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1 Semi-supervised Results on ImageNet 2012

Table 1: Semi-supervised classification accuracy (%) on the validation set of ImageNet 2012.

Proportion 1% 5% 10% 20% 30% 40%
top-1
AlexNet 0.1+ 0.01 11.5+0.72 19.8 £0.71 386 031 4323+0.28 45.854+0.23
GoogeLeNet 4,75+ 0.58 2213+ 1.14  32.1840.80  42.83+0.28 49.61£0.11 51.90 £0.20
BSVM (ours) 4398+ 1.15 4736091 4841+0.76 51.51£0.28 54.14+0.12  57.34+0.18
Softmax (ours) 42.89 46.42 47.51 50.75 53.49 56.83
top-5
AlexNet 0.5 £0.01 2554+092 38.60+0.90 55584+0.25 63.124+0.23 66.53 £0.22
GoogeLeNet 1133 £ 096 4133 +1.34 5633+£086 6833+£021 7450+0.12 7694+0.14
Ours 60.57 £ 1.61 62.67+1.14 6476090 7567+£0.19 7895+0.10 80.9440.13
Softmax (ours) 59.20 61.40 63.58 74.96 78.39 80.46
Table 2: Semi-supervised classification accuracy (%) on the validation set of ImageNet 2012.
Proportion 50% 60% 70% 80% 90% 100%
top-1
AlexNet 48.25+0.23 5034 +£0.18 52.124+0.14 5397+£0.14 55.62+0.09 57.1
GoogeLeNet 55.09 £0.23 57.78 £0.23 61.25+£0.15 63.82+0.17 66.18+0.05 68.7
BSVM (ours) 59.734+ 0.21 61.2440.19 61.72£0.14 61.77+£0.13  61.79+ 0.04 61.8
Softmax (ours) 59.33 60.91 61.40 61.44 61.49 61.53
top-5
AlexNet 69.43 +£0.18 72.18£0.19 74.81+£0.13 77.06 £0.13 78.87+0.09 80.2
GoogeLeNet 79.44 +£0.17 81.70£0.11 83.87£0.14 8497+£0.18 86.6£0.09 88.9
BSVM (ours) | 81.15+0.13 82.53+£0.10 832+0.12 83.65+0.17 83.91 4+ 0.08 84.3
Softmax (ours) 80.68 82.12 82.82 83.13 83.51 83.88
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Figure 1: Semi-supervised classification accuracy on the validation set of ImageNet 2012
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Table 3: Architectures of the image model. Image Size: spatial size X color channel (one for gray and three
for RGB), e.g., 28% x 1. Dictionary: dictionary number x dictionary spatial size, e.g., 30 x 8. Pooling:
pooling/unpooling window size, e.g., 3 X 3.

Dataset Image Model Architecture

Size Layer-1 | Layer-2 Layer-3 Layer-4 Layer-5

5 Dictionary | 30 x 8% | 80 x 62 - - -

MNIST 28" x1 Pooling 3x3 - - - -

2 Dictionary | 48 x 57 | 128 x 52 | 128 x 57 - -

CIFAR-10 1 32" X3 ' —p5olng | 2x2 | 2x2 - - -

) Dictionary | 48 x 5% | 128 x 57 | 128 x 5° - -

CIFAR-100 | 32" X3 —pootmg | 2x2 | 2x2 - - -

5 Dictionary | 48 x 72 | 84 x 52 | 84 x 57 - -

Caltech 101 | 128“ x 3 Pooling T4 %9 - - -

N Dictionary | 48 x 77 | 128 x 5% | 128 x 57 - -

Caltech 256 | 128% x 3 Pooling T ) - - -
2 Dictionary | 96 x 52 | 256 x 5° | 512 x 5° | 1024 x 5° | 512 x 5°

ImageNet | 2567 x 3 =5 re™ 1 4x4 | 2x2 2% 2 7% 2 -
. 5 Dictionary | 48 x 5% | 84 x 5% | 128 x 57 | 192 x 5% | 128 x 57

