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Abstract

A new methodology is developed for joint analysis of a matrix and accompanying
documents, with the documents associated with the matrix rows/columns. The
documents are modeled with a focused topic model, inferring interpretable latent
binary features for each document. A new matrix decomposition is developed,
with latent binary features associated with the rows/columns, and with imposition
of a low-rank constraint. The matrix decomposition and topic model are coupled
by sharing the latent binary feature vectors associated with each. The model is
applied to roll-call data, with the associated documents defined by the legislation.
Advantages of the proposed model are demonstrated for prediction of votes on
a new piece of legislation, based only on the observed text of legislation. The
coupling of the text and legislation is also shown to yield insight into the properties
of the matrix decomposition for roll-call data.

1 Introduction

The analysis of legislative roll-call data provides an interesting setting for recent developments in
the joint analysis of matrices and text [23, 8]. While the roll-call data matrix is typically binary,
the modeling framework is general, in that it may be readily extended to categorical, integer or
real observations. The problem is made interesting because, in addition to the matrix of votes, we
have access to the text of the legislation (e.g., characteristic of the columns of the matrix, with each
column representing a piece of legislation and each row a legislator). While roll-call data provides
an interesting proving ground, the basic methodologies are applicable to any setting for which one
is interested in analysis of matrices, and there is text associated with the rows or columns (e.g., the
text may correspond to content on a website; each column of the matrix may represent a website,
and each row an individual, with the matrix representing number of visits).

The analysis of roll-call data is of significant interest to political scientists [15, 6]. In most such
research the binary data are typically analyzed with a probit or logistic link function, and the under-
lying real matrix is assumed to have rank one. Each legislator and piece of legislation exists at a
point along this one dimension, which is interpreted as characterizing a (one-dimensional) political
philosophy (e.g., from “conservative” to “liberal”).

Roll-call data analysis have principally been interested in inferring the position of legislators in
the one-dimensional latent space, with this dictated in part by the fact that the ability to perform
prediction is limited. As in much matrix-completion research [17, 18], one typically can only infer
votes that are missing at random. It is not possible to predict the votes of legislators on a new piece
of legislation (for which, for example, an entire column of votes is missing). This has motivated the
joint analysis of roll-call votes and the associated legislation [23, 8]: by modeling the latent space
of the text legislation with a topic model, and making connections between topics and the latent
space of the matrix decomposition, one may infer votes of an entire missing column of the matrix,
assuming access to the text associated with that new legislation.
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While the research in [23, 8] showed the potential of joint text-matrix analysis, there were several
open questions that motivate this paper. In [23, 8] a latent Dirichlet allocation (LDA) [5] topic model
was employed for the text. It has been demonstrated that LDA yields inferior perplexity scores when
compared to modern Bayesian topic models, such as the focused topic model (FTM) [24]. Another
significant issue with [23, 8] concerns how the topic (text) and matrix models are coupled. In [23, 8]
the frequency with which a given topic is utilized in the text legislation is used to infer the associated
matrix parameters (e.g., to infer the latent feature vector associated with the respective column of
the matrix). This is undesirable, because the frequency with which a topic is used in the document
is characteristic of the style of writing: their may be a topic that is only mentioned briefly in the
document, but that is critical to the outcome of the vote, while other topics may not impact the vote
but are discussed frequently in the legislation. We also wish to move beyond the rank-one matrix
assumption in [15, 6, 8].

Motivated by these limitations, in this paper the FTM is employed to model the text of legislation,
with each piece of legislation characterized by a latent binary vector that defines the sparse set of
associated topics. A new probabilistic low-rank matrix decomposition is developed for the votes,
utilizing latent binary features; this leverages the merits of what were previously two distinct lines
of matrix factorization methods [13, 17]. Unlike previous approaches, the rank is not fixed a priori
but inferred adaptively, with theoretical justifications. For a piece of legislation, the latent binary
feature vectors for the FTM and matrix decomposition are shared, yielding a new means of jointly
modeling text and matrices. This linkage between text and matrices is innovative as: (i) it’s based
on whether a topic is relevant to a document/legislation, not based on the frequency with which the
topic is used in the document (i.e., not based on the style of writing); (ii) it enables interpretation of
the underlying latent binary features [13, 9] based upon available text data. The rest of the paper is
organized as follows. Section 2 first reviews the focused topic model, then introduces a new low-
rank matrix decomposition method, and the joint model of the two. Section 3 discusses posterior
inference. In Section 4 quantitative results are presented for prediction of columns of roll-call votes
based on the associated text legislation, and the joint model is demonstrated qualitatively to infer
meaning/insight for the characteristics of legislation and voting patterns, and Section 5 concludes.

