Supplementary Material

Anonymous Author(s)

Affiliation Address email

1 Semi-supervised Results on ImageNet 2012

Table 1: Semi-supervised classification accuracy (%) on the validation set of ImageNet 2012.

Proportion	1%	5%	10%	20%	30%	40%
top-1						
AlexNet	0.1 ± 0.01	11.5 ± 0.72	19.8 ± 0.71	38.6 ± 0.31	43.23 ± 0.28	45.85 ± 0.23
GoogeLeNet	4.75 ± 0.58	22.13 ± 1.14	32.18 ± 0.80	42.83 ± 0.28	49.61 ± 0.11	51.90 ± 0.20
BSVM (ours)	43.98 ± 1.15	47.36 ± 0.91	48.41 ± 0.76	51.51 ± 0.28	54.14 ± 0.12	57.34 ± 0.18
Softmax (ours)	42.89	46.42	47.51	50.75	53.49	56.83
top-5						
AlexNet	0.5 ± 0.01	25.5 ± 0.92	38.60 ± 0.90	55.58 ± 0.25	63.12 ± 0.23	66.53 ± 0.22
GoogeLeNet	11.33 ± 0.96	41.33 ± 1.34	56.33 ± 0.86	68.33 ± 0.21	74.50 ± 0.12	76.94 ± 0.14
Ours	60.57 ± 1.61	62.67 ± 1.14	64.76 ± 0.90	75.67 ± 0.19	78.95 ± 0.10	80.94 ± 0.13
Softmax (ours)	59.20	61.40	63.58	74.96	78.39	80.46

Table 2: Semi-supervised classification accuracy (%) on the validation set of ImageNet 2012.

Proportion	50%	60%	70%	80%	90%	100%
top-1						
AlexNet	48.25 ± 0.23	50.34 ± 0.18	52.12 ± 0.14	53.97 ± 0.14	55.62 ± 0.09	57.1
GoogeLeNet	55.09 ± 0.23	57.78 ± 0.23	61.25 ± 0.15	63.82 ± 0.17	66.18 ± 0.05	68.7
BSVM (ours)	59.73 ± 0.21	61.24 ± 0.19	61.72 ± 0.14	61.77 ± 0.13	61.79 ± 0.04	61.8
Softmax (ours)	59.33	60.91	61.40	61.44 61.49	61.53	
top-5						
AlexNet	69.43 ± 0.18	72.18 ± 0.19	74.81 ± 0.13	77.06 ± 0.13	78.87 ± 0.09	80.2
GoogeLeNet	79.44 ± 0.17	81.70 ± 0.11	83.87 ± 0.14	84.97 ± 0.18	86.6 ± 0.09	88.9
BSVM (ours)	81.15 ± 0.13	82.53 ± 0.10	83.2 ± 0.12	83.65 ± 0.17	83.91 ± 0.08	84.3
Softmax (ours)	80.68	82.12	82.82	83.13	83.51	83.88

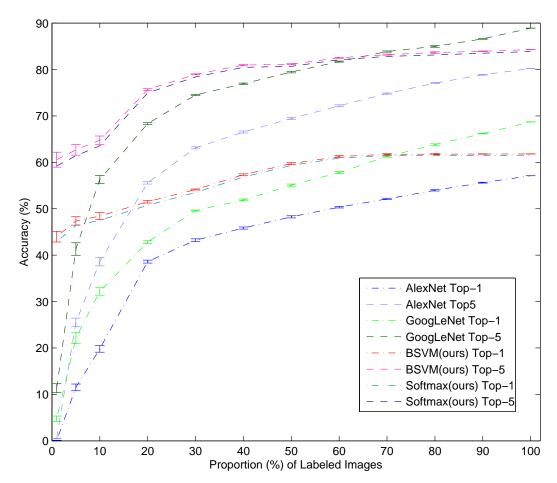


Figure 1: Semi-supervised classification accuracy on the validation set of ImageNet 2012

Table 3: Architectures of the image model. Image Size: spatial size \times color channel (one for gray and three for RGB), e.g., $28^2 \times 1$. Dictionary: dictionary number \times dictionary spatial size, e.g., 30×8^2 . Pooling: pooling/unpooling window size, e.g., 3×3 .

