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Abstract - A Bayesian statistical model is developed for analysis of the time-evolving properties of

infectious disease, with a particular focus on viruses. The model employs a latent semi-Markovian state

process, and the state-transition statistics are driven by three terms: (i) a general time-evolving trend of

the overall population, (ii) a semi-periodic term that accounts for effects caused by the days of the week,

and (iii) a regression term that relates the probability of infection to covariates (here, specifically, to

the Google Flu Trends data). Computations are performed using Markov Chain Monte Carlo sampling.

Results are presented using a novel data set: daily self-reported symptom scores from hundreds of Duke

University undergraduate students, collected over three academic years. The illnesses associated with

these students are (imperfectly) labeled using real-time (RT) polymerase chain reaction (PCR) testing

for several viruses, and gene-expression data were also analyzed. The statistical analysis is performed

on the daily, self-reported symptom scores, and the RT PCR and gene-expression data are employed for

analysis and interpretation of the model results.
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I. INTRODUCTION

There has been significant interest in the analysis of community-to-individual and individual-to-individual

transfer of virus [1], [2], [3], [4], [5], [6]. Many of these studies have been concerned with infection

transfer in households [2], [3], [5], in confined spaces like elementary schools [6], as well as transfer

among domestic animal populations [4]. The modeling may take different forms, depending upon the
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data considered and questions being asked. There has been a significant interest in influenza, and in such

studies the interest is typically on influenza-like illness (ILI). For example, based on the incidences of

ILI, one may be interested in the analysis of large-scale dynamics of epidemic propagation [1], [7], [8],

where in this case the data may be counts of space-time ILI events. There are other studies for which

the modeling is performed at or near the level of the symptoms or biomarkers, which are noisy and often

imperfect [4]. The studies are complicated by missing and incomplete data, and an unknown number of

competing pathogens [6].

Infection dynamics are complex, and therefore the power and flexibility of Bayesian models are

attractive [1], [2], [3], [6]; we employ such a modeling approach in this study. Most of these models

assume that a given individual is in a particular state of health, such as susceptible (S), exposed (E),

infective (I) and recovered (R); an individual in state I is infectious, in that they are capable of

transmitting the virus. The sequence of states considered in such a model defines its character, for

example susceptible-infective-recovered (SIR) models are widely considered [7], and once in the R state

individuals are often assumed removed from the population from the standpoint of infection transfer

(because of acquired immunity, or because of death; in some settings R represents “removed” rather than

recovered).

When dealing with many competing pathogens [6], such as distinct viruses characteristic of com-

mon/typical colds, even after an individual recovers from one virus, they may soon be susceptible to

another. That is the case considered in this paper, which motivates a SIS model. We effectively ignore

the short time period that may exist between state R and the return to S; during this short time period

there may be some cross-immunity between pathogens [6]. Additionally, we do not explicitly model

the distinction between states E and I , as these states are not distinguishable with the data considered.

With the observed data under consideration, only symptoms allow distinction of states, and therefore we

assume state S is one characterized by no or minimal symptoms, and state I is one in which symptoms

are observed (there are complications with this definition of state I , as discussed below).

Propagation of influenza and influenza-like viruses has been considered within school settings, for

example the Pittsburgh Influenza Prevention Project (PIPP) considered data from ten public elementary

schools in the city of Pittsburgh [9]. Studies have also been conducted concerning influenza propagation

in families, including data from France from over 300 families [10]. In analyzing such data [6], [2]
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state-based models like those discussed above are typically employed, and two forms of dynamics are

often considered for the probability of transitioning from S to E, or directly from S to I . One is based

upon community-to-person contacts, associated with interactions outside close contacts, and the other

is associated with person-to-person transfer among the close contacts. The person-to-person transfer

is employed to model interactions between individuals in confined or intimate settings, such as the

aforementioned elementary schools or households. In these settings the symptoms themselves are not

modeled. Rather, it is assumed that some other mechanism is available to determine an individuals health

state, and that this is done separately. For example, in [2] clinical influenza was defined as the presence of

fever or feverishness, or at least two of the following signs: sore throat, headache, stiffness or myalgias,

fatigue, cough, nasal congestion or rhinorrhea or sneezing. Similarly, in [1], the data modeled were

defined cases of illness, with symptoms themselves not modeled.

There are potential pitfalls associated with attempting to model person-to-person transfer, when this

mechanism is tied to symptoms. It has been observed that individuals may be infected with a virus but

display no symptoms [11]; additionally, for those who do ultimately have symptoms, pathogen transfer

may occur in the presymptomatic state [11]. In other words, even though the absence of symptoms from an

individual may indicate that she is in state S, she in fact may be in state I , and she may transfer/shed virus.

The effectiveness of pathogen transfer from asymptomatic shedders is not well understood. Additionally,

the data of interest for person-to-person transfer may be incomplete, in that it only accounts for a

subset of close contacts. In [2] the authors modeled infection transfer within elementary schools, but

not within the households of the students; in [6] the authors modeled person-to-person transfer within

households, but not among other close contacts outside the households. For these reasons, and because

of the characteristics of the data considered here (detailed in Section II), we only model community-

to-person transfer. This allows for the possible transfer of pathogen from an asymptomatic (but virus

shedding) member of the community to a member of our study. However, an asymptomatic member

of our study will still be deemed in state S by our model, based on symptoms, even though they may

be in state I and asymptomatically shedding virus; this issue is examined in detail when presenting results.

Within the proposed SIS model, we assume that the probability of transferring from state S to state I

is time-dependent. Further, we assume that different individuals have distinct degrees of susceptibility to

common viruses, and this is modeled as well (i.e., there is a person-dependent character to the degree

of susceptibility, and hence to the characteristics of state S). A unique aspect of this study is that the
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modeling is performed directly at the level of observed symptoms, rather than using pre-specified means

of defining whether one is in the S or I state. Specifically, in most of the above studies the state S/I of

the individual was assumed observed, and the goal was to infer the statistics of the state dynamics (e.g.,

the probability of transiting from S to I , and the duration of being in state I). In this study the symptoms

are the observed data, and the state S/I is treated as being latent, and to be inferred. As discussed in

Section II, we also have access to (imperfect) labels on the health of the individual at a given time, based

upon real-time (RT) polymerase chain reaction (PCR) testing and gene-expression data. We compare

the model-inferred state of the individual to the state based upon RT PCR and gene expression. This

comparison provides insights into such mechanisms as the aforementioned asymptomatic virus shedders,

as well as individuals who are symptomatic but not in state I as defined by RT PCR.

The time dependence in the probability of transiting from S to I captures time variation in the viruses

present at a given time, as well as time-dependent dynamics of human interaction (e.g., the mixing of a

new set of people may increase virus transfer [12], [13]). A unique characteristic of the data considered

here is that it is collected daily, for an entire university academic year; further, we have data from three full

academic years. By comparison, the data in [2] only existed for 15 days after a household index case. The

long time scale, and the daily sampling, introduce interesting phenomena that have not been investigated

previously, to our knowledge (in [1] weekly sampling of symptoms was performed). Specifically, how

one reports symptoms may be linked to their mood, which may vary with the day of the week. For

example, it has been demonstrated that the way in which individuals rate music is linked to the day (and

even time) of reporting [14], [15]. Since we are analyzing symptom data, we must consider biases in

data reporting that may occur based upon the day of reporting. The degree of missingness tends to also

be linked to the day of the week. This therefore motivates employing a semi-periodic, or weekly effect in

the probability of transiting from state S to I . This is a novel characteristic of the model developed here,

in which we generalize the use of models that employ seasonal terms [16] (here they become weekly,

and they are modeling a latent process).

Covariates may be available that can be employed to impact the probability of transiting from state

S to I . Given the very long longitudinal length of our data, we may consider new forms of covariates,

becoming available from a web-centric world. We consider the Google Flu Trends data [17]. These

covariates are constituted by region-specific web searches of words linked to ILI, and specifically here

we employ the Google Flu Trends for Durham, NC, the city in which Duke University resides. Other
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recent statistical analyses have modeled the space-time properties of such Google data alone [18], [19],

but here we are focused on observed symptoms and the time-dependent Google data is a covariate. In [18]

the focus is on modeling an epidemic like influenza, and therefore they employ a susceptible-exposed-

infected-recovered (SEIR) model; once in the recovered state, an individual is effectively removed from

the pandemic dynamics because of immunity. Here we are interested in modeling long-term illness

dynamics from common viruses (producing ILI), in addition to influenza, and therefore removing an

individual from the population upon recovery is not appropriate (in the data we observe some people

with repeated ILI). This may motivate a SEIS model, but for simplicity we consider a SIS model [7].

