly lessvariance in its convergencetime.
Moreover, there is little evidenceof an increasein convergencetime acrossdimensionality
for the variational algorithm over the range tested.

Note that the collapsedGibbs samplerconvergedfaster than the TDP Gibbs sampler.
Though an iteration of collapsedGibbs is slower than an iteration of TDP Gibbs, the
TDP Gibbs sampler required a longer burn-in and greater lag to obtain uncorrelated
samples.This is illustrated in the autocorrelation plots of Figure 5. Comparing the two
MCMC algorithms, we found no advantage to the truncated approximation.

Table 1 illustrates the average log likelihood assignedto the held-out data by the
approximate predictive distributions. First, notice that the collapsedDP Gibbs sam-
pler assignedthe same likelihood as the posterior from the TDP Gibbs sampler|an
indication of the quality of a TDP for approximating a DP. More importantly , however,
the predictive distribution basedon the variational posterior assigneda similar scoreas
thosebasedon samplesfrom the true posterior. Though it is basedon an approximation
to the posterior, the resulting predictive distributions are very accurate for this classof
DP mixtures.

6 Image analysis

Finite Gaussianmixture modelsarewidely usedin computer vision to model natural im-
agesfor the purposesof automatic clustering, retrieval, and classi�cation (Barnard et al.
2003;Jeonet al. 2003). Theseapplications are often large-scaledata analysisproblems,
involving thousandsof data points (images) in hundredsof dimensions(pixels). The ap-
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Figure 7: The expectednumber of imagesallocated to each component in the variational
posterior (left). The posterior uses79components to describe the data. The prior for the
scaling parameter � and the approximate posterior given by its variational distribution
(right).

propriate number of mixture components to usein theseproblemsis generallyunknown,
and DP mixtures provide an attractiv e alternativ e to current methods. However, a de-
ployment of DP mixtures in such problems crucially requires inferential methods that
are computationally e�cien t. To demonstrate the applicabilit y of our variational ap-
proach to DP mixtures in the setting of large datasets,we analyzeda collection of 5000
imagesfrom the Associated Pressunder the assumptionsof a DP mixture of Gaussians
model.

Each imagewasreducedto a 192-dimensionalreal-valuedvector givenby an 8� 8 grid
of averagered, green,and blue values. We �t a DP mixture model in which the mixture
components areGaussianwith mean� and covariancematrix � 2I . The basedistribution
G0 wasa product measure|Gamma(4,2) for 1=� 2 and N (0; 5� 2) for � . Furthermore, we
placeda Gamma(1,1) prior on the DP scalingparameter � , asdescribed in Appendix 7.
We useda truncation level of 150 for the variational distribution.

The variational algorithm required approximately four hours to converge. The re-
sulting approximate posterior used 79 mixture components to describe the collection.
For a rough comparison to Gibbs sampling, an iteration of collapsed Gibbs takes 15
minutes with this data set. In the samefour hours, one could perform only 16 itera-
tions. This is not enoughfor a chain to convergeto its stationary distribution, let alone
provide a su�cien t number of uncorrelated samplesto construct an empirical estimate
of the posterior.

Figure 7 (left) illustrates the expected number of imagesallocated to each compo-
nent under the variational approximation to the posterior. Figure 6 illustrates the ten
pictures with highest approximate posterior probabilit y associated with each of four of
the components. Theseclusters appear to capture basketball shots, outdoor sceneson
gray days, faces,and blue backgrounds.

Figure 7 (right) illustrates the prior for the scaling parameter � as well as the
approximate posterior given by the �tted variational distribution. We see that the
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approximate posterior is peaked and rather di�eren t from the prior, indicating that the
data have provided information regarding � .

7 Conclusions

We have developed a mean-�eld variational inference algorithm for the Dirichlet pro-
cessmixture model and demonstrated its applicabilit y to the kinds of multiv ariate data
for which Gibbs sampling algorithms can exhibit slow convergence. Variational infer-
encewas faster than Gibbs sampling in our simulations, and its convergencetime was
independent of dimensionality for the range which we tested.

Both variational and MCMC methods have strengths and weaknesses,and it is un-
likely that onemethodology will dominate the other in general. While MCMC sampling
provides theoretical guaranteesof accuracy, variational inferenceprovides a fast, deter-
ministic approximation to otherwise unattainable posteriors. Moreover, both MCMC
and variational methods are computational paradigms, providing a wide variety of spe-
ci�c algorithmic approacheswhich trade o� speed,accuracyand easeof implementation
in di�eren t ways. We have investigated the deployment of the simplest form of varia-
tional method for DP mixtures|a mean-�eld variational algorithm|but it worth noting
that other variational approaches, such as those described in Wainwright and Jordan
(2003), are also worthy of consideration in the nonparametric context.

A Variational inference in exponential families

In this appendix, we derive the coordinate ascent algorithm for variational inference
described in Section 3.2. Recall that we are considering a latent variable model with
hyperparameters � , observed variables x = f x1; : : : ; xN g, and latent variables W =
f W1; : : : ; WM g. The posterior can be written as

p(w j x; � ) = expf logp(w; x j � ) � logp(x j � )g: (29)

The variational bound on the log marginal probabilit y is

logp(x j � ) � Eq [logp(x; W j � )] � Eq [logq(W )] : (30)

This bound holds for any distribution q(w).