Dataset	Image	Model Architecture					
Dataset	Size		Layer-1	Layer-2	Layer-3	Layer-4	Layer-5
MNIST	$28^2 \times 1$	Dictionary	30×8^2	80×6^2	-	-	-
		Pooling	3×3	-	-	-	-
CIFAR-10	$32^2 \times 3$	Dictionary	48×5^2	128×5^2	128×5^2	-	-
		Pooling	2×2	2×2	-	-	-
CIFAR-100	$32^2 \times 3$	Dictionary	48×5^2	128×5^2	128×5^2	-	-
		Pooling	2×2	2×2	-	-	-
Caltech 101	$128^2 \times 3$	Dictionary	48×7^2	84×5^2	84×5^2	-	-
		Pooling	4×4	2×2	-	-	-
Caltech 256	$128^2 \times 3$	Dictionary	48×7^2	128×5^2	128×5^2	-	-
		Pooling	4×4	2×2	-	-	-
ImageNet	$256^2 \times 3$	Dictionary	96×5^2	256×5^2	512×5^2	1024×5^2	512×5^2
		Pooling	4×4	2×2	2×2	2×2	-
Flickr8k	$256^2 \times 3$	Dictionary	48×5^2	84×5^2	128×5^2	192×5^2	128×5^2
		Pooling	4×4	2×2	2×2	2×2	-
Flickr30k	$256^2 \times 3$	Dictionary	48×5^2	84×5^2	128×5^2	384×5^2	256×5^2
		Pooling	4×4	2×2	2×2	2×2	-
MS COCO	$256^2 \times 3$	Dictionary	48×5^2	84×5^2	128×5^2	512×5^2	384×5^2
		Pooling	4×4	2×2	2×2	2×2	-

2 Model Arcitecture and Initialization

- 3 The architectures of the image model for each dataset in all the experiments are summarized in Table 3.
- For example, MNIST data is composed of gray images with spatial size 28×28 and CIFAR-10 is
- 5 composed of RGB color images with spatial size 32×32 . A two-layer model is used with dictionary
- 6 element size 8×8 and 6×6 at the first and second layer, respectively. The pooling size is 3×3
- 7 $(p_x = p_y = 3)$ and the number of dictionary elements at layers 1 and 2 are $K_1 = 30$ and $K_2 = 80$,
- 8 respectively.
- 9 All the parameters for the image model are initialized at random; we do not perform layer-wise 10 pretraining in [1].
- 11 For the RNN training employed in image captioning, we initialize all recurrent matrices with
- orthogonal initialization as suggested in [2]. Non-recurrent weights are initialized from an uniform
- distribution in [-0.01,0.01]. All the bias terms are initialized to zero. Word vectors are initialized
- with the publicly available word2vec vectors that were trained on 100 billion words from Google
- 15 News. These vectors have dimensionality 300 and were trained using a continuous bag-of-words
- architecture [3]. Words not present in the set of pre-trained words are initialized at random. The
- number of hidden units in the RNNs is set to 512.

18 3 Detail for the Variational Autoencoder

19 3.1 Image Captioning

20 Recall the variational lower bound for image captioning:

$$\mathcal{L}(\mathbf{X}, \mathbf{Y}) = \xi \left\{ \mathbb{E}_{q_{\phi}(s|\mathbf{X})} [\log p_{\psi}(\mathbf{Y}|s)] \right\} + \mathbb{E}_{q_{\phi}(s,z|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, s, z) - \log q_{\phi}(s, z|\mathbf{X})]$$
(1)

21 The gradient of the variational lower bound w.r.t to the decoder model parameters is straightforward:

$$\nabla_{\psi} \mathcal{L}(\mathbf{X}, \mathbf{Y}) = \xi \mathbb{E}_{q_{\phi}(s|\mathbf{X})} [\nabla_{\psi} \log p_{\psi}(\mathbf{Y}|s)]$$
 (2)

$$\nabla_{\alpha} \mathcal{L}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}_{q_{\alpha}(s, \mathbf{z} | \mathbf{X})} [\nabla_{\alpha} \log p_{\alpha}(\mathbf{X} | s, \mathbf{z})]$$
(3)

The corresponding gradient w.r.t the encoder model is

$$\nabla_{\phi} \mathcal{L}(\mathbf{X}, \mathbf{Y}) = \xi \left\{ \mathbb{E}_{q_{\phi}(s|\mathbf{X})} [\log p_{\psi}(\mathbf{Y}|s)] \times \nabla_{\phi} \log q_{\phi}(s|\mathbf{X}) \right\}$$

$$+ \mathbb{E}_{q_{\phi}(s,z|\mathbf{X})} \left\{ [\log p_{\alpha}(\mathbf{X}|s,z) - \log q_{\phi}(s,z|\mathbf{X})] \times \nabla_{\phi} \log q_{\phi}(s,z|\mathbf{X}) \right\}$$
(4)

