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Abstract

The Indian Buffet Process (IBP) is a non-
parametric prior for latent feature models in
which observations are influenced by a com-
bination of hidden features. For example,
images may be composed of several objects
and sounds may consist of several notes. La-
tent feature models seek to infer these un-
observed features from a set of observations;
the IBP provides a principled prior in situa-
tions where the number of hidden features is
unknown. Current inference methods for the
IBP have all relied on sampling. While these
methods are guaranteed to be accurate in the
limit, samplers for the IBP tend to mix slowly
in practice. We develop a deterministic vari-
ational method for inference in the IBP based
on a truncated stick-breaking approximation,
provide theoretical bounds on the truncation
error, and evaluate our method in several
data regimes.

1 INTRODUCTION

Many unsupervised learning problems seek to identify
a set of unobserved, co-occurring features from a set
of observations. For example, given images composed
of various objects, we may wish to identify the set of
unique objects and determine which images contain
which objects. Similarly, we may wish to extract a set
of notes or chords from an audio file as well as when
each note was played. In scenarios such as these, the
number of latent features is often unknown a priori.
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Unfortunately, even though the true number of fea-
tures is unknown, most traditional machine learning
approaches take the number of latent features as an
input. In these situations, standard model selection
approaches define and manage the trade-off between
model complexity and model fit. In contrast, non-
parametric Bayesian approaches treat the number of
features as a random quantity to be determined as part
of the posterior inference procedure.

The most common nonparametric prior for latent fea-
ture models is the Indian Buffet Process (IBP) (Grif-
fiths & Ghahramani, 2005). The IBP is a prior on
infinite binary matrices that allows us to simultane-
ously infer which features influence a set of observa-
tions and how many features there are. The form of
the prior ensures that only a finite number of features
will be present in any finite set of observations, but
more features may appear as more observations are
received. This property is both natural and desirable
if we consider, for example, a set of images: any one
image contains a finite number of objects, but, as we
see more images, we expect to see objects not present
in the previous images.

While an attractive model, the combinatorial nature
of the IBP makes inference particularly challenging.
Even if we limit ourselves to K features for N ob-
jects, there exist O(2NK) possible feature assignments.
As a result, sampling-based inference procedures for
the IBP often suffer because they assign specific val-
ues to the feature-assignment variables. Hard vari-
able assignments give samplers less flexibility to move
between optima, and the samplers may need large
amounts of time to escape small optima and find re-
gions with high probability mass. Unfortunately, all
current inference procedures for the IBP rely on sam-
pling. These approaches include Gibbs sampling (Grif-
fiths & Ghahramani, 2005) (which may be augmented
with Metropolis split-merge proposals (Meeds et al.,
2007)), slice sampling (Teh et al., 2007), and particle
filtering (Wood & Griffiths, 2007).



Variational Inference for the Indian Buffet Process

Mean field variational methods, which approximate
the true posterior via a simpler distribution, pro-
vide a deterministic alternative to sampling-based ap-
proaches. Inference involves using optimisation tech-
niques to find a good approximate posterior. For
the IBP, the approximating distribution maintains a
separate probability for each feature-observation as-
signment. Optimising these probability values is also
fraught with local optima, but the soft variable assign-
ments give the variational method flexibility lacking
in the samplers. In the early stages of the inference,
the soft-assignments can help the variational method
avoid bad local optima. Several variational approxi-
mations have provided benefits for other nonparamet-
ric Bayesian models, including Dirichlet Processes (e.g.
(Blei & Jordan, 2004)) and Gaussian Processes (e.g.
(Winther, 2000)). Of all the nonparametric Bayesian
models studied so far, however, the IBP is the most
combinatorial and is therefore in the most need of a
more efficient inference algorithm.

The rest of the paper is organised as follows. Section 2
reviews the IBP model and current sampling-based in-
ference techniques. Section 3 presents our variational
approach based on a truncated representation of the
IBP. Building on ideas from (Teh et al., 2007) and
(Thibaux & Jordan, 2007), we also derive bounds on
the expected error due to the use of a truncated ap-
proximation; these bounds can serve as guidelines for
what level of truncation may be appropriate. Section
4 demonstrates how our variational approach allows
us to scale to higher dimensional data sets while still
getting good predictive results.

2 THE INDIAN BUFFET PROCESS

Let X be an N×D matrix where each of the N rows
contains a D-dimensional observation. In this paper,
we focus on a model in which X can be approximated
by ZA where Z is an N ×K binary matrix and A
is a K×D matrix. Each column of Z corresponds
to the presence of a latent feature; znk = Z(n, k) is
one if feature k is present in observation n and zero
otherwise. The values for feature k are stored in row
k of A. The observed data X is then given by ZA+ ε,
where ε is some measurement noise (see Figure 1). We
assume that the noise is independent of Z and A and
is uncorrelated across observations.