2 Model and Analysis

2.1 Focused topic modeling

Focused topic model (FTM) [24] were developed to address a limitation of related models based
on the hierarchical Dirichlet process (HDP) [21]: the HDP shares a set of “global” topics across
all documents, and each topic is in general manifested with non-zero probability in each document.
This property of HDP tends to yield less “focused” or descriptive topics. It is desirable to share
a set of topics across all documents, but with the additional constraint that a given document only
utilize a small subset of the topics; this tends to yield more descriptive/focused topics, characteristic
of detailed properties of the documents. A FTM is manifested as a compound linkage of the Indian
buffet process (IBP) [10] and the Dirichlet process (DP). Each document draws latent binary features
from an IBP to select a finite subset of atoms/topics from the DP. In the model details, the DP is
represented in terms of a normalized gamma process [7] with weighting by the binary feature vector,
constituting a document-specific topic distribution in which only a subset of topics are manifested
with non-zero probability.

The key components of the FTM are summarized as follows [24]:

bjt|πt ∼ Bernoulli(bjt|πt), πt =
∏t
l=1 νt, νt|αr ∼ Beta(νt|αr, 1)

θj |{bj:,λ} ∼ Dirichlet(θj |bj: � λ), λt|γ ∼ Gamma(λt|γ, 1)
(1)

where bjt1∈ {0, 1} indicates if document j uses topic t, which is modeled as drawn from an IBP
parameterized by αr under the stick breaking construction [20], as shown in the first line of (1).
λ = {λt}Krt=1 represents the relative mass on Kr topics (Kr could be infinite in principle); λ is
shared across all documents, analogous to the “top layer” of the HDP. θj is the topic distribution
for the jth document, and the expression bj: � λ denotes the pointwise vector product between

1Throughout this paper notation bij are used to denote the entry locates at the ith row and jth column in
matrix B, bj: and b:k are used to represent the jth row and kth column in B respectively.
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bj: and λ, thereby selecting a subset of topics for document j (those for which the corresponding
components of bj: are non-zero). The rest of the FTM is constructed similar to LDA [5], where for
each token n in document j, a topic indicator is drawn as zjn|θj ∼ Mult(zjn|1,θj). Conditional
on zjn and the topics {βk}Krk=1, a word is drawn as wjn|zjn, {βk}Krk=1 ∼ Mult(wjn|1,βzjn), where
βk|η ∼ Dirichlet(βk|η).
Although in (1) bj: is mainly designed to map the global prevalence of topics across the corpus,
λ, to a within-document proportion of topic usage, θj , latent features bj: are informative in their
own right, as they indicate which subset of topics is relevant to a given document. The document-
dependent topic usage bj: may be more important than θj when characterizing the meaning of a
document: θj specifies the frequency with which each of the selected topics is utilized in document
j (this is related to writing style – verbosity or parsimony – and less related to meaning); it may be
more important to just know what underlying topics are used in the document, characterized by bj:.
We therefore make the linkage between documents and an associated matrix via the bj:, not based
on θj (where [23, 8] base the document-matrix linkage via θj or it’s empirical estimate).

2.2 Matrix factorization with binary latent factors and a low-rank assumption

Binary matrix factorization (BMF) [13, 14] is a general framework in which real latent matrix X ∈
RP×N is decomposed as X = LHRT , where L ∈ {0, 1}P×Kl , R ∈ {0, 1}N×Kr are binary, and
H ∈ RKl×Kr is real. The rows of L and R are modeled via IBPs, parameterized by αl and αr
respectively, and Kl and Kr are the truncation levels for the IBPs, which again can be infinite in
principle. The observed matrix is Y, which may be real, binary, or categorial [12]. The observations
are modeled in an element-wise fashion: yij = f(xij). We focus on binary observed matrices,
Y ∈ {0, 1}P×N , and utilize f(·) as a probit model [2]:

yij =

{
1 if x̂ij ≥ 0
0 if x̂ij < 0

(2)

with x̂ij = xij + εij , where εij ∼ N (0, 1).