- 23 If we use Monte Carlo integration to approximate the expectation in (4), the variance of the estimator can be very high.
- Since there are both real and binary latent variables in (1), we use the variance reduction techniques in [4] and [5]. The variational lower bound in (1) can be expressed as

$$\mathcal{L}(\mathbf{X}, \mathbf{Y}) = \xi \left\{ \mathbb{E}_{q_{\phi}(s|\mathbf{X})} [\log p_{\psi}(\mathbf{Y}|s)] \right\}$$

$$+ \mathbb{E}_{q_{\phi}(s,z|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, z|s) + \log p_{\alpha}(s) - \log q_{\phi}(z|\mathbf{X}) - \log q_{\phi}(s|\mathbf{X})]$$

$$= \xi \left\{ \mathbb{E}_{q_{\phi}(s|\mathbf{X})} [\log p_{\psi}(\mathbf{Y}|s)] \right\} - D_{KL} [q_{\phi}(s|\mathbf{X}) || p_{\alpha}(s)] + \mathbb{E}_{q_{\phi}(s,z|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, z|s) - \log q_{\phi}(z|\mathbf{X})]$$

$$= - D_{KL} [q_{\phi}(s|\mathbf{X}) || p_{\alpha}(s)] + \mathbb{E}_{q_{\phi}(s|\mathbf{X})} \left\{ \xi [\log p_{\psi}(\mathbf{Y}|s)] + \mathbb{E}_{q_{\phi}(z|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, z|s) - \log q_{\phi}(z|\mathbf{X})] \right\}$$

$$(5)$$

- 27 Recall that $q_{\phi}(s|\mathbf{X}) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\tilde{\mathbf{C}}^{(L)}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^2(\tilde{\mathbf{C}}^{(L)})))$ and $p(s) = \mathcal{N}(\mathbf{0}, \mathbf{I})$. Assume J is the
- dimension of z, and μ_j and σ_j is the j-th element of $\mu_{\phi}(\tilde{\mathbf{C}}^{(L)})$ and $\sigma_{\phi}(\tilde{\mathbf{C}}^{(L)})$, respectively. We can
- 29 get the closed form of the KL term:

$$-D_{KL}[q_{\phi}(\boldsymbol{s}|\mathbf{X})||p_{\alpha}(\boldsymbol{s})] = \frac{1}{2} \sum_{j=1}^{J} \left\{ (1 - (\mu_j)^2 - (\sigma_j)^2 + \log\left((\sigma_j)^2\right) \right\}$$
(8)

30 Using the reparameterization trick in [4]

$$s = f(\phi, \epsilon) = \mu_{\phi}(\tilde{\mathbf{C}}^{(L)}) + \epsilon(\sigma_{\phi}(\tilde{\mathbf{C}}^{(L)}), \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
(9)

The expectation term can be expressed as

$$\mathbb{E}_{q_{\phi}(s|\mathbf{X})} \Big\{ \xi [\log p_{\psi}(\mathbf{Y}|s)] + \mathbb{E}_{q_{\phi}(z|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, z|s) - \log q_{\phi}(z|\mathbf{X})] \Big\}$$
(10)

$$= \mathbb{E}_{p(\epsilon)} \Big\{ \xi [\log p_{\psi}(\mathbf{Y}|\mathbf{s} = f(\boldsymbol{\phi}, \boldsymbol{\epsilon}))] + \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, \mathbf{z}|\mathbf{s} = f(\boldsymbol{\phi}, \boldsymbol{\epsilon})) - \log q_{\phi}(\mathbf{z}|\mathbf{X})] \Big\}$$
(11)

Therefore, the gradient of lower bound with respect to ϕ can be expressed as

$$\nabla_{\phi} \mathcal{L}(\mathbf{X}, \mathbf{Y}) = -\nabla_{\phi} D_{KL}[q_{\phi}(\mathbf{s}|\mathbf{X})||p_{\alpha}(\mathbf{s})]$$
(12)

$$+\mathbb{E}_{p(\epsilon)} \Big\{ \nabla_{\phi} \xi [\log p_{\psi}(\mathbf{Y}|\mathbf{s} = f(\phi, \epsilon))] + \nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{X})} [\log p_{\alpha}(\mathbf{X}, \mathbf{z}|\mathbf{s} = f(\phi, \epsilon)) - \log q_{\phi}(\mathbf{z}|\mathbf{X})] \Big\}$$
(13)

