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A Graphical Model

Figure [1| shows the graphical model for the deep SBN
with autoregressive structure. 8¢ and U contain the
autoregressive weights within layers, while W) is uti-
lized to capture the dependencies between different
layers.
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Figure 1: Graphical model for the deep SBN with autore-
gressive structure.

B Properties of Pdélya-Gamma
distribution

A random variable X has a Pdlya-Gamma distribution
(Polson et al.,2013) with parameters b > 0 and ¢ € R,
denoted X ~ PG(b, ¢), if
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where each g ~ Ga(b,1) is an independent gamma

random variable. We have
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A key observation is that binomial likelihoods
parametrized by log-odds can be written as mixtures

E[X] =
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of Gaussians with respect to a Pélya-Gamma distribu-
tion. Specifically, if v ~ PG(b,0), b > 0, then
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where K = a — b/2. And we have y|ip ~ PG(b, ).
Proof is given in [Polson et al.| (2013), Section 3.

The generation of the Pélya-Gamma variables is de-
tailed in [Polson et al| (2013]), Section 4. Other ap-
proximate methods for generation are discussed in the
supplemental material of |Zhou et al|(2012) and |Chen
et al.| (2013]).

C Inference details on ARSBN

We consider the one-hidden-layered ARSBN model de-
fined as (see Section 2.2)

P(vjn = 1hn,v<jn) = U(ijhn + sz,<j'U<j,n +¢5),

p(hkn = 1|h’<k,n) = O—(u;<kh<k,n + bk) . (4)

Assume isotropic normal priors are imposed on the
Sj.<; and uy, <, the other prior settings are the same
as in SBN. The conditional posterior distributions used
in the Gibbs sampling are as follows.

For 'y( ) ’y(l) The conditional distribution of 'y(o) is

PP |=) = PG(1,w] hyy+ 8] _ j0jp+c;). Similarly,
('Yz(cﬂ*) =PG(1,uy, p<wP<in + bp).

For H: The conditional distribution of hy, is

= Ber(o(dgn)), where
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For W: The conditional distribution of w; is
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p(w;|—) = N(p;,3;), where
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For S: The conditional distribution of s;; is
p(8j,<jl—) = N(p;, %;), where
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For U: The conditional distribution of wg <k is
p(uk,<k|f) = N(/l,k, Zk), where
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D Inference details on VB SBN

D.1 Derivation of the Lower Bound

The lower bound in Equation (16), Section 3.2 is de-
rived below. First,
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The third term in (]ED can be lower-bounded as
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Substituting into (@, we obtain

—log2 + (vjn —

(log po(13)) — (log a(1)) .
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+ (log po(74)) — (log g(7\)) . (11)
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D.2 VB update equations

The VB update equations for the SBN model are listed
below.

For ~(0) ~(1):
Q(’Yj('?z)) - PG (1’ <(ijhn +¢;)?) ) ) (12)

qwﬁ>=PG(L w@). (13)

For H: q(hgy,) = Ber(o(dy,)), where
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For W: ¢q(w;) = N(p;,3;), where
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For TPBN shrinkage:
a(Gik) = GZG(0, 2(&n), (W) » (17)
(&) = Gamma(1, (Gk) + (dr)) , (18)
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