Given X, we wish to find the posterior distribution of
Z and A. We do this using Bayes rule

p(Z,A|X) ∝ p(X|Z,A)p(Z)p(A)

where we have assumed that Z and A are a priori inde-
pendent. The application will determine the likelihood
function p(X|Z,A) and the feature prior p(A). We are

X Z A
+= ×. . .

...

D

D

N N ε

K

K

Figure 1: The latent feature model proposes the data
X is the product of Z and A with some noise.

left with placing a prior on Z. Since we often do not
know K, we wish to place a flexible prior on Z that
allows K to be determined at inference time.

2.1 THE IBP PRIOR

The Indian Buffet Process places the following prior
on [Z], a canonical form of Z that is invariant to the
ordering of the features (see (Griffiths & Ghahramani,
2005) for details):

p([Z]) =
αK∏

h∈{0,1}N\0Kh!
exp {−αHN} ·

K∏
k=1

(N −mk)!(mk − 1)!
N !

, (1)

where K is the number of nonzero columns in Z, mk

is the number of ones in column k of Z, HN is the
N th harmonic number, and Kh is the number of oc-
currences of the non-zero binary vector h among the
columns in Z. The parameter α controls the expected
number of features present in each observation.

The following culinary metaphor is one way to sample
a matrix Z from the prior described in Equation (1).
Imagine the rows of Z correspond to customers and
the columns correspond to dishes in an infinitely long
(Indian) buffet. The first customer takes the first
Poisson(α) dishes. The ith customer then takes dishes
that have been previously sampled with probability
mk/i, where mk is the number of people who have al-
ready sampled dish k. He also takes Poisson(α/i) new
dishes. Then, znk is one if customer n tried the kth

dish and zero otherwise. This process is infinitely ex-
changeable, which means that the order in which the
customers attend the buffet has no impact on the dis-
tribution of Z (up to permutations of the columns).

The Indian buffet metaphor leads directly to a Gibbs
sampler. Bayes’ rule states p(znk|Z−nk, A,X) ∝
p(X|A,Z)p(znk|Z−nk). The likelihood term p(X|A,Z)
is easily computed from the noise model while the prior
term p(znk|Z−nk) is obtained by assuming that cus-
tomer n was the last to enter the restaurant (this as-
sumption is valid due to exchangeability). The prior
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term is p(znk|Z−nk) = mK/N for active features.
New features are sampled by combining the likelihood
model with the Poisson(α/N) prior on the number
of new dishes a customer will try. When the prior
on A is conjugate to the likelihood model, A can be
marginalised out, resulting in a collapsed Gibbs sam-
pler. If the likelihood is not conjugate, or, as in the
linear-Gaussian model, if p(X|Z) is much more expen-
sive to compute than p(X|Z,A), we can also sample
the matrix A based on its posterior distribution.

2.2 STICK-BREAKING CONSTRUCTION

While the restaurant construction of the IBP directly
lends itself to a Gibbs sampler, the stick-breaking con-
struction of (Teh et al., 2007) is at the heart of our
variational approach. To generate a matrix Z from
the IBP prior using the stick-breaking construction, we
begin by assigning a parameter πk ∈ (0, 1) to each col-
umn of Z. Given πk, each znk in column k is sampled
as an independent Bernoulli(πk). Since each ‘customer’
samples a dish independently of the other customers,
it is clear in this representation that the ordering of
the customers does not impact the distribution.

The πk themselves are generated by a stick-breaking
process. We first draw a sequence of independent ran-
dom variables v1, v2, . . ., each distributed Beta(α, 1).
Next, we let π1 = v1. For each subsequent k, we let
πk = vkπk−1 =

∏k
i=1 vi, resulting in a decreasing se-

quence of weights πk. The expression for πk shows
that, in a set of N observations, the probability of see-
ing feature k decreases exponentially with k. We also
see that larger values of α mean that we expect to see
more features in the data.

3 VARIATIONAL INFERENCE

In this section, we focus on variational inference pro-
cedures for the linear-Gaussian likelihood model (Grif-
fiths & Ghahramani, 2005), in which A and ε are zero
mean Gaussians with variances σ2

A and σ2
n respectively.

However, the updates can be adapted to other expo-
nential family likelihood models. As an example, we
briefly discuss the infinite ICA model (Knowles &
Ghahramani, 2007).

We denote the set of hidden variables in the IBP
by W = {π,Z,A} and the set of parameters by
θ = {α, σ2

A, σ
2
n}. Computing the true log posterior

ln p(W |X,θ) = ln p(W ,X|θ) − ln p(X|θ) is difficult
due to the intractability of computing the log marginal
probability ln p(X|θ) = ln

∫
p(X,W |θ)dW .