We generalize the BMF framework by imposing that H is low-rank. Specifically, we impose the
rank-1 expansion H =

∑Kc
k=1 u:kv

T
:k, whereu:k and v:k are column vectors (thus their outer product

is a rank-1 matrix), each of them is modeled here by a Gaussian distribution:

u:k ∼ N (u:k|0, IKl) v:k ∼ N (v:k|0, IKr ) (3)

and Kc is the number of such rank-1 matrices such that Kc < min(Kl,Kr), i.e., H is low-rank.
To motivate this model, consider the representation H =

∑Kc
k=1 u:kv

T
:k in the decomposition X =

LHRT , which implies X =
∑Kc
k=1(Lu:k)(Rv:k)

T . Therefore, we may also express X = ΨΦT ,
with Ψ ∈ RP×Kc and Φ ∈ RN×Kc ; the kth column of Ψ is defined by Lu:k and the kth column
of Φ defined by Rv:k. Consequently, the low-rank assumption for H yields a low-rank model
X = ΨΦT , precisely as in [17, 18]. Thus the definition of Ψ and Φ via the binary matrices
L and R and the linkage matrix H merges previously two distinct lines of matrix factorization
methods. In the context of the application considered here, the decomposition X = LHRT will
prove convenient, as we may share the binary matrices L or R among the topic usage of available
documents. The binary features in L and R are therefore characteristic of the presence/absence of
underlying topics, or related latent processes, and the matrix H provides the mapping of how these
binary features map to observed data.

However, how to specify Kc remains an open question for the above low-rank construction. As a
contribution of this paper, we provide a new means of imposing a low-rank model within the prior.
We model the “significance” of each rank-1 term in the expansion explicitly, using a stochastic
process {sk}Kck=1, therefore H can be decomposed as H =

∑Kc
k=1 sku:kv

T
:k, Kc can be infinity in

principle. As a result, the hierarchical representation in modeling the latent matrix X in probit model
can be summarized as:

x̂ij |
{
li:, rj:, {u:k,v:k, sk}Kck=1

}
∼ N

(
x̂ij |

∑Kc
k=1 sk(li:u:k)(rj:v:k)

T , 1
)

(4)

Note that sk in (4) is similar to the singular value of SVD in spirit. Intuitively, we wish to impose
|sk| to decrease “fast” as the increase of index k, and the rank-1 matrices with large indices will have
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negligible impact over (4), therefore Kc plays a role similar to the truncation level in stick breaking
construction for DP [11] and IBP [20]. To achieve this end, we model each sk as a Gaussian random
variable with a conjugate multiplicative gamma process (MGP) placed on its precision parameter:

sk|τk ∼ N
(
sk|0, τ−1k

)
, τk =

∏k
l=1 δl, δl|αc ∼ Gamma(δl|αc, 1) (5)

The MGP was originally proposed in [3] for learning sparse factor models and further extended for
tree-structured sparse factor models [26] and change-point stick breaking process [25], one of its
properties is that it increasingly shrinks sk towards zero with the increase of index k. Next we make
the above intuition rigorous. Theorem 1 below formally states that if sk is modeled by MGP as in
(5), the rank-1 expansion in (4) will converge when Kc →∞.

Theorem 1. When αc > 1, the sequence
∑Kc
k=1 sk(li:u:k)(rj:v:k)

T converges in `2, as Kc →∞.

Although in MGP Kc is unbounded [3], for computational considerations we would like to truncate
it to a finite value Kc � max (P,N), without much loss of information. As justification, the
following theoretical bound is obtained, in a manner similar to its counterparts in DP [11].

Lemma 1. Denoting MKc
ij =

∑∞
k=Kc+1 sk(li:u:k)(rj:v:k)

T , then ∀ε > 0 we have p{(MKc
ij )2 >

ε} < ab(1−1/αc)
εαKcc

, where a = maxk E(li:u:k)
2, b = maxk E(rj:v:k)2.

Lemma 1 states that, when αc > 1 the approximation error introduced by the truncation level Kc

decays exponentially fast to 0, as Kc → ∞. In Section 3 an MCMC method is developed to
adaptively choose Kc at each iteration, which alleviates us from fixing it a priori. The proof of
Theorem 1 and Lemma 1 can be found in the Supplemental Material.