II. MOTIVATING DATA AND QUESTIONS

A. Self-reported daily symptom data

Self-reported symptom-score data were collected from undergraduate students at Duke University,

following guidelines specified by the Duke Institutional Review Board (IRB). Data were collected daily

during the 2009-2010, 2010-2011 and 2011-2012 academic school years; in each year, data were collected

from the beginning of September until May, using a web-based tool. For each of these collection periods,

respectively 246, 378 and 242 students participated. The total number of days in which data were

recorded were respectively 222, 214, and 227 over each collection period. The 2009-2010 collection

period coincided with the novel H1N1 pandemic [20].

The students’ reported symptoms were routinely monitored by Duke University health professionals.

When a student was deemed – from reported symptoms – to likely be sick with an infectious disease (e.g.,

virus), the student was contacted and nasal and blood samples were taken. These are termed index cases.

Further, each student provided a list of close contacts (other students they interacted with frequently).

Blood samples were then collected daily for a week on these close contacts, with the hope that we may

observe the transfer of infectious disease (and to analyze that in the context of the blood samples).

B. Virus identification and gene-expression data

For the students from whom samples were collected, RT PCR testing was done for a set of viruses.

The particular viruses for which a RT PCR test was available were: Rhinovirus, Coxsackie, Echovirus,

Coronavirus (229E, HKU1, NL63, OC43), Parainfluenzavirus (1, 2, 3, 4), RSV A/B, Influenza A, Influenza

B, Metapneumovirus (A & B), and Adenovirus E & B, and Bocavirus (platform used: Qiagen ResPlex

II V2.0). Therefore, if one of these viruses was responsible for the student’s illness, and if the virus was
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present in the collected sample, and if the RT PCR test worked properly, then the virus type responsible

for illness can be detected. However, a negative RT PCR result does not necessarily imply that the student

is not sick with a virus, as there may have been a poor sample (in which markers of the virus were not

present), a non-tested (within the RT PCR library) virus may have been responsible for illness, and the

RT PCR test is itself imperfect. In the context of this study, across the three years, 897 viral etiology

results based on RT PCR were constituted.

In addition to the aforementioned RT PCR tests, we also used the available blood samples to perform

gene-expression analysis. Let xq ∈ RG represent the expression data for subject q, for G genes. We

performed sparse Bayesian factor analysis on the set of data X ∈ RG×Q, where column q of X

corresponds to xq. Details on the factor analysis method may be found in [21], [22], [23]. In [24],

[22], [23] it was demonstrated that one of the factors in such an analysis may be linked to the host

response to virus, and in multiple experiments this signature has been found invariant to the particular

type of virus studied. Therefore, for the Q samples defining X, we used this factor analysis to define

which of these subjects appear to be infected by a virus (by the presence of an elevated form of a specific

factor [24], [22], [23]). We emphasize that this test is also imperfect, but it provides more generality than

the RT PCR tests, which are constrained to specific types of viruses. In these experiments Q = 34 and

G = 22277.

Based upon the RT PCR and gene-expression tests outlined above, we can (imperfectly) label each

of the subjects for whom samples were collected as being sick with a virus or not, at a given point in

time; these tests are used to assess the quality of the model developed in Sections III and IV to detect

sickness based on the symptom scores alone (with state of health defined by the inferred latent state, S

or I). It is important to emphasize that the labels we will use to assess performance are imperfect, in the

sense that the RT PCR and gene-expression tests are only testing for the presence of a virus (and even

these tests are not perfect). It is possible that an individual may be sick for another reason (e.g., due to

allergies or bacteria); in this case the virus-driven labels may indicate that the student is not sick, while

the symptoms indicate otherwise (our symptom-based declaration of health or sick may indicate state I ,

while the virus-driven labels may indicate S). These issues will be revisited when presenting results.
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C. Impact of form of data on the developed model

This paper is principally directed toward analyzing the self-reported symptom-score data, with a focus

on community-to-person transmission of pathogens. In each student dorm (living facility), roughly 10% to

20% of the students participated in the study, and therefore the close contacts are very sparsely sampled.

Further, many of the students spend most of their time outside the dorm, and interact infrequently with

many members of the same dorm. It was therefore deemed inappropriate to try to model person-to-person

pathogen transfer. We also considered developing dorm-dependent models for pathogen transfer, but the

dynamics across the different dorms (e.g., fraction of students sick at any given time) did not vary

substantially, and therefore it was deemed most appropriate to develop a single community-to-person

model for all students who participated in the study.

However, as detailed below, the close contacts constitute a separate set of data (with associated “truth”

for the presence/absence of virus), within the context of the imperfections of the RT PCR and gene-

expression data. We therefore use these data for model testing.

D. Questions to be examined in this study

• We have access to data over three academic years, with one year corresponding to the presence

of novel H1N1 virus. During that year there was heightened awareness on campus about non-

pharmacological ways to reduce virus transmission, with many highly visible reminders (e.g., stu-

dents were prominently reminded about hand washing, use of disinfectants, not touching eyes and

nose, etc.). Disinfectant soap was widely accessible throughout the campus, at locations in which

people congregate. We wish to examine how this heightened awareness affected the time-dependent

hazard of community-to-person transmission of pathogens, relative to the other two years of the

study, in which pathogen transmission was far less of a focus.

• The students who participated in this study primarily lived on a separate campus dedicated for first-

year students. Therefore, most of the students were Freshman, and at the beginning of the academic

year most of these students were coming together, and living in close proximity (in dorms), for

the first time. We wish to examine the impact of this new mixing of people on the time-dependent

hazard of community-to-person transmission of pathogens.

• The Duke University campus resides within the surrounding city of Durham, NC. We wish to examine

how the time-dependent hazard of community-to-person transmission of pathogens of Duke students

relates to such metrics as Google Flu Trends. Specifically, we wish to examine the extent to which
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Google Flu Trends for Durham, NC predicts the hazard of pathogen transmission on the Duke

campus.

• We have access to which dorm room each student lived in. Based upon the symptom scores, the model

predicts whether each student is infected at a given time. While we do not explicitly model person-

to-person transmission within the model (for reasons stated above), we may use model predictions

on the state of health to examine whether someone getting infected at time t within a given dorm

raises (or lowers) the incidence of infection of other students in the study who lived in the same

dorm (and more specifically, on the same dorm floor). For example, an infected neighbor in a dorm

may heighten awareness of the danger of pathogen transfer, yielding phenomenon like that associated

with the exposure to novel H1N1 (heightened awareness, and hence precautions). We examine this

issue in detail, as a function of the type of virus associated with each index case (with virus type

imperfectly determined via RT PCR).

• We examine and analyze real-world characteristics of daily self-reported symptom data. This includes

day-of-the-week dependent phenomenon in the data (weekly, semi-periodic effects), and connections

to data missingness.

• We examine the utility of using symptoms alone for classification of the latent state S/I , with

comparisons to RT PCR. This is of clinical relevance, as clinicians typically make a diagnosis

based directly on symptoms. We also examine the presence of non-symptomatic individuals who

are shedding the virus. Further, we examine cases for which symptoms are clear, but extensive RT

PCR testing is negative.

III. BASIC MODELING SETUP

A. Observed symptoms and the latent state of health

Assume access to self-reported data from N individuals, provided daily over multiple months. The

data correspond to the strength of various infectious-disease-related symptoms, reported separately by

each of the N students. Eight symptoms are recorded: nasal discharge, nasal congestion, sneezing, cough,

malaise, throat discomfort, fever and headache. Each of the eight symptoms is reported on an ordinal

scale, from 0 to 4, with 0 being no symptoms, and 4 “maximum” symptoms. Before the study each

of the students is instructed on how to connect perceived symptoms to this scale. Nevertheless, there

is clearly subjectivity to the mapping from perceived symptoms to ordinal data, and this subjectivity

should be accounted for in the statistical analysis. We note that such subjectivity is always present when
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individuals report symptom severity to a doctor or nurse.