Mean field variational methods approximate the true
posterior with a variational distribution q(W ) from
some tractable family of distributions Q (Beal, 2003;

Wainwright & Jordan, 2008). Inference in this ap-
proach then reduces to finding the member q ∈ Q that
minimises the KL divergence D(q(W )||p(W |X,θ)).
Since the KL divergence D(q||p) is nonnegative and
equal to zero iff p = q, the unrestricted solution to
our problem is to set q(W ) = p(W |X,θ). However,
this general optimisation problem is intractable. We
therefore restrict Q to a parameterised family of dis-
tributions for which this optimisation is tractable. For
the IBP, we will let Q be the factorised family

q(W ) = qτ (π)qφ(A)qν(Z) (2)

where τ , φ, and ν are the variational parameters that
we optimise to minimise D(q||p). Inference then con-
sists of optimising the parameters of the approximat-
ing distribution to most closely match the true poste-
rior. This optimisation is equivalent to maximising a
lower bound on the evidence:

arg max
τ,φ,ν

ln p(X|θ)−D(q||p)

= arg max
τ,φ,ν

H[q] + Eq[ln(p(X,W |θ)]. (3)

where H[q] is the entropy of distribution q. There-
fore, to minimise D(q||p), we can iteratively update
the variational parameters so as to maximise the right
side of Equation (3).

We derive two mean field approximations, both of
which apply a truncation level K to the maximum
number of features in the variational distribution. The
first minimises the KL-divergence between the varia-
tional distribution and a finite approximation pK to
the IBP described below; we refer to this approach as
the finite variational method. The second approach
minimises the KL-divergence to the true IBP posterior.
We call this approach the infinite variational method
because, while our variational distribution is finite, its
updates are based the true IBP posterior over an infi-
nite number of features.

Most of the required expectations are straightforward
to compute, and many of the parameter updates fol-
low directly from standard update equations for varia-
tional inference in the exponential family (Beal, 2003;
Wainwright & Jordan, 2008). We focus on the non-
trivial computations and reserve the full update equa-
tions for a technical report.

3.1 FINITE VARIATIONAL APPROACH

The finite variational method uses a finite Beta-
Bernoulli approximation to the IBP (Griffiths &
Ghahramani, 2005). The finite Beta-Bernoulli model
with K features first draws each feature’s probability
πk independently from Beta(α/K, 1). Then, each znk
is independently drawn from Bernoulli(πk) for all n.
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Our finite variational approach approximates the true
IBP model p(W ,X|θ) with pK(W ,X|θ) in Equa-
tion (3) where pK uses the prior on Z defined by
the finite Beta-Bernoulli model. While variational
inference in the finite Beta-Bernoulli model is not
the same as variational inference with respect to the
true IBP posterior, the variational updates are signif-
icantly more straightforward and, in the limit of large
K, the finite Beta-Bernoulli approximation is equiva-
lent to the IBP. We use a fully factorised variational
distribution qτk

(πk) = Beta(πk; τk1, τk2), qφk
(Ak·) =

Normal(Ak·; φ̄k,Φk), qνnk
(znk) = Bernoulli(znk; νnk).

3.2 INFINITE VARIATIONAL
APPROACH

The second variational approach, similar to the one
used in (Blei & Jordan, 2004), uses a truncated ver-
sion of the stick-breaking construction for the IBP as
the approximating variational model q. Instead of di-
rectly approximating the distribution of πk in our vari-
ational model, we will work with the distribution of
the stick-breaking variables v = {v1, . . . , vK}. In our
truncated model with truncation level K, the proba-
bility πk of feature k is

∏k
i=1 vi for k ≤ K and zero

otherwise. The advantage of using v as our hidden
variable is that under the IBP prior, the {v1 . . . vK}
are independent draws from the Beta distribution,
whereas the {π1 . . . πK} are dependent. We there-
fore use the factorised variational distribution q(W ) =
qτ (v)qφ(A)qν(Z) where qτk

(vk) = Beta(vk; τk1, τk2),
qφk

(Ak·) = Normal(Ak·; φ̄k,Φk), and qνnk
(znk) =

Bernoulli(Znk; νnk).