2.3 Joint learning of FTM and BMF

Via the FTM and BMF framework of the previous subsections, each piece of legislation j is rep-
resented as two latent binary feature vectors bj: and rj:. To jointly model the matrix of votes with
associated text of legislation, a natural choice is to impose bj: = rj:. As a result, the full joint model
can be specified by equations (1) - (5), with bjt in (1) replaced by rjt. Note that the joint model links
the topics characteristic of the text, to the latent binary features characteristic of legislation in the
matrix decomposition; and such linkage leverages statistical strength of the two data source across
the latent variables of the joint model during posterior inference. A graphical representation of the
joint model can be found in the Supplemental Material.

In the context of the model for Y = f(X), with X = LHRT , if one were to learn L and H
based upon available training data, then a new legislation y:N+1 could be predicted if we had access
to r:N+1. Via the construction above, not only do we gain a predictive advantage, because the
new legislation’s latent binary features r:N+1 can be obtained from modeling its document as in
(1), but also the model provides powerful interpretative insights. Specifically the topics inferred
from the documents may be used to interpret the latent binary features associated with the matrix
factorization. These advantages will be demonstrated through experiments on legislative roll-call
data in Section 4.

2.4 Related work

The ideal point topic model (IPTM) was developed in [8], where the supervised Latent Dirichlet
Allocation (sLDA) [4] model was used to link empirical topic-usage frequencies to the latent factors
via regression. In that work the dimension of the latent factors was set to 1, e.g., fixingKc = 1 in our
nomenclature. In [23] the authors proposed to jointly analyze the voting matrix and the associated
text through a mixture model, where each legislation’s latent feature factor is clustered to a mixture
component in coupled with that legislation’s document topic distribution θ. Note that in their case
each piece of legislation can only belong to one cluster, while in our case the latent binary features
for each document can be effectively treated as being grouped to multiple clusters [13] (a mixed-
membership model, manifested in terms of the binary feature vectors). Similar research in linking
collaborative filtering and topic models can also be found in web content recommendation [1], movie
recommendation[19], and scientific paper recommendation [22]. None of these methods makes use
of the binary indicators as the characterization of associated documents, but perform linking via the
topic distribution θ and the latent (real) features in different ways.
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3 Posterior Inference
We use Gibbs sampling for posterior inference over the latent variables, and only sampling equations
that are unique for this model are discussed here. The rest are similar to those in [24, 13]. In the
following we use p(·|−) to denote the conditional posterior of one variable given on all others.

Sampling {v:k,u:k}k=1:Kc Based on (3) and (4) the conditional posterior of v:k can be writ-
ten as p(v:k|−) ∝

∏N
j=1N (x̂:j |

∑Kc
k=1 sk(Lu:k)(rj:v:k), 1)N (v:k|0, IKr ). It can be shown that

p(v:k|−) = N (v:k|µv:k
,Σv:k

), with mean µv:k
= skΣv:k

∑N
j=1(Lu:krj:)

T x̃−k:j and covari-

ance matrix Σv:k
= [IKr + s2k

∑N
j=1(Lu:krj:)

T (Lu:krj:)]
−1, where x̃−k:j = x̂:j − LUVTrTj: +

Lu:krj:v:k. By repeating the above procedure p(u:k|−) can be derived similarly.

Sampling {sk}k=1:Kc Based on (4) and (5) the conditional posterior of sk can be written
as p(sk|−) ∝

∏N
j=1N (x̂:j |

∑Kc
k=1 sk(Lu:k)(rj:v:k), 1)N (sk|0, τ−1k ). It can be shown that

p(sk|−) = N
(
sk|µsk , σ2

sk

)
, with mean µsk = σ2

sk

∑N
j=1((Lu:k)(rj:v:k))

T x̃−k:j and variance

σ2
sk

= 1/(τk +
∑N
j=1((Lu:k)(rj:v:k))

T ((Lu:k)(rj:v:k))).