Let ynt ∈ {0, . . . ,M}J represent the J symptom scores reported by individual n ∈ {1, . . . , N} on

day t, where for our study J = 8 and M = 4; we use generalized notation because the basic modeling

strategy may be applied to other types of related data. It is assumed that, at a given time, individual n is

either in an infective state I or in susceptible state S. When in state S, the student is not currently sick

from a virus, and therefore does not display ILI symptoms; however, the student is assumed susceptible

to virus infection. When in state S, different individuals may have distinct levels of susceptibility to

virus-borne illness, and this is accounted for in the model. We have tied state I to symptoms, as is

common [1], [2], [3], [4], [5], [6]. However, there are asymptomatic individuals who shed virus [11] and

hence are in the infective state I; these individuals are identified and discussed when presenting results.

We employ an ordinal probit model to link the J observed symptoms to the latent state. Specifically,

consider rit ∈ RJ , drawn conditioned on the latent state as

rnt|znt ∼ N (µznt
,Σ−1znt

) (1)

where znt = S or znt = I . Let rnjt represent the jth component (symptom) of rnt, and ynjt similarly

represent the jth component of ynt. The mapping from real rnjt to ordinal ynjt is manifested via a

traditional probit model as

ynjt = m if τj,m−1 < rnjt ≤ τj,m (2)

where each τj,m ∈ R, τj,m−1 < τj,m, τj,−1 = −∞, τj,0 = 0, and τj,M = ∞. We wish to infer

{τj,1, . . . , τj,M−1}, with this performed by considering an improper uniform prior on τj,1 < · · · < τj,M−1

[25]. Uniform improper priors result in proper posterior distributions under mild conditions, as detailed

in [25], yielding practically useful sufficient conditions that are met in our study. As discussed in the

Appendix A, for identifiability purposes the covariance matrices Σ−1S and Σ−1I are restricted to correspond

to correlation matrices [26], with diagonal elements all equal to one.

Note that we assume that the statistics of the symptoms for the infective individuals, characterized by

N (µI ,Σ
−1
I ), are independent of the length of time in which the individual has been in state I . This is a

modeling simplification, and one may also link the symptom statistics to the length of time the subject

has been in the infective state. The variability in the symptom scores within a given state, characterized
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by µI and ΣI , account for variability in how a given individual maps perceived symptom strength to

ordinal values. Further, ΣI accounts for variability in symptom strength across an extended period of

infection (typically from weak, to strong, and back to weak symptoms over the period of infection).

B. Semi-Markov latent-state dynamics

The probability of individual n transiting from a state of susceptibility at time t− 1, zn,t−1 = S, to a

state of illness/infection at time t, zn,t = I , is modeled as

p(zn,t = I|zn,t−1 = S) = Φ(γnt) (3)

where Φ(x) =
∫ x
−∞ dηN (η; 0, 1) is a cumulative distribution function, with N (η; 0, 1) a normal distri-

bution function for variable η, characterized by zero mean and unit variance (probit transition statistics).

The model of the time-evolving variable γnt ∈ R is discussed in Section III-C. Related forms of time and

covariate dependent probabilities of community-to-person transfer have been considered in [6]; however,

in that work, and much of the literature, the state S or I was assumed observed, where here the state is

latent and is to be inferred upon the observed symptoms.

If individual n transits from zn,t−1 = S to zn,t = I , then it is assumed that zn,t+d = I for 0 ≤ d ≤ Dnt,

where Dnt is a random variable defining the number of days of infection. We employ the model

Dnt = c+ D̂nt , D̂nt ∼ Pois(λn) (4)

where c > 0 is a minimum number of days infected, and the rate parameter λn is assumed drawn from

a gamma distribution. We discuss setting c when presenting experimental results; the imposition of a

lower bound c on the number of days of being infected (i.e., in the state I) helps distinguish isolated

days when one may not feel well, for various reasons, from actual extended periods of infection.

In [1] the length of time Dnt in state I was a real random variable, and was drawn from a gamma

distribution. Here we observe discrete temporal data (days), and employ Poisson random variables for the

length of time in state S; the lower bound c assures that we are not undermined by draws from Pois(λn)

that could be equal to zero.
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C. Modeling the time-dependent probability of becoming infected

The time-evolving parameter γnt, in concert with a probit link function, defines the probability with

which one transits from a susceptible to infective state. We model this time-evolving parameter via four

terms:

γnt = an +

3∑
i=1

γ
(i)
t (5)

with γ
(1)
t modeling the general trend within the population to become infected, γ(2)t is associated with

periodic (weekly) effects characterizing unique aspects of the day of the week, and γ(3)t is a regression

term. Concerning γ
(3)
t , we specifically perform regression to the Google Flu Trends data. Note that

{γ(i)t }i=1,3 are independent of the individual index n, and are therefore shared across the population.

The term an ∈ R is an individual-dependent tendency to get infected, which we place a normal prior on

(when an is large and positive the nth individual has a heightened susceptibility toward illness, with the

opposite true when an is negative with large magnitude).

The model in [6] also imposed covariate-dependent state-transition statistics. However, the length of

the data considered in that study, and in most of the literature, precluded the need to consider semi-

periodic terms. Further, most such models are not performed at the level of symptoms, and therefore they

do not have to address semi-periodic missing data phenomenon, and other characteristics of the symptoms.

1) General-trend term: An autoregressive model is employed for γ(1)t :

γ
(1)
t ∼ N (ωγ

(1)
t−1, β

−1) (6)

where a gamma prior is placed on β and ω ∈ (0, 1) is drawn from a truncated normal distribution,

ω ∼ N(0,1)(µω, σω). This imposes that the time dependence of the general trend toward illness varies

smoothly.

2) Weekly or periodic term: The observed data are characterized by clear dependencies on the day

of the week on which symptoms are reported. The day of the week may impact general feelings of well

being (Monday vs. Friday), and certain portions of the week may be characterized by heightened student

workload, stress, and lack of sleep/exercise. A seven-day semi-periodic term is therefore employed to

model γ(2)t . This term builds upon modeling strategies discussed in [16] (Chapter 8.6); for completeness,

we here provide some details.
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Using notation from [16], the unique terms of a periodic function may be represented in terms of ϕj ,

for j = 0, . . . , p− 1, where p is the period of the weekly/repeating term (for our problem p = 7, for the

days of the week). Basic Fourier analysis dictates that

ϕj = a0 +

h∑
r=1

[ar cos(αrj) + br sin(αrj)] = a0 +

h∑
r=1

Sr(j) (7)

where h is the largest integer not exceeding p/2, α = 2π/p, and ar ∈ R and br ∈ R are Fourier

components. One may readily demonstrate that

Sr(j) = eTθr(j) , θr(j) = J(αr)θr(j − 1) (8)

where θr(0) = (ar br)
T , e = (1 0)T and J(w) =

 cos(w) sin(w)

− sin(w) cos(w)

.

Generalizing (8) to the stochastic case, and motivated by a dynamic linear model (DLM) [16], the

time dependence of the rth Fourier component within a particular time period is modeled as

Sr(j) = eTθr(j) + νr(j) , θr(j) = J(αr)θr(j − 1) + εr(j) (9)

where the components of the two-dimensional vector εr(j) are drawn εr(j) ∼ N (0,Σ−1θr ), and νr(j) ∼

N (0, ζ−1Sr ), with a gamma prior placed on ζSr and a Wishart prior on Σθr. The term εr(j) models noise

in the Fourier components over a given time period, and νr(j) represents measurement noise.

A prior is placed on θr(0), corresponding to the Fourier components over the first week of data, and

then (9) is repeated cyclically over the multiple weeks, through sequential draws of {νr(j)} and {εr(j)}.

Note that with the zero mean priors on {νr(j)} and {εr(j)}, conditioned on θr(0), the expectation of

(9) corresponds to (8). A zero-mean normal prior is placed on θr(0), for each r. With Sr(j) so drawn,

one may superpose the Fourier components to constitute γ(2)t ; for the weekly data under consideration,

there are h = 3 Fourier components, in addition to the mean a0.

3) Regression term: Assume that we have access to a time-dependent covariate ft, which in our

problem corresponds to the Google Flu Trends [17] data for the region in which the individuals under
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study reside. The regression term is modeled as

γ
(3)
t ∼ N (ξft, α

−1
f ) (10)

where a zero-mean normal prior is placed on ξ and a gamma prior is placed on αf .