33 The second term can approximated by Monto Carlo samples:

$$\frac{1}{N_{s}} \sum_{i=1}^{N_{s}} \left\{ \nabla_{\boldsymbol{\phi}} \xi[\log p_{\boldsymbol{\psi}}(\mathbf{Y}|\boldsymbol{s} = f(\boldsymbol{\phi}, \boldsymbol{\epsilon}_{i}))] + \nabla_{\boldsymbol{\phi}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\mathbf{X})}[\log p_{\boldsymbol{\alpha}}(\mathbf{X}, \boldsymbol{z}|\boldsymbol{s} = f(\boldsymbol{\phi}, \boldsymbol{\epsilon}_{i})) - \log q_{\boldsymbol{\phi}}(\boldsymbol{z}|\mathbf{X})] \right\}$$
(14)

where $\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|\mathbf{X})}[\log p_{\alpha}(\mathbf{X}, z) - \log q_{\phi}(z|\mathbf{X})]$ is same as the gradient in [5]

35 3.2 Image Classification

Recall that the pseudo-likelihood of a label $\ell_n \in \{1, \dots, C\}$

$$\mathcal{L}(\ell_n|s_n, \boldsymbol{\beta}, \gamma) = \prod_{\ell=1}^{C} (y_n^{(\ell)}|s_n, \boldsymbol{\beta}_{\ell}, \gamma_{\ell})$$
(15)

$$= \prod_{\ell=1}^{C} \left\{ \int_{0}^{\infty} \frac{\sqrt{\gamma_{\ell}}}{\sqrt{2\pi\lambda_{n}^{(\ell)}}} \exp\left(-\frac{\left(1 + \lambda_{n}^{(\ell)} - y_{n}^{(\ell)} \boldsymbol{\beta}_{\ell}^{T} \boldsymbol{s}_{n}\right)^{2}}{2\gamma_{\ell}^{-1} \lambda_{n}^{(\ell)}}\right) d\lambda_{n}^{(\ell)} \right\}. \tag{16}$$

 $m{\beta}$ is treated as model parameters (part of ψ). $\lambda_n^{(\ell)}$ is treated as latent variables. we have

$$p(\ell_n, \boldsymbol{\lambda}_n | \boldsymbol{s}_n, \boldsymbol{\beta}, \gamma) = \prod_{\ell=1}^{C} (y_n^{(\ell)} | \boldsymbol{s}_n, \lambda_n^{(\ell)}, \boldsymbol{\beta}_{\ell}, \gamma_{\ell})$$
(17)

$$= \prod_{\ell=1}^{C} \left\{ \frac{\sqrt{\gamma_{\ell}}}{\sqrt{2\pi\lambda_{n}^{(\ell)}}} \exp\left(-\frac{(1+\lambda_{n}^{(\ell)} - y_{n}^{(\ell)}\boldsymbol{\beta}_{\ell}^{T}\boldsymbol{s}_{n})^{2}}{2\gamma_{\ell}^{-1}\lambda_{n}^{(\ell)}}\right) \right\}.$$
 (18)

Therefore, the variational lower bound for image classification is

$$\mathcal{L}(\mathbf{X}, \mathbf{Y}) = \xi \left\{ \mathbb{E}_{q_{\phi}(s_n, \lambda_n | \mathbf{X}_n, \ell_n)} [\log p_{\psi}(\lambda_n, \ell_n | s)] \right\} + \mathbb{E}_{q_{\phi}(s, z | \mathbf{X})} [\log p_{\alpha}(\mathbf{X}, s, z) - \log q_{\phi}(s, z | \mathbf{X})]$$
(19)

Since most part of (19) is same as image caption model, we only discuss the gradient of lower bound w.r.t. β . The first term of variational lower bound which can be expressed as

$$\mathbb{E}_{q_{\phi}(\boldsymbol{s}_{n},\boldsymbol{\lambda}_{n}|\mathbf{X}_{n},\ell_{n})}[\log p_{\psi}(\boldsymbol{\lambda}_{n},\ell_{n}|\boldsymbol{s})] = \sum_{\ell=1}^{C} \mathbb{E}_{q_{\phi}(\boldsymbol{s}_{n},\boldsymbol{\lambda}_{n}^{(\ell)}|\mathbf{X}_{n},y_{n}^{(\ell)})}[\log p_{\psi}(\boldsymbol{\lambda}_{n}^{(\ell)},y_{n}^{(\ell)}|\boldsymbol{s}_{n})]$$
(20)