Sampling {τk, δk}k=1:Kc Based on (5), given a fixed truncation levelKc it can be sampled directly
from its posterior distribution: p(δk|−) = Gamma

(
δk|αc + Kc−k+1

2 , 1 + 1
2

∑Kc
l=k ν

(k)
l s2l

)
, where

ν
(k)
l =

∏l
t=1,t6=k δt. τk can then be reconstructed from δ1:k as in (5).

Sampling {rjt}j=1:N,t=1:Kr Similar to the derivation in [24], p(rjt = 1|−) = 1 if Njt >
0, where Njt denotes the number of times document j used topic t. When Njt = 0,
based on (1) and (4) the conditional posterior of rjt can be written as p(rjt = 1|−) ∝

πt
πt+2λt (1−πt) exp{−

1
2 [(Lh

T
t:)
T (LhTt:)− 2(LhTt:)

T x̃−k:j ]}, where ht: represents the tth row of H =∑Kc
k=1 sku:kv

T
:k; and p(rjt = 0|−) ∝ 2λt (1−πt)

πt+2λt (1−πt) . {lit}t=1:Kl
i=1:P is sampled as described in [13].

Adaptive sampler for MGP The above Gibbs sampler needs a predefined truncation level Kc.
In [3, 26] the authors proposed an adaptive sampler, tuning Kc as the sampler progresses, with
convergence of the chain guaranteed [16]. Specifically, the adaptation procedure is triggered with
probability p(t) = exp(z0 + z1t) at the tth iteration, with z0, z1 chosen so that adaptation occurs
frequently at the beginning of the chain but decreases exponentially fast. When the adaptation is
triggered in the tth iteration, let qκ(t) = {k|d∞(skLu:kv

T
:kR

T ) ≤ κ} denotes in iteration t the
indices of the rank-1 matrices with the maximum-valued entry less than some pre-defined threshold
κ, which intuitively has a negligible contribution at the tth iteration, and thus are deleted andKc will
decrease. On the other hand, if qκ(t) is empty then it suggests that more rank-1 matrices are needed,
in this case we increase Kc by one and draw u:Kc ,v:Kc from their prior distributions respectively.

4 Experimental Results

4.1 Experiment setting

We have performed joint matrix and text analysis, considering the House of Representatives (House),
sessions 106 - 111 2; we model each session’s roll-call votes separately as binary matrix Y. Entry
yij = 1 denotes that the ith legislator’s response to legislation j is either “Yea” or “Yes” , and yij
= 0 denotes that the corresponding response is either “Nay” or “No”. The data are preprocessed in
the same way as described in [8]. We recommend to set the IBP hyperparameters αl = αr = 1,
MGP hyperparameters αc = 3, FTM hyperparameters γ = 5 and topic model hyperparameter
η = 0.01. We also considered using a random-walk MH algorithm with non-informative gamma
prior to infer those hyperparameters, as described in [24, 3], and the Markov chain manifested
similar mixing performance. The truncation level Kc in the MGP is not fixed, but inferred from
the adaptive sampler, with threshold parameter κ set to 0.05 (it is recommended to be set small for
most applications). In the study below, for each model we run 5000 iterations of the Gibbs sampler,
with the first 1000 iterations discarded as burn-in, and 400 samples are collected, taking every tenth
iteration afterwards, to perform Bayesian estimate on the object of interest.

2These data are available from thomas.loc.gov
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4.2 Predicting random missing votes

In this section we study the classical problem of estimating the values of matrix data that are missing
uniformly at random (in-matrix missing votes), without the use of associated documents. We com-
pare the model proposed in (4) to the probabilistic matrix factorization (PMF) found in [17, 18]. This
is done by decomposing the latent matrix X = ΨΦT , where each row of Ψ and ΦT are drawn from
a Gaussian distribution with mean and covariance matrix modeled by a Gaussian-Wishart distribu-
tion. To study the behavior of the proposed MGP prior in (5), we (i) vary the number of columns
(rank) Kc in Ψ and Φ as a free parameter, and call this model PMF; and (ii) incorporate MGP into
the decomposition of X = ΨSΦT where S ∈ RKc×Kc is a diagonal matrix with each diagonal ele-
ment specified as sk. The model in (ii) is called PMF+MGP. Additionally, to check if the low-rank
assumption detailed in Section 2.2 is effective for BMF, we also compare the performance of the
BMF model originally proposed in [13], which we term BMF-Original.