IV. ADDITIONAL MODEL CONSIDERATIONS

In the previous section it was assumed that the parameters λn and an were drawn i.i.d., with the former

controlling the length of time individual n tends to be in an infective state, and the latter controlling

the tendency of individual n to get infected. The parameter an has the impact of controlling the degree

to which one is susceptible to virus, and hence to transition from state S to I (large an implies higher

susceptibility).

It is anticipated that individuals may cluster in terms of their (e.g., genetic or behavioral) tendency

to get infected, and in the length with which they stay infected. It is desirable to account for this in

the model (it allows sharing of statistical strength between individuals). Additionally, for the dataset that

motivates this paper, we have access to the residence location of each student, and therefore it is possible

to use this spatial information as a covariate. For example, one may consider the spatial location of each

student when modeling the time-dependent tendency to get infected, via including spatial information in

γ
(1)
t , for example. Other modeling issues discussed below include consideration of missing data, and the

joint modeling of data from multiple years.

A. Clustering tendency toward infection, and length of infection

A natural means of clustering λn and an is to employ a Dirichlet process, with which the number of

clusters may be inferred nonparametrically. Specifically, we draw

λn ∼ Gλ , Gλ ∼ DP(α0λG0λ) (11)

an ∼ Ga , Ga ∼ DP(α0aG0a) (12)

where the base measures G0λ and G0a correspond, respectively, to gamma and normal distributions.

Gamma priors are placed on the DP parameters α0λ and α0a.
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B. Spatial covariates

As indicated above, for the motivating data, we have knowledge of the residence location (dorm room)

of each individual (student), and therefore it is possible to exploit spatial information when modeling the

general trend toward being infected, reflected in γ(1)t . One could also consider utilizing spatial information

when modeling the weekly (semi-periodic) term γ
(2)
t and the regression term γ

(3)
t , but spatial dependencies

for these terms are less well motivated.

In our numerical experiments, we considered assigning a separate γ
(1)
t for each floor of a dorm.

In this case all students on a given floor shared the same floor-dependent variant of γ(1)t (i.e., rather

than sharing a single γ(1)t across all students, a separate such term was employed for each door floor).

We also considered assigning a separate term of the form γ
(1)
t to each dorm (i.e., all residents in a

given dorm, independent of floor, shared the same γ(1)t ). In our experiments, we found that such added

modeling complexity did not improve the predictive performance of the model, and in some cases reduced

performance (since the students were spatially segregated in these tests, fewer students were associated

with a particular floor/dorm-dependent γ(1)t , and therefore statistical strength was diffused). There did

not appear to be clear situations for which a given dorm or specific dorm floor had a greater tendency

toward health (state S) or sickness (state I) than the general population. A potential reason for this is that

students spend a significant portion of their time away from their dorm, in classes and other activities,

mixing with the general population.

For these reasons, for the results below we do not explicitly leverage spatial covariates for student

dorm rooms within the model. However, when presenting results we will examine some of the inferred

parameters in the context of student residency location.

C. Missing data

There is a substantial quantity of missing data in self-reported studies, and it is anticipated that the

missingness is not at random. It is likely that individuals are less likely to pay attention to reporting

symptoms when they are feeling well, with greater attention paid during the time of actual illness. If

data are missing from individual n on day t, the “observations” are denoted ynt = ∅. The probability

of the null observation in states S is defined as η ∈ (0, 1), and the probability of a null observation in

state I is ρ ∈ (0, 1). We now consider the case of missing data a null observation, and the observation
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probability for symptom j, individual n and day t is generalized to [27]

ynjt|S ∼ [ηδ∅ + (1− η)
∑M

k=0 p(ynjt = k|S)δk] (13)

ynjt|I ∼ [ρδ∅ + (1− ρ)
∑M

k=0 p(ynjt = k|I)δk] (14)

where p(ynjt = k|S) and p(ynjt = k|I) are the observation probabilities from Section III-A (assuming

symptoms are not missing); the symbol δk is a unit measure concentrated at the point k. It is assumed

that η and ρ are drawn from uniform priors over [0,1].

D. Modeling multiple years of data

The experiments detailed in Sections II and V correspond to (ideally) daily student recording of

symptom scores, over an entire academic year; imperfections in this process naturally manifest missing

data. Data of this type were collected over three academic years. It is desirable to analyze all of these

data jointly, to achieve maximal statistical strength in the results. However, because of the influx of new

(freshman) students, and the exit/graduation of others (seniors), the explicit set of students considered on

consecutive years is largely distinct. Additionally, each year is characterized (for example) by a distinct

respiratory viral illness season, and this must be accounted for when deciding which components of

the model to share between multiple years. For example, one of the years during which we collected

data corresponded to the presence of an unusual (and potentially dangerous) novel H1N1 flu, which had

characteristics (e.g., time of arrival) distinct from typical flu seasons.

So motivated, in the experiments that follow, the explicit {γ(1)t , γ
(2)
t , γ

(3)
t )} are modeled as being

distinct among the three years of data. However, the priors on parameters with which these time-dependent

functions are constituted are shared across years. Specifically, for the AR(1) model of γ(1)t , the priors for

ω and β are shared across the multiple years of data. For γ(2)t , the parameters Σθr and ζSr are shared

across years, as is the prior on θr(0). Finally, for γ(3)t , the priors for ξ and αf are shared across the

multiple years.

Concerning λn and an, the DP-drawn priors Gλ and Ga are shared across the multiple years, and

therefore the clustering of types of people (by susceptibility toward illness, and length of illness) is

performed jointly across the multiple years. Finally, concerning the observed symptoms, the parameters

{µS ,µI ,ΣS ,ΣI} are shared across the multiple years, as are the ordinal probit cut points

{τj,1, . . . , τj,M−1}j=1,J , and η and ρ (for missing data).

15



V. RESULTS

The modeling software was implemented in MATLABTM. On a laptop with a 2.7 GHz dual core CPU,

each Gibbs iteration takes about 30 seconds, to process all three years of data. We considered 7000

MCMC samples, with the first 2000 discarded as burn-in.

A. Symptom correlation

The inferred correlation matrix Σ−1I for the infective state is shown in Figure 1, where here we present

the maximum a posteriori MCMC collection sample. As expected, all symptoms are relatively highly

correlated within the infective state, with minimum correlation between any two symptoms in excess

of 0.65 . Note that nasal discharge and nasal congestion are particularly highly correlated, as are throat

discomfort, malaise and cough.

We apply the following approach to help the model distinguish between states S and I , imposing a

strong identifiability condition. Based upon the model construction above, the only way states S and I

are distinguished is via a requirement that an individual remain in the I state for a minimum of c days.

Based on expertise of the infectious disease medical doctors who are co-authors on this study, we set

c = 3 days, consistent with the minimum length of time one would be anticipated to manifest symptoms

due to infectious disease of the type associated with common viruses. In addition, recall from Section

II-B that a subset of the subjects within the study were confirmed via RT PCR and/or gene-expression

analysis to be ill due to a virus. A small subset of these infective individuals had their data removed from

the subsequent analysis, and the correlation between the symptoms of this subset of confirmed cases were

used to set the hyperparameters in the prior for ΣI . This setting of the model parameters significantly

distinguished the S and I states, yielding interpretable results.

B. Example student trajectories and inferred diagnoses

For each individual in the study, as a function of time (day), we infer the probability that the student

is in state I (i.e., that they are sick). To demonstrate this, and to give a sense of the reported symptom

scores, in Figure 2 self-reported data and the inferred probability of being in state I are depicted for four

example individuals; the order of the symptoms (1-8, top to bottom) in Figure 2 is consistent with the

order of the symptoms in the correlation matrix of Figure 1. In Figure 2, based upon averaging across all

MCMC collection samples, we plot the probability the individual is in the infective state I , for each day.
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Fig. 1. Inferred correlation matrix for infective state I , Σ−1
I , with the approximate MAP solution depicted, corresponding to

the maximum a posterior collection sample.

The results in Figure 2 are based upon a joint analysis of all self-reported symptom-score data, across

all three years.

The inference of the state of health of the subjects in Figure 2 is illustrative of model prediction over

all time, the results of which provide interpretable values for analysis of infectious disease. However,

in a clinical setting one would like to make a prediction about the health of an individual based on all

symptoms up to the current point in time (not based on all data, even into the future). We utilize the

model for this practical purpose in Section V-F.