For the optimization of this bound to be computationally tractable, we restrict our-
selves to fully-factorized variational distributions of the form q� (w) =

Q M
i =1 q� i (wi ),

where � = f � 1; � 2; : : : ; � M g are variational parameters and each distribution is in the
exponential family (Ghahramani and Beal 2001). We derive a coordinate ascent algo-
rithm in which we iterativ ely maximize the bound with respect to each � i , holding the
other variational parameters �xed.
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Let us rewrite the bound in Equation (30) using the chain rule:

logp(x j � ) � logp(x j � )+
MX

m =1

Eq [logp(Wm j x ; W1; : : : ; Wm � 1; � )]�
MX

m =1

Eq [logq� m (Wm )] :

(31)
To optimize with respect to � i , reorder w such that wi is last in the list. The portion
of Equation (31) depending on � i is

` i = Eq [logp(Wi j W � i ; x ; � )] � Eq [logq� i (Wi )] : (32)

The variational distribution q� i (wi ) is in the exponential family,

q� i (wi ) = h(wi ) expf � T
i wi � a(� i )g;

and Equation (32) simpli�es as follows:

` i = Eq
�
logp(Wi j W � i ; x ; � ) � logh(Wi ) � � T

i Wi + a(� i )
�

= Eq [logp(Wi j W � i ; x ; � )] � Eq [logh(Wi )] � � T
i a0(� i ) + a(� i );

becauseEq [Wi ] = a0(� i ).

The derivative with respect to � i is

@
@� i

` i =
@

@� i
(Eq [logp(Wi j W � i ; x ; � )] � Eq [logh(Wi )]) � � T

i a00(� i ): (33)

The optimal � i satis�es

� i = [a00(� i )] � 1
�

@
@� i

Eq [logp(Wi j W � i ; x ; � )] �
@

@� i
Eq [logh(Wi )]

�
: (34)

The result in Equation (34) is general. In many applications of mean �eld methods,
including those in the current paper, a further simpli�cation is achieved. In particular,
if the conditional distribution p(wi j w � i ; x ; � ) is an exponential family distribution then

p(wi j w � i ; x ; � ) = h(wi ) expf gi (w � i ; x ; � )T wi � a(gi (w � i ; x ; � ))g;

where gi (w � i ; x ; � ) denotes the natural parameter for wi when conditioning on the
remaining latent variables and the observations. This yields simpli�ed expressionsfor
the expected log probabilit y of Wi and its �rst derivative:

Eq [logp(Wi j W � i ; x ; � )] = Eq [logh(Wi )] + Eq [gi (W � i ; x ; � )]T a0(� i ) � Eq [a(gi (W � i ; x ; � ))]
@

@� i
Eq [logp(Wi j W � i ; x ; � )] =

@
@� i

Eq [logh(Wi )] + Eq [gi (W � i ; x ; � )]T a00(� i ):

Using the �rst derivative in Equation (34), the maximum is attained at

� i = Eq [gi (W � i ; x ; � )] : (35)
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We de�ne a coordinate ascent algorithm basedon Equation (35) by iterativ ely updating
� i for i 2 f 1; : : : ; M g. Such an algorithm �nds a local maximum of Equation (30) by
Proposition 2.7.1 of Bertsekas (1999), under the condition that the right-hand side of
Equation (32) is strictly convex.

Relaxing the two assumptions complicates the algorithm, but the basic idea re-
mains the same. If p(wi j w � i ; x ; � ) is not in the exponential family, then there may
not be an analytic expressionfor the update in Equation (34). If q(w) is not a fully
factorized distribution, then the secondterm of the bound in Equation (32) becomes
Eq [logq(wi j w � i )] and the subsequent simpli�cations may not be applicable.

Further perspectiveson algorithms of this kind can be found in Xing et al. (2003),
Ghahramani and Beal (2001), and Wiegerinck (2000). For a more general treatment of
variational methods for statistical inference,seeWainwright and Jordan (2003).

B Placing a prior on the scaling parameter

The scaling parameter � can have a signi�cant e�ect on the growth of the number of
components grows with the data, and it is generally important to consider extended
models which integrate over � . For the urn-based samplers,Escobar and West (1995)
placea Gamma(s1; s2) prior on � and implement the corresponding Gibbs updateswith
auxiliary variable methods.

In the stick-breaking representation, the gamma distribution is convenient because
it is conjugate to the stick lengths. We write the gamma distribution in its canonical
form:

p(� j s1; s2) = (1=� ) expf� s2� + s1 log � � a(s1; s2)g;

wheres1 is the shape parameter and s2 is the inversescaleparameter. This distribution
is conjugate to Beta(1; � ). The log normalizer is

a(s1; s2) = log �( s1) � s1 logs2;

and the posterior parametersconditional on data f v1; : : : ; vK g are

ŝ2 = s2 �
P K

i =1 log(1 � vi )

ŝ1 = s1 + K :

We extend the variational inferencealgorithm to include posterior updates for the
scaling parameter � . The variational distribution is Gamma(w1; w2). The variational
parametersare updated as follows:

w1 = s1 + T � 1

w2 = s2 �
T � 1X

i =1

Eq [log(1 � Vi )]);

and we replace � with its expectation Eq [� ] = w1=w2 in the updates for 
 t; 2 in Equa-
tion (19).
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