We compared these models on predicting the missing values selected uniformly at random, with
different percentage (90%, 95%, 99%) of missingness. This study has been done on House data
from the 106 to 111 sessions; however, to conserve space we only summarized the experimental
results on the 110th House data, in Figure 1; similar results are observed across all sessions. In
Figure 1 each panel corresponds to a certain percentage of missingness; the horizontal axis is the
number of columns (rank), which varies as a free parameter of PMF, while the vertical axis is
the prediction accuracy. MGP is observed to be generally effective in modeling the rank across
three panels, and the low-rank assumption is critical to get good performance for the BMF. When
the percentage of missingness is relatively low, e.g., 90% or 95%, PMF performs better than BMF,
however when the percentage of missingness is high e.g., 99%, the BMF (with low rank assumption)
is very competitive with PMF. This is probably because of the way BMF encourages the sharing of
statistical strength among all rows and columns via the matrix H as described in [13], which is most
effective when data is scarce.

4.3 Predicting new bills based on text

We study the predictive power of the proposed model when the legislative roll-call votes and the
associated bill documents are modeled jointly, as described in Section 2.3. We compare our proposed
model with the IPTM in [8], where the authors fixed the rank Kc = 1 in IPTM; we term this
model IPTM(Kc = 1). In [8] the authors suggested that fixing the rank to one might be over-
restrictive, thus we also propose to model the rank in the ideal point model using MGP, in a similar
way to how this was done for the PMF model, and call this model IPTM. We also compare our
model with that in [23], where the authors proposed to combine the factor analysis model and topic
model via a compounded mixture model, with all sessions of roll-call data are modeled jointly
via a Markov process. Since our main goal is to predict new bills but not modeling the matrices
dynamically, in the following experiments we remove the Markov process but model each session of
House data separately; we call this model FATM. In [23] the authors proposed to use a beta-Bernoulli
distributed binary variable bk to model if the kth rank-1 matrix is used in matrix decomposition.
When performing posterior inference we find that bk tends to be easily trapped in local maxima,
while MGP, which models the significance of usage (but not the binary usage) of each kth rank-1
matrix via sk, smoother estimates and better mixing were observed.

For each session the bills are partitioned into 6-folds, and we iteratively remove a fold, and train the
model with the remaining folds; predictions are then performed on the bills in the removed fold. The
experiment results are summarized in Figure 2. Note that since rj: is modeled via the stick-breaking
construction of IBP as in (1), the total number of latent binary features Kr is unbounded, and we
face the risk of having the latent binary features important for explaining voting Y and important for
explaining the associated text learned separately. This may lead to the undesirable consequence that
the latent features learned from text are not discriminative in predicting a new piece of legislation.
To reduce such risk, in practice we could either set αr such that it strongly favor fewer latent binary
features, or we can truncate the stick breaking construction at a pre-defined level Kr. For a clearer
comparison with other models, where the number of topics are fixed, we choose the second approach
and let Kr vary as the maximum number of possible topics.

Across all sessions IPTM consistently performs better than its counterpart when Kc = 1; this again
demonstrates the effectiveness of MGP in modeling the rank. Although there is no significant advan-
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Figure 1: Comparison of prediction accuracy for votes missing uniformly at random, for the 110th House
data. Different panels corresponds to different percentage of missingness, for each panel the vertical axis
represents accuracy and horizontal axis represents the rank set for PMF. For PMF+MGP and our proposed
method, inferred rank Kc is shown for the most-probable collection sample.
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Figure 2: Prediction accuracy for held-out legislation across 106th - 111th House data; prediction of an entire
column of missing votes based on text. In each panel the vertical axis represents accuracy and the horizontal
axis represents the number of topics used for each model. Results are averaged across 6-folds, with variances
are too small to see.

tage of our proposed model when the truncation on the number of topicsKr (horizontal axis) is small
(e.g., 30-50), over-fitting is observed for all models except our proposed model. As we increase the
number of topics, the performance of other models drop significantly (vertical axis). Across all five
sessions, the best quantitative results are obtained by the proposed model when Kr > 100.