C. Characteristics of missing data

TABLE I
SUMMARY ON PROPERTIES OF STUDENT REPORTING FREQUENCY AND ASSOCIATED REPORTED SYMPTOM SCORES. THE

AVERAGE SYMPTOM SCORE REPORTED IS THE AVERAGE OF THE sum OF THE SCORES FOR EIGHT SYMPTOMS.

Missingness 0-20% 20-40% 40-60% 60-80% 80-100%
# Students 22 158 303 178 205
Avg. Symp. Score 2.67 2.22 2.64 3.27 4.33
Avg. Sick Prob. 0.12 0.11 0.15 0.2 0.32
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Fig. 2. State of health of four students. For each student, self-reported symptom scores are shown in the top figure. Different
colors denote different scores (missing, 0, 1, 2, 3, 4). The probability that a student is in an infective state I at a given time is
presented in the bottom subfigure for each of the four students.

In Section IV-C we proposed a model for the missing data. Specifically, it was assume that if a student

is in the susceptible state, S, they do not report symptoms (which are likely negligible) with probability

η, thereby manifesting missing data. By contrast, when in the infective state I , it is anticipated that one

may be more likely to report symptom scores (which are non-negligible, by definition); the probability

of not reporting when in state I is represented by ρ (see Section IV-C). Within the analysis, we inferred

a mean η = 0.65, with standard deviation of η equal to 0.01 (reflecting the uncertainty in this parameter

from the approximate posterior); the inferred mean for ρ was 0.28, with standard deviation 0.03. Hence,

the model infers that when a student is in state S (healthy), a student doesn’t report any symptoms 65%

of the time, while when in state I (sick) the students don’t report symptoms 28% of the time.
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Fig. 3. Fraction of missing data over days. From top to bottom are the results for academic year 2009-2010, 2010-2011 and
2011-2012. The gray bars reflect, from left-to-right, Thanksgiving break, Winter/Christmas break, and Spring break.

In Table I we show data on the characteristics of student reporting and associated symptom scores. In

this table is depicted the percentage of days students didn’t report data, and the number of such students

in each class of missingness. Note that the largest group of students, with 303 members, did not report

symptoms on 40-60% of the days. For each class of missingness, we also report the average reported

symptom score, recalling that the values were 0 to 4, with 4 the largest/strongest symptom (eight different

symptoms are considered). Note that the average symptom score is particularly large for those students

who report data infrequently, and the probability that students are in state I when reporting is heightened

for the group that rarely reports. The data in Table I motivates the model in Section IV-C, in which the

degree of missingness is assumed to be linked to the latent state of health.

In Figure 3 we show the fraction of students who do not report symptoms (fraction of missing data),

as a function of day for each of the three years of the study. There is clearly a weekly semi-periodic

effect, which has motivated the term γ
(2)
t in the model. This is discussed further in Section V-G below.
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D. Virus infection probability over time

We examine the probability of being in the infective state for students living in proximity to infective

individuals. As mentioned in Section II-B, RT PCR test results are available for 897 samples (each from

an individual student, and infection case), for the set of viruses discussed in Section II-B. If a positive

RT PCR-based virus detection occurred for a given student, that student was deemed to be in an infective

state (note that, with RT PCR, most sources of error occur with false negatives, so a positive RT PCR test

does have a high chance of actually corresponding to someone infected with a virus – this is discussed

further below).

Fig. 4. Top figure: Probability of being in the infective state I on a given day, for academic year 2009-2010. “All” refers to the
average across all the students. “SDSF” refers to the average of students living in the same dorm and same floor with infective
individuals. “SD” refers to the average of students living in the same dorm with infective individuals. The vertical gray bars
represent, from left-to-right, Thanksgiving break, inter-semester (Winter/Christmas) break, and Spring break. Bottom figure: RT
PCR test results, black line denotes at that time certain type of virus was detected.

We wish to examine the probability of whether a student is in state I , relative to that student’s living

conditions with respect to another student who had a positive RT PCR test. Specifically, assume that a

given student has a positive RT PCR test. Over a period of a week after that positive RT PCR test, we

examine the probability of being in an infective state for all students who shared a dorm with the student

confirmed by RT PCR as being in state I . We also examined the probability of being in state I for all

students on the same dorm floor (not just the same dorm) of a student confirmed by RT PCR as being

infected, again for a week after RT PCR confirmation. When multiple instances overlap in time (multiple
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Fig. 5. As in Figure 4, for academic year 2010-2011.

Fig. 6. As in Figure 4, for academic year 2011-2012.

positive RT PCR tests), average results are presented across those multiple instances.

To be precise, let X represent a particular set of students (e.g., a set of students in the same dorm of a

RT PCR-confirmed infective student, or a set of students on the same dorm floor of a RT PCR-confirmed

infective student). Let |X | represent the number of individuals in this set. Then we are interested in

computing SX = 1
|X |

∑
n∈X p(znt = I|ynt), where p(znt = I|ynt) is computed from our model. This

21



Fig. 7. Top figure: Probability of being in the infective state I on a given day, for academic year 2009-2010. “All” refers
to the average across all the students. “SDSF” refers to the average of students living in the same dorm same floor with an
infective individual. “SD” refers to the average of students living in the same dorm with an infective individual. The SD and
SDSF cases are only for confirmed cases of Rhinovirus. The vertical gray bars represent, from left-to-right, Thanksgiving break,
inter-semester (Winter/Christmas) break, and Spring break. Bottom figure: RT PCR test results, black line denotes at that time
Rhinovirus was detected.

Fig. 8. As in Figure 7, for academic year 2010-2011.

provides a means of examining the inferred degree of enhanced probability of becoming ill with virus,

given a nearby confirmed case (recognizing the imperfections in our p(znt = I|ynt), most notably that

one may become sick for other reasons than virus transfer). Such that we have enough individuals in a

given set to make this investigation meaningful, we only consider cases for which |X | ≥ 5; e.g., when

examining propagation of infectious disease on a dorm floor, we only consider cases for which 5 or more

students within the study live on the same floor.
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Fig. 9. As in Figure 7, for academic year 2011-2012.

Fig. 10. Top figure: Probability of being in the infective state on a given day, for academic year 2009-2010. “All” refers to
the average across all the students. “SDSF” refers to the average of students living in the same dorm and same floor with an
infective individual. “SD” refers to the average of students living in the same dorm with an infective individual. The SD and
SDSF cases are only for confirmed cases of Influenza A. The vertical gray bars represent, from left-to-right, Thanksgiving break,
inter-semester (Winter/Christmas) break, and Spring break. Bottom figure: RT PCR test results, black line denotes at that time
Influenza A was detected.

To summarize the form of the results, in Figure 4 are shown results for the 2009-2010 academic year.

On the bottom of Figure 4, a black bar represents the presence of a RT PCR-confirmed virus of noted

type. At the top in Figure 4 is shown the average probability of being in the infective state, under three

circumstances. In red are shown results for all students and all times, and therefore in this case X denotes

the set of all students. The blue curve corresponds to the case for which X corresponds to the set of

students from the same dorm and same floor (SDSF) of a RT PCR-confirmed case. Finally, for the black

curve, X corresponds to the set of students in the same dorm (SD) of a RT PCR-conformed case. Unlike
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Fig. 11. As in Figure 10, for academic year 2010-2011.

the case of all students (red), for the cases of SDSF and SD the curves are not shown at all times, because

we only look within a window of seven days after a RT PCR-based detection, and in some cases there

are no data (e.g., a given RT PCR-confirmed student doesn’t have a sufficient number of students in the

study on the same floor, or there were no RT PCR-confirmed detections in the last seven days).

From Figure 4, we typically see the following trend. If a student gets sick (is in state I) within a given

dorm, from one of the specified viruses, then over the proceeding seven days the average probability of

students within the same dorm (SD) will have a heightened probability of being in the infective state as

compared to the general student population. Moreover, if a student gets infected, within a week students

on the same dorm floor (SDSF) typically have, on average, an even higher probability of being in the

infective state. This is not always true, but it seems to be a fairly common situation.