Flickr8k | 256" x 3 |5 0rme T 4x4 | 2x2 Tx 2 ) -
. 2 Dictionary | 48 x 5% | 84 x 57 | 128 x 5% | 384 x 57 | 256 x 5°

Flickr30k | 256" x 3 | —p e T ax4 | 2x2 2% 2 TX 2 -
N Dictionary | 48 x 57 | 84 x 57 | 128 x 5% | 512 x 5% | 384 x 52

MS COCO | 256 X 3 | —p orme [ 4 x4 | 2Zx2 Tx 2 ) -

2 Model Arcitecture and Initialization

The architectures of the image model for each dataset in all the experiments are summarized in Table[3]
For example, MNIST data is composed of gray images with spatial size 28 x 28 and CIFAR-10 is
composed of RGB color images with spatial size 32 x 32. A two-layer model is used with dictionary
element size 8 x 8 and 6 x 6 at the first and second layer, respectively. The pooling size is 3 x 3
(pz = py = 3) and the number of dictionary elements at layers 1 and 2 are K; = 30 and K5 = 80,
respectively.

All the parameters for the image model are initialized at random; we do not perform layer-wise
pretraining in [[1]].

For the RNN training employed in image captioning, we initialize all recurrent matrices with
orthogonal initialization as suggested in [2]. Non-recurrent weights are initialized from an uniform
distribution in [-0.01,0.01]. All the bias terms are initialized to zero. Word vectors are initialized
with the publicly available word2vec vectors that were trained on 100 billion words from Google
News. These vectors have dimensionality 300 and were trained using a continuous bag-of-words
architecture [3]]. Words not present in the set of pre-trained words are initialized at random. The
number of hidden units in the RNNs is set to 512.

3 Detail for the Variational Autoencoder

3.1 Image Captioning

Recall the variational lower bound for image captioning:
L(X,Y) = &{Eq,s1x)[10g Py (Y[8)]} + Eqg, (s,21x) 108 pa (X, 5, 2) —loggg(s, 2|X)] (D)
The gradient of the variational lower bound w.r.t to the decoder model parameters is straightforward:
Vg L(X,Y) = EEq,(six) [V log py (Y]s)] 2)
VaoLl(X,Y) =E,(s,2x)[Valogpa(X]s, 2)] 3)

The corresponding gradient w.r.t the encoder model is
Vo L(X,Y) = &{Eq,(s1x)[l0g py (Y]s)] x Vg logge(s|X) }

+Eq¢(s7z‘x){[logpa(X|s, z) —log qe(s, 2|X)] x Vg logge(s, z|X)} )
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If we use Monte Carlo integration to approximate the expectation in (@), the variance of the estimator
can be very high.

Since there are both real and binary latent variables in (I)), we use the variance reduction techniques
in [4] and [5]]. The variational lower bound in @ can be expressed as

L(X,Y) = &{Eq, a1x) [log py (Y]s)]} ®)
+ Egy (s,2x)[log pa (X, 2|8) + log pa(s) — log g (2|X) — log ge (s|X)]
= E{Eq, (s1x) [l0g py (Y[8)]} — D[4 (81X)[par(8)] + Eqgy (s.2x) [l0g pa (X, 2[8) — 0g g (2]X)]
(6)
= — Dr1[gs(s|X)||pa(s)] + Eq¢<s|x>{£[logpw(Y\S)} + Eqy (=) [l0g pa (X, 2|s) — log %(ZIX)]}
@)

Recall that gg(s|X) = N (pg(CH), diag(0%(CH)))) and p(s) = N(0,T). Assume J is the

dimension of z, and p; and o is the j—th element of u¢(C(L) and 0’¢(C(L), respectively. We can
get the closed form of the KL term:

J
1
—Dk[ge(s|X)||pa(s 52{ (1= (1)* = (07)* +1og ((05)?) } ®)
J=1
Using the reparameterization trick in [4]]