4.4 Latent binary feature interpretation

In this study we partition all the bills into two groups: (i) bills for which there is near-unanimous
agreement, with “Yea” or “Yes” more than 90%; (ii) contentious bills with percentage of votes
received as “Yea” or “Yes” less than 60%. By linking the inferred binary latent features to the
topics for those two groups, we can get insight into the characteristics of legislation and voting
patterns, e.g., what influenced a near-unanimous yes vote, and what influenced more contention.
Figure 3 compares the latent feature usage pattern of those two groups; the horizontal axis represents
the latent features, where we set Kr = 100 for illustration purpose, and the vertical axis is the
aggregated frequency that a feature/topic is used by all the bills in each of those two groups. The
frequency is normalized within each group for easy interpretation. For each group, we select three
discriminative features: ones heavily used in one group but rarely used in the other (these selected
features are highlighted in blue/red). For example, in the left panel the features highlighted in blue
are widely used by bills in the left group, but rarely used by bills in the right group. As observed

7



0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Binary feature usage pattern for unanimous agreed bills 

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1
Binary feature usage pattern for highly debated bills

Topic 22

Topic 62 Topic 73

Topic 31 Topic 83
Topic 38 Topic 22

Topic 38

Topic 31

Topic 62 Topic 73

Topic 83

Figure 3: Comparison of the frequencies of binary features usage between two groups of bills, left: near-
unanimous affirmative bills (e.g., bills with percentage of votes received as “Yes” or “Yea” is more than 90%).
Right: contentious bills (e.g., bills with percentage of votes received as “Yes” or “Yea” is less than 60%).
Data from 110th House, when Kr = 100. The vertical axis represents the normalized frequency of using
feature/topic within the corresponding group. The six most discriminative features/topics (labeled in the figure)
are shown in Table 1

Table 1: Six discriminative topics of unanimous agreed/highly debated bills learned from the 110th house of
representatives, with top-ten most probable words shown. (R) and (B) represent the topics depicted in Figure 3
as red and blue respectively.

TOPIC 22 (B) TOPIC 31(R) TOPIC 38 (R) TOPIC 62 (B) TOPIC 73 (B) TOPIC 83 (R)
CHILDREN CONCURRENT RESOLUTION TAX PEOPLE NATION CLAUSE

CHILD ADJOURN CORPORATION WORLD ATTACK PRINT
YOUTH MAJORITY LEADER TAXABLE HOME TERRORIST WAIVE

PORNOGRAPHY DESIGNEE CREDIT SANITATION PEOPLE SUBSTITUTE
INTERNET AVIATION PENALTY WATER SEPTEMBER COMMITTEE AMENDMENT

FATHER RECESS REVENUE INTERNATIONAL VOLUNTEER READ
FAMILY MINORITY LEADER TAXPAYER SOUTHERN CITIZEN DEBATE
PARENT FEBRUARY SPECIAL COMPENSATION PAKISTAN OFFER
SCHOOL MOTION OFFER FILE ASSOCIATION LEGITIMATE DIVIDE AND CONTROL

EMERGENCY STAND SUBSTITUTE ECONOMIC FUTURE MOTION

from Figure 3, the learned binary features are discriminative, as the usage pattern for those two
groups are quite different.

We also study the interpretation of those latent features by linking them to the topics inferred from
the texts. As an example, those six highlighted features are linked to their corresponding topics
and depicted in Table 1, with the top-ten most probable words within each topic shown. For the
unanimous agreed bills, we can read from Table 1 that they are highly probable to be related to
topics about the education of youth (Topic 22), or the prevention of terrorist (Topic 73). While the
bills from the contentious group tend to more related to making amendments to an existing piece of
legislation (Topic 83) or discussing taxation (Topic 38). Note that compared to conventional topic
modeling, these inferred topics are not only informative in semantic meaning of the bills, but also
discriminative in predicting the outcome of the bills.

5 Conclusion

A new methodology has been developed for the joint analysis of a matrix with associated text,
based on sharing latent binary features modeled via the Indian buffet process. The model has been
demonstrated on analysis of voting data from the US House of Representatives. Imposition of a low-
rank representation for the latent real matrix has proven important, with this done in a new manner
via the multiplicative gamma process. Encouraging quantitative results are demonstrated, and the
model has also been shown to yield interesting insights into the meaning of the latent features. The
sharing of latent binary features provides a general joint learning framework for Indian buffet process
based models [9], where focused topic model and binary matrix factorization are two examples,
exploring other possibilities in different scenarios could be an interesting direction.
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