In Figures 5 and 6 results are shown in this same format as in Figure 4, for the 2010-2011 and 2011-

2012 academic years, respectively. Given the relatively small number of RT PCR-confirmed cases relative

to the total population size, it is difficult to make strong conclusions from Figures 4-6. There are periods

in which being on the same dorm as an infective student clearly manifests increased probability of being

in the infective state, over a subsequent 7 day period, but during other times this trend is not evident

(e.g., during the 2011-2012 academic year). One interpretation is that the presence of dorm colleagues

who are sick may heighten attention to protecting oneself, through hand washing, etc. Therefore, from

this perspective, the presence of a sick student may actually encourage more-healthful behavior in others.

24



To examine this issue from a finer perspective, we now examine these same types of curves, but for

two specific viruses: Rhinovirus and Influenza A. Rhinovirus is associated with the “common cold,” and

therefore it is a virus that all students will come in contact with, in and outside their dorm. Therefore,

in the case of Rhinovirus, the connection to the dorm, and who is infected there at a given time, may be

more tenuous (students will come in contact with Rhinovirus and associated infective students in their

classes, and other activities outside their dorm). Influenza A occurs more rarely, and therefore if someone

is confirmed as infected with Influenza A, it is anticipated that students within the same dorm (SD) and

same dorm floor (SDSF) may be at higher risk of infection.

In Figures 7-9 we show results like discussed above, but now for the SD and SDSF cases we

only consider situations in which there was PCR-confirmed Rhinovirus-induced illness. For the case

of Rhinovirus, we generally observe that if in the same dorm (SD) or on the same dorm floor (SDSF),

when a given student is infected his/her dorm neighbors have a heightened probability of being in the

infective state over the next week. However, there are cases for which this is not the case, which indicates

that for Rhinovirus transmission activities outside the dorm may be as or more important that the degree

of infection within the dorm.

In Figures 10-11 similar results are shown as above, but now only Influenza A is considered for the SD

and SDSF cases. There are fewer Influenza A cases than Rhinovirus, so conclusions must be drawn with

care. Nevertheless, for the case of Influenza A, the SD probability of being infected within a week of a

confirmed Influenza A case is heightened relative to the general population, and the SDSF is generally

further heightened. Note that in many cases, after roughly 5 days from a confirmed Influenza A case,

the SD/SDSF probability of being infected is less than that of the general population; right after the

confirmed Influenza A case the SD/SDSF probability of being infected increases, but then it diminishes

relative to the general student population (e.g., see the case in November 2009, in Figure 10). This

phenomenon may be attributed to acquired immunity, after being infected.

An interesting phenomenon is observed in Figures 7-9, when considering the probability of being in

an infective state for all of the students (red curve). Note that when the students come together at the

beginning of the school year, and after the long Winter break, a general increase in the probability of

being in an infective state is observed. Note that at the beginning of the school year, this is particularly
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evident in the 2010-2011 year (Figure 8), and in 2011-2012 (Figure 9). Therefore, in Figure 8 and 9

the students are coming together for the first time at the beginning of the school year, from all over the

United States, and from many other countries across the world. This phenomenon of increased probability

of infection as students come together for the first time, or after extended break, may be associated with

the general spread of infectious disease caused by a new mix of people, as been observed previously in

the literature [12], [13].

Note that Figure 7 for 2009-2010 has temporal dependence (red curve) that is distinct from 2010-2011

and 2011-2012 (respectively Figures 7-8). This may be attributed to the fact that the 2009-2010 academic

year was the year of the novel H1N1 virus, and significantly heightened on-campus attention to protecting

oneself from virus transfer. These results seem to indicate that the heightened attention to viral transfer

manifested by the novel H1N1 virus had a significant impact in reducing the probability of students

transiting from the S to I state (not just from H1N1 virus, but from all viruses), when compared to two

years in which such attention to viruses was far more muted on campus.

E. Classification performance based on symptoms

In the above results, we considered the average probability that students were in state I at a particular

point in time. We wish to now examine the accuracy of the prediction of infection, relative to an objective

“truth.” To do this, we considered all 897 individuals for whom RT PCR-based virus-identification was

performed (for a subset of these, for which the RT PCR test was negative, confirmation gene-expression

analysis was also performed).

In our study there were two reasons a given student could have a RT PCR test performed: (i) based

upon their self-reported data, a doctor in (near) real-time determined that they were infected, and therefore

they were contacted for acquisition of a sample; (ii) a given individual was a close contact of a person

who was sampled in the case of (i). Therefore, for the close contacts, the student may not be in an

infective state at the time of sampling, either because there was no disease transfer, or because the onset

of illness was manifested at a later time.

Based upon the symptoms, and the doctor-based diagnosis, all individuals in case (i) above are defined

as being in the infective state, essentially by definition (these students were only contacted because their

symptoms were deemed above a threshold of illness). For the close contacts, all individuals for whom the
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Fig. 12. Left column: ROC curve. Right column: Top figure is the symptom scores of students who are healthy (in state S)
but labeled infective (in state I) with high probability by the model. The bottom figure shows the symptom scores of students
who are infective (in state I) but labeled healthy (in state S) by the model. The order of the symptoms (1-8, top to bottom) is
consistent with the order of the symptoms in the correlation matrix of Figure 1.

RT PCR test was negative will be deemed as healthy (in susceptible, S) state, and all others were deemed

to be in the infective state (the RT PCR test may miss some infected people, which the gene-expression

analysis can pick up, and this issue is discussed when presenting results).

The receiver operating characteristic (ROC) curve is manifested by thresholding p(znt = I|−), and is

shown in the left column of Figure 12. Note that the model achieves a 90% detection rate at a false-alarm

rate of 15%. However, the quality of the ROC is undermined by imperfections in the definition of “truth.”

People who are sick as a result of illnesses other than virus will deemed as healthy in the truth (negative

RT PCR test), but in reality they are sick. Another source of errors are manifested by positive RT PCR

tests for the presence of virus, but the individual shows no symptoms – these are termed “shedders” in

the medical community [28]. These individuals are carrying the virus, and shedding the virus, but they do

not show any symptoms. The RT PCR test will deem these individuals as being in the infective state I ,

but from the standpoint of symptoms, which is what our analysis considers, these people are not infected

(there are no symptoms present that would allow one to declare they are infected, based on symptoms

alone).

In Figure 12, left, note (a) the presence of many false alarms before any detections are achieved (left-

most part of the ROC), and (b) after a probability of false alarms of about 0.35, the detection probability

27



is stuck at around 0.95, until the very rightmost part of the ROC. Concerning (a), on the top-right of

Figure 12, we show the symptom scores for the ten students who characterize the individuals detected

as being infected, but RT PCR deems as being healthy, or in state S (the false alarms at the beginning

of the ROC). Based upon the symptoms (right in Figure 12), these students are almost certainly sick

due to some cause other than virus, or because of limitations of the RT PCR test (e.g., poor samples, or

because the illness was caused by a virus other than that tested by the RT PCR).

At bottom-right in Figure 12 is shown the symptom scores of students who were deemed infective

via RT PCR, but our model deemed as healthy, based upon the symptoms. We see that the symptoms of

these students are indeed very mild, or absent. These individuals were likely carrying a virus that was

tested, and that was detected via RT PCR. However, these individuals were likely recently infected with

the virus, and still carrying it, but no longer infected. Alternatively, these individuals may have been

asymptomatic shedders.

Gene expression data were available for 6 of the individuals considered at right in Figure 12. In all of

these cases, the gene-expression analysis was able to confirm the labels inferred by our algorithm based

on symptoms.

F. Online prediction of health

The results in Figure 12 on predicting the state of health were based on all of the self-reported data,

at all times for which data were reported. Of course, in a clinical setting a clinician must predict the

state of health only based upon symptoms up to the point at which a diagnosis is made. It is desirable

to predictive probability that a particular student is in state I on day t+ 1, based on symptom scores up

to day t.