Notes that $q_{\phi}(s_n, \lambda_n | \mathbf{X}_n, y_n^{(\ell)}) = q_{\phi}(s_n | \mathbf{X}_n) q_{\phi}(\lambda_n | y_n^{(\ell)})$, we can get

$$\sum_{\ell=1}^{C} \mathbb{E}_{q_{\phi}(\boldsymbol{s}_{n},\boldsymbol{\lambda}_{n}^{(\ell)}|\boldsymbol{X}_{n},y_{n}^{(\ell)})} [\log p_{\psi}(\boldsymbol{\lambda}_{n}^{(\ell)},y_{n}^{(\ell)}|\boldsymbol{s}_{n})]$$
(22)

$$= \sum_{\ell=1}^{C} \mathbb{E}_{q_{\phi}(\boldsymbol{s}_{n}|\mathbf{X}_{n})} \left\{ \mathbb{E}_{q_{\phi}(\boldsymbol{\lambda}_{n}^{(\ell)}|y_{n}^{(\ell)})} [\log p_{\psi}(\boldsymbol{\lambda}_{n}^{(\ell)}, y_{n}^{(\ell)}|\boldsymbol{s}_{n})] \right\}$$
(23)

Since 42

$$\log p_{\psi}(\boldsymbol{\lambda}_n^{(\ell)}, y_n^{(\ell)} | \boldsymbol{s}_n) = -\frac{(1 + \lambda_n^{(\ell)} - y_n^{(\ell)} \boldsymbol{\beta}_{\ell}^T \boldsymbol{s}_n)^2}{2\gamma_{\ell}^{-1} \lambda_n^{(\ell)}} + c(\boldsymbol{\lambda}_n^{(\ell)}, y_n^{(\ell)}, \gamma_{\ell})$$
(24)

where $c(\boldsymbol{\lambda}_n^{(\ell)}, y_n^{(\ell)}, \gamma_\ell)$ is free of β_ℓ , we can find that the relevant portion of equation (24) is a linear function of $(\boldsymbol{\lambda}_n^{(\ell)})^{-1}$. It means the expectation term $\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{\lambda}_n^{(\ell)}|y_n^{(\ell)})}[\log p_{\boldsymbol{\psi}}(\boldsymbol{\lambda}_n^{(\ell)}, y_n^{(\ell)}|s_n)]$ in

equation (23) can be obtained by simple replacing $(\lambda_n^{(\ell)})^{-1}$ with its conditional expectation. From

[6], we have 46

$$q_{\phi}((\boldsymbol{\lambda}_n^{(\ell)})^{-1}|y_n^{(\ell)}) = \mathcal{IG}(|1 - \boldsymbol{y}_n^{\ell}\boldsymbol{s}_n^{\top}\boldsymbol{\beta}^{(\ell)}|^{-1}, 1)$$
 (25)

$$\mathbb{E}((\boldsymbol{\lambda}_n^{(\ell)})^{-1}) = |1 - \boldsymbol{y}_n^{\ell} \boldsymbol{s}_n^{\top} \boldsymbol{\beta}^{(\ell)}|^{-1}$$
(26)

Thus, using the same reparameterization trick in (9), we can get the gradient wrt β .

Mutilayer Perceptrons

 $\mu_{\phi}(\tilde{\mathbf{C}}^{(n,2)})$ and $\sigma_{\phi}(\tilde{\mathbf{C}}^{(n,2)})$ are constituted by "stacking" the K_2 spatially aligned $\mu_{\phi}(\tilde{\mathbf{C}}^{(n,k_2,2)})$ and $\sigma_{\phi}(\tilde{\mathbf{C}}^{(n,k_2,2)})$, respectively, which are defined as 1

$$\mu_{\phi}(\tilde{\mathbf{C}}^{(n,k_2,2)}) = \mathbf{W}_{\mu}^{(k_2)} \boldsymbol{h}^{(k_2)} + \boldsymbol{b}_{\mu}^{(k_2)},$$
 (27)

$$\log \sigma_{\phi}(\tilde{\mathbf{C}}^{(n,k_2,2)}) = \mathbf{W}_{\phi}^{(k_2)} h^{(k_2)} + b_{\phi}^{(k_2)}, \tag{28}$$

$$\boldsymbol{h}^{(k_2)} = \tanh\left(\mathbf{W}^{(k_2)}\operatorname{vec}(\tilde{\mathbf{C}}^{(n,k_2,2)}) + \boldsymbol{b}^{(k_2)}\right), \tag{29}$$

51 where $k_2 = 1, \dots, K_2$.

¹The bias are omitted in the main paper

References

- [1] Y. Pu, X. Yuan, A. Stevens, C. Li, and L. Carin. A deep generative deconvolutional image model.
 In AISTATS, 2016.
- 55 [2] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In *ICLR*, 2014.
- 57 [3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.
- 59 [4] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In *ICLR*, 2014.
- [5] A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In *ICML*,
 2014.
- 62 [6] N. G. Polson and S. L. Scott. Data augmentation for support vector machines. *Bayes. Anal.*, 2011.