= f(¢,€) = u¢(C(L)) + 6(0'4,(@(]“)), € ~N(0,1I) 9)

The expectation term can be expressed as
EQ¢(S|X){§UOgP¢(Y|S)] + Eq, (%) [log pa (X, 2|5) — log q¢(Z|X)]} (10)

:Ep(e){g[logp¢(Y|s = f(d)a 6))} + E(I¢(Z|X) [Inga(X7 Z|S = f(¢a 6)) - log Q¢(Z‘X)]} (11)

Therefore, the gradient of lower bound with respect to ¢ can be expressed as

VL(X,Y) =~V Dicslas(5%)] [pa(s)] (12
+Ep(e){ Vokllogpu(Yls = £(6,€)] + VoBy, i llog pa(X, 2ls = £(,€)) ~ logas(=/X)] }
(13)

The second term can approximated by Monto Carlo samples:

N
3 {Vgtllorpy (Vs = £(6,€0)] + VolEq, i3 log pa(X, 2ls = F(6,€1)) — logag(=|X)] }
S =1

(14
where V4 E, (2x)[log pa (X, 2) — log g4 (2|X)] is same as the gradient in [5]
3.2 Image Classification
Recall that the pseudo-likelihood of a label ¢,, € {1,...,C}
c
L(ln|8n,B,7) = H(y%)|3n7/6(8775) 15)
=1
c
o 1 )\ - n n
B T - ST o8 P R
=170 2 ALY 29, An
(3 is treated as model parameters (part of ). /\% ) is treated as latent variables. we have
c
P, Anlsn, B,7) = [ @180, AL, Br.ve) (17)
=1
c (€ )
1 A - n n
i e ()
=1 27r)\([) 2y, " An
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Therefore, the variational lower bound for image classification is

‘C(Xv Y) = g{]Eqd,(s,,“)\MXn L) [10gp¢ (>‘71/7 ln |S)]}
+Eyy(s.21x) [log pa (X, 8, 2) — log e (s, z|X)] (19)

Since most part of (I9) is same as image caption model, we only discuss the gradient of lower bound
w.r.t. 8. The first term of variational lower bound which can be expressed as

By (820 [X00,00) 108 Py (An, L] 8) Z]E% (o, >\<Z>|xn,y5f>)[logp¢(>‘() yOlsn)]  (20)
(21)

Notes that g (85, A X, 15) = ¢ (80 Xn) g (An]ys), we can get

c
;chp(sr,L,A(rf)\Xn,yg))[logpw()‘(e 2y 8n)] (22)
c

:Zqub(sn\xn){E%()\gply%[logpz/)()\g),yn)|8 )]} (23)
=1

Since

4N =8 s0)?
27[1)\;@

log pyp(A,yPs,,) = +e(AD 5 ) (24)

where c(Agf), y,(l ), v¢) is free of By, we can find that the relevant portion of equation li is a

linear function of (A{)~1. It means the expectation term Eq¢()\(e)|y(£)) [log py (AP, ys |sn)] in

equation li can be obtained by simple replacing ()\g))_l with its conditional expectation. From
[6]], we have

4o (A 1Y) = ZG(11 — yi sy BY)71,1) (25)
E(A) ™) =1 - yis, Y7 (26)

Thus, using the same reparameterization trick in (9, we can get the gradient wrt (3.

4 Mutilayer Perceptrons

ud,((:(”v?) and o 4(C(™?) are constituted by “stacking” the K spatially aligned u¢((~3(”’k272)) and
U¢((~J("’k272)) , respectively, which are defined asﬂ

ll’¢(é(n’k272)) — W;(Lkz)h(h) + bﬂ%)7 27)
log a¢(é(7L,k2,2)) _ Wgw)h(kz) + bg€2)7 (28)
R = tanh (W) vec(C522)) 4 k), (29)

where ko = 1,..., K.

!"The bias are omitted in the main paper
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