Let yt1 = {y1, ..., yt} represent the symptom scores up to time t for the student in question. The

probability that the student is in state I on day t+ 1 may be expressed as

p(zt+1 = I|yt1,Ω) =

∑Dmax

dt+1=1 p(zt+1 = I, dt+1, yt1|Ω)∑Dmax

dt+1=1 p(zt+1 = I, dt+1, yt1, |Ω) + p(zt+1 = S, yt1|Ω)
(15)

where p(zt+1 = I, dt+1, yt1|Ω) represents the joint probability of data yt1, that the student is in state I on

day t+1, and that they are in day dt+1 of being infected; dt+1 ∈ {1, .., Dmax} is the number of days left
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Fig. 13. The top figure is the symptoms scores for students at time t+ 1 (can be considered as “truth”). The middle figure is
p(znt+1 = I|yt

n1,−), the predictive probability that a given student is in the infective state at t + 1. The bottom figure is the
probability that students stay in infected at t+1 given all the data. The order of the symptoms (1-8, top to bottom) is consistent
with the order of the symptoms in the correlation matrix of Figure 1.

in infective state at time t + 1. p(zt+1 = S, yt1|Ω) represents the joint probability of the data and being

in the susceptible state S. In both cases, Ω represents model parameters learned from data up to day t.

The details for calculating p(zt+1 = I, dt+1|yt1,Ω) and p(zt+1 = S, yt1|Ω) are provided in Appendix B.

In this experiment, the first two years of data, and the third year of data up to day t = 140 are

employed to learn Ω (these are typical results for many values of t selected in Year 3). In Figure 13 are

shown the model predictions for all students in Year 3 (2011-2012), where in Figure 13 the students are

ordered from left to right from the most to least probable of being in state I on day t + 1. At the top

in Figure 13 are shown the symptoms reported on day t+ 1 (for those for whom scores were provided),

and it is evident that the individuals who are deemed most likely to be in state I on day t + 1 (based

on data up to day t) tend to have the strongest symptoms on that day. In the middle in Figure 13 is

shown the probability of being in an infective state on day t+ 1, based on data up to day t. Finally, the
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bottom part of Figure 13 shows the probability of being in an infective state on day t+ 1 based on all

of the data. Note that there is generally good agreement (middle and bottom figures) on which students

are most likely to be in the infective state on day t+ 1.

G. Breaking out model components

In Figure 14 are plotted the posterior mean of the general trend terms γ
(1)
t for academic years

2009 − 2010, 2010 − 2011 and 2011 − 2012; the error bars reflect one standard deviation (estimated

from the Gibbs collection samples). The weekly parameter γ(2)t is displayed in Figure 15. In this figure

the weeks are identified, with the beginning of a week defined here as Monday. We observe the that the

weekly pattern (impacting the probability of transiting from healthy to infective state) is typically peaked

at either Wednesday or Thursday, and tends to be smaller around the weekend. This is possibly reflective

of the fact that students are more likely to report symptoms during the school week than they are on

the weekend, when they may be distracted by funner activities. Of course, another interpretation is that

the probability that the students will feel infected/sick is diminished during the weekend, relative to the

middle of the week, when they may be under greater stress.

Recall Figure 3 from above, which depicts the degree of missingness on average as a function of

days. By construction, heightened missingness is deemed associated with health, and weekends tend to

be periods of high missingness. Whatever the cause of the weekly effects (student laziness/distraction or

actual health), model interpretation may be improved by removing this effect. We consider this below.

In Figure 16 we show γ
(3)
t associated with the Google Flu Trend data. In this plot we show the mean

and one standard deviation, again from posterior collection samples. The posterior distribution in this

term is manifested by the posterior distribution on ξ, as the total term is ξft, and f(t) represents the

deterministic/observed Google FluTrends (for the city of Durham, NC). Note that the contribution of the

Google Flu Trend term is relatively small (large mass concentrated around zero, particularly for the first

two years), which implies that the spread of infectious disease among students on the Duke University

campus is a relatively isolated ecosystem, distinct from the city and community of Durham used here

for ft.

In Figure 17 we depict the inferred probability of transiting from state S to state I , as a function

of day, for each of the three years of the study. The data were analyzed using all components of the
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Fig. 14. General trend term γ
(1)
t . From top to bottom are the results for academic year 2009-2010, 2010-2011 and 2011-2012.

The error bars reflect one standard deviation. The gray bars reflect, from left-to-right, Thanksgiving break, Winter/Christmas
break, and Spring break.

model. However, after this analysis, to remove the effects of the weekly term, we show the model-inferred

probability of transiting from S → I , and with the weekly term removed. It is interesting to examine

the red curve in Figure 17, in which the weekly effects are removed. Recall that the 2010-2011 and

2011-2012 academic years were distinct from 2009-2010, as the latter was associated with the novel

H1N1 virus. Note that at the beginning of the academic year in 2010-2011 and 2011-2012, there is

a clear increased probability of getting infected within the first month or so the students are together,

presumably a mixing effect [12], [13] caused by interactions of many people who have never met before,

coming from all over the United States, and also from outside the United States. It appears that the

heightened attention to viruses (from the alarm associated with novel H1N1) dampened this phenomenon

in 2009-2010. During the first semester of 2009-2010, when there was so much attention to viruses on

campus, there is a noticeable decrease in the probability of transiting from state S to I , after the weekly

effects are removed (relative to 2010-2011 and 2011-2012).
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Fig. 15. Weekly or semi-periodic term γ
(2)
t . From top to bottom are the results for academic year 2009-2010, 2010-2011 and

2011-2012. The gray bars reflect, from left-to-right, Thanksgiving break, Winter/Christmas break, and Spring break.

VI. CONCLUSIONS

A statistical model has been developed for analysis of the time-dependent symptom scores provided

by a large group of undergraduate college students. Unlike almost all studies of data related to infection

transfer, the model has operated directly on the observed symptoms, and the state of the students were

assumed to be latent. The community-to-person mechanism for pathogen transfer has been modeled

in terms of a SIS analysis, and computations have been performed using Bayesian (MCMC) methods.
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Fig. 16. Google Flu Trends (for Durham, NC, USA) regression term γ
(3)
t . From top to bottom are the results for academic year

2009-2010, 2010-2011 and 2011-2012. The gray bars reflect, from left-to-right, Thanksgiving break, Winter/Christmas break,
and Spring break.

A detailed characterization of the data and the scientific questions that have motivated this study are

discussed in Section II; a comprehensive answering of these questions with the available data has been

provided in Section V. For brevity, we do not repeat these details here. We note that these data are

presented here for the first time, and were collected by the authors; all data will be made available to

the research community.

There are further questions that may be examined with the collected data, and that are worthy of future

study. The identification of the virus responsible for each illness has been (imperfectly) constituted via RT

PCR, for a large set of common viruses considered. We have access to the dorm in which each individual

resided. A more detailed analysis of pathogen transfer as a function of virus type can be examined. In

this paper we have presented results in this direction, but more explicit modeling could be performed

(not necessarily at the symptom level, but after the responsible virus has been identified by RT PCR).
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Fig. 17. Probability of transiting from state S to state I . The blue curve represents the total probability, and the red curve
represents the probability with the weekly term γ

(2)
t removed.

The gene expression data from this study have only been employed here in a limited manner, as the

focus has been on self-reported symptom scores. However, for the close contacts, we have daily gene

expression data for a week. For close contacts who transited from state S to I , we have the opportunity

to analyze the time trajectory of the gene expression data as the host responds to the (known) virus. We

have performed work of this type for people enrolled in challenge studies (controlled experiments) [23];

the data from this study offers the potential for similar studies on data from individuals who became ill

in natural settings. We have preliminary results in this direction on these data, which are encouraging

and will be presented elsewhere.
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APPENDIX A: MCMC UPDATE EQUATIONS

The full posterior distribution can be approximate via Gibbs sampler, with Metropolis-Hastings updates

for a subset of parameters. We briefly describe how to sample some of the most interesting parameters

based on their conditional posterior distribution.

Sampling from the latent states

Sampling from the latent states znt is achieved by forward and backward sampling method [29], [30],

[31], [32]. Define the forward equation

αnt(m, d) = p(ytn1, znt = m, dnt = d),m ∈ {S, I}, d = 1, .., Dmax

where ytn1 = [yn1, ..., ynt] and dnt is the number of days students n left in infective state I after day t.

For the susceptible state S, dnt is not necessary and omit for brevity. Let denotes Ent = {znt, dnt}, the

forward equation can be calculated from the following induction function.

For the Markovian states Ent = {S}, transition into states {S} at time t takes place either from {I, 1}

or {S} at time t− 1

αnt(S) = (αnt−1(I, 1) + αnt−1(S)p(znt = S|znt−1 = S))p(ynt|znt = S)

For the semi-Markovian state Ent = {I, d}, transition into states {I, d} at time t takes place either from

{I, d+ 1} or {S} at time t− 1

αnt(I, d) = (αnt−1(I, d+ 1) + αnt−1(S)p(znt = I|znt−1 = S)p(dnt = d))p(ynt|znt = I)

Then we can sample Ent (the state znt and the duration dnt) from the backward sampling step. For

t = T , sample Ent

p(znT = I, dnT = d|yTn1) =
αnT (I, d)

αnT (S) +
∑Dmax

d=1 αnT (I, d)

p(znT = S|yTn1) =
αnT (S)

αnT (S) +
∑Dmax

d=1 αnT (I, d)
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For t ∈ T − 1, ..., 1, sample Ent

p(znt = I, dnt = d|ytn1, Ent+1) =
αnt(I, d)p(znt = I, dnt = d|Ent+1)

αnt(S)p(znt = S|Ent+1) +
∑Dmax

d=1 αnt(I, d)p(znt = I, dnt = d|Ent+1)

p(znt = S|ytn1, Ent+1) =
αnt(S)p(znt = S|Ent+1)

αnt(S)p(znt = S|Ent+1) +
∑Dmax

d=1 αnt(I, d)p(znt = I, dnt = d|Ent+1)

The above method need to specify the maximum number of duration Dmax in order to avoid infinite

number of states Ent. We may employ the beam sampling idea developed in [33], [34] to avoid setting

Dmax. The main idea of beam sampling is introducing auxiliary random variables utn1 for slice sampling.

The forward equation is modified as

α∗int(Ent) = p(Ent, ytn1,u
t
n1)

=
∑
Ent−1

I(0 < unt < p(Ent|Ent−1))α∗nt−1(Ent−1)p(ynt|Ent)

The backward sampling part is

p(Ent−1|Ent, yTn1, u) ∝ I(0 < unt < p(Ent|Ent−1))α∗nt−1(Ent−1)

where I(.) is the indicator function. I(g(unt)) = 1 if g(unt) is true and I(g(unt)) = 0 otherwise.

Sampling the correlation matrix

The parameter extension method introduced in [35] is employed to sample the correlation matrix ΣI .

Consider an unrestricted covariance matrix Σ1 ∼ Wishart(m1,V1), which can be decomposed as

Σ1 = L1/2ΣIL1/2, where L is the diagonal of the matrix with diagonal elements equivalent to the

diagonal of Σ1. The prior for correlation matrix ΣI is as following,

P (ΣI ,L) = JacobianΣ1→(ΣI ,L)P (Σ1)

where JacobianΣ1→(ΣI ,L) =
∏J
i=1 q

J−1

2

i is the Jacobian transformation from Σ1 to (L,ΣI). Then the MH

algorithm for sampling posterior distribution of ΣI is as follows: at iteration t, generate the candidate

values Σ∗I from Σ∗
1 = L∗1/2Σ∗IL

∗1/2 ∼ Wish(m1,V1), accept the candidate value with probability

α = min{1, p(L
∗,Σ∗

I |−)
p(Lt,Σt

I |−)
q(Σt

I |Σ∗
I )

q(Σ∗
I |Σt

I)
}, where q(.|Σt

I) is the proposal distribution given by product the jacobian

term and Wishart density Wishart(m0,Σ
t
I). Sampling ΣS is performed using a similar procedure.
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Sample γnt

Define bnt = 1 if znt−1 = S and znt = I , bnt = 0 if znt−1 = S and znt = S. bnt is treat as missing

data, if znt−1 = I and znt = I . We use qnt to denote the missing data, with qnt = 0 refers to missing

and qnt = 1 otherwise. We can sample γnt as following,

γnt ∼ N(0,+∞)(
∑3

i=1 γ
(i)
t + an, 1), if bnt = 1

γnt ∼ N(−∞,0)(
∑3

i=1 γ
(i)
t + an, 1), if bnt = 0

N(0,+∞) and N(−∞,0) are the truncated normal distributions with truncation level (0,+∞) and (−∞, 0).

Sample γ(1)t and γ
(2)
t

Sampling γ
(1)
t and γ

(2)
t are achieved via forward filtering and backward sampling method [36], [37].

Here we detail the update equations for sampling γ(2)t and sampling γ(1)t is performed in the similar way.

Define F = [1, 0, 1, 0, 1, 0]T , G =


J(w) 0 0

0 J(2w) 0

0 0 J(3w)

, then γ(2)t = FTθt and θt = Gθt−1 + εt.

In the forward filtering step, assume θ0 ∼ N (m(2)
0 ,C(2)

0 ), it can be shown the posterior at time t is

θt ∼ N (m(2)
t ,C(2)

t )

where m(2)
t = C(2)

t (
∑N

n=1 Fγ̂(2)nt qnt+R(2)−1
t a(2)t ), C(2)

t = R(2)
t −A(2)

t Q
(2)
t A(2)T

t , A(2)
t =

√
NtR

(2)
t FQ(2)−1

t ,

Q
(2)
t = 1 +NtFTR

(2)
t F, a(2)t = Gm(2)

t−1,R
(2)
t = GC(2)

t−1GT + Wt and γ̂(2)nt = γnt − an − γ(1)t − γ
(3)
t .

In the backward sampling step, first sample θT ∼ N (m(2)
T ,C(2)

T ) and then for day T −1 to day 1, sample

θt ∼ N (m̂(2)
t , Ĉ

(2)

t )

where m̂(2)
t = m(2)

t + B̂(2)
t (θt+1 − a(2)t+1), Ĉ

(2)

t = C(2)
t − B̂(2)

t R(2)
t+1B̂(2)T

t , B̂(2)
t = C(2)

t GTR(2)−1
t+1 . Wt is a

block diagonal covariance matrix with each block equals to Σθr .

Sample rnt and τ

Following the Gibbs sampling algorithm in [38], sample rnt ∼ N(τynt−1,τynt
)(µznt

,Σznt
) where τynt−1 and

τynt
are the truncation level of the multivariate normal. For m = 1, ...,M − 1, sample τjm from uniform
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distribution with interval [max(max(rntj : yntj = m− 1), τjm−1),min(min(rntj : yntj = m, τjm+1))].

APPENDIX B: PREDICTION

Denote the current data as ytn1 = {yn1, ..., ynt}, we may derive the one step predictive probability for

student n as following,

p(znt+1 = I|ytn1,Ω) =

∑Dmax

dnt+1=1 p(znt+1 = I, dnt+1, ytn1|Ω)∑Dmax

dnt+1=1 p(znt+1 = I, dnt+1, ytn1, |Ω) + p(znt+1 = S, ytn1|Ω)
(16)

where Ω is the model parameter learned from current data ytn1 and d = 1, .., Dmax is the number of

days left in infective states at time t+ 1. If we define α̂nt+1(I, d) = p(znt+1 = I, dnt+1 = d, ytn1|Ω) and

ˆαnt+1(S) = p(znt+1 = S, ytn1|Ω), the induction equation for ˆαnt+1 can be derived.

Similar with deriving the forward induction function for αnt in Appendix A, for the Markov states

{S}, transition into {S} at day t+ 1 can only take place from {S} and {I, 1} at time t.

α̂nt+1(S) = p(znt+1 = S, ytn1|Ω)

= αnt(I, 1) + P (znt+1 = S|znt = S)αnt(S)

For the semi-Markov states {I, d}, transition into {I, d} takes place from {I, d+ 1} and {S}.

α̂nt+1(I, d) = p(znt+1 = I, dnt+1 = d, ytn1|Ω)

= αnt(I, d+ 1) + αnt(S)p(znt+1 = I|znt = S)p(dnt+1 = d)

αnt(I, 1), αnt(I, d+ 1) and αnt(S) is obtained from training the model with current data. The one step

forward prediction of transition probability P (znt+1 = I|znt = S) = Φ(γ̂nt+1) is obtained based on the

properties of AR model.

γ̂nt+1 ∼ N(µγ̂nt+1
, σγ̂nt+1

)

where µγ̂nt+1
= FTGm(2)

t +µan
+ωm

(1)
t and σγ̂nt+1

= FT (GC(2)
t GT + Wt)F +ω2C

(1)
t +β−1 + 1 +σan

,

where µ(1)t and C(1)
t are the mean and variance obtained in the forward filtering step when sample γ(1)t .

µan
and σan

are the posterior mean and variance of an. Notice for prediction, we do not take into account

Google Flu Trend data.
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