3.3 VARIATIONAL LOWER BOUND

We split the expectation in Equation (3) into terms de-
pending on each of the latent variables. Here, v are the
stick-breaking parameters in the infinite approach; the
expression for the finite Beta approximation is identi-
cal except with π substituted into the expectations.

ln p(X|θ) ≥H[q] +
∑K
k=1 Ev [ln p(vk|α)]

+
∑K
k=1 EA

[
ln p(Ak·|σ2

A)
]

+
∑K
k=1

∑N
n=1 Ev,Z [ln p(znk|v)]

+
∑N
n=1 EZ,A

[
ln p(Xn·|Z,A, σ2

n)
]

In the finite Beta approximation, all of the expecta-
tions are straightforward exponential family calcula-
tions. In the infinite case, the key difficulty lies in
computing the expectations Ev,Z [ln p(znk|v)]. We de-

compose this expectation as

Ev,Z [ln p(znk|v)]

=Ev,Z

[
ln p(znk = 1|v)I(znk=1)p(znk = 0|v)I(znk=0)

]
=νnk

(∑k
m=1 ψ(τk2)− ψ(τk1 + τk2)

)
+ (1− νnk)Ev

[
ln
(
1−

∏k
m=1 vm

)]
where I(·) is the indicator function that its argument
is true and ψ(·) is the digamma function. We are still
left with the problem of evaluating the expectation
Ev[ln(1 −

∏k
m=1 vm)], or alternatively, computing a

lower bound for the expression.

There are computationally intensive methods for find-
ing arbitrarily good lower bounds for this term using
a Taylor series expansion of ln(1 − x). However, we
present a more computationally efficient bound that is
only slightly looser. We first introduce a multinomial
distribution qk(y) that we will optimise to get as tight
a lower bound as possible and use Jensen’s inequality:

Ev

[
ln
(
1−

∏k
m=1 vm

)]
=Ev

[
ln
(∑k

y=1 qk(y)
(1−vy)

Qy−1
m=1 vm

qk(y)

)]
≥EvEy

[
ln
(
(1− vy)

∏y−1
m=1 vm

)
− ln qk(y)

]
=Ey

[
ψ(τy2) +

∑y−1
m=1 ψ(τm1)−

∑y
m=1 ψ(τm1 + τm2)

]
+H(qk).

These equations hold for any qk. We take derivatives
to find the qk that maximises the lower bound:

qk(y) ∝ e(ψ(τy2)+
Py−1

m=1 ψ(τm1)−
Py

m=1 ψ(τm1+τm2))

where the proportionality is required to make qk a
valid distribution. We can plug this multinomial lower
bound for Ev,Z [ln p(znk|v)] back into the lower bound
on ln p(X|θ) and then optimise this lower bound.

3.4 PARAMETER UPDATES

The parameter updates in the finite model are all
straightforward updates from the exponential family
(Wainwright & Jordan, 2008). In the infinite case,
updates for the variational parameter for A remain
standard exponential family updates. The update on
Z is also relatively straightforward to compute

qνnk
(znk) ∝ exp

(
Ev,A,Z−nk

[ln p(W ,X|θ)]
)

∝ exp
(

EA,Z−nk
(ln p(Xn·|Zn·,A, σ

2
n))

+ Ev(ln p(znk|v))
)
,
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where we can again approximate Ev(ln p(znk|v)) with
a Taylor series or the multinomial method presented
in Section 3.3.

The update for the stick-breaking variables v is more
complex because the variational updates no longer
stay in the exponential family due to the terms
Ev(ln p(znk|v)). If we use a Taylor series approxima-
tion for this term, we no longer have closed form up-
dates for v and must resort to numerical optimisation.
If we use the multinomial lower bound, then for fixed
qk(y), terms decompose independently for each vm and
we get a closed form exponential family update. We
will use the latter approach in our results section.

3.5 ICA MODEL

An infinite version of the ICA model based on the IBP
was introduced by (Knowles & Ghahramani, 2007).
Instead of simply modeling the data X as centered
around ZA, the infinite ICA model introduces an ad-
ditional signal matrix S so that the data is centered
around (Z � S)A, where � denotes element-wise mul-
tiplication. Placing a Laplace prior on S allows it
to modulate the feature assignment matrix Z. Varia-
tional updates for the infinite ICA model are straight-
forward except those for S: we apply a Laplace approx-
imation and numerically optimise the parameters.

3.6 TRUNCATION ERROR

Both of our variational inference approaches require us
to choose a truncation level K for our variational dis-
tribution. Building on results from (Thibaux & Jor-
dan, 2007; Teh et al., 2007), we present bounds on
how close the marginal distributions are when using a
truncated stick-breaking prior and the true IBP stick-
breaking prior. Our development parallels bounds for
the Dirichlet Process by (Ishwaran & James, 2001) and
presents the first such truncation bounds for the IBP.

Intuitively, the error in the truncation will depend on
the probability that, given N observations, we ob-
serve features beyond the first K in the data (oth-
erwise the truncation should have no effect). Let us
denote the marginal distribution of observation X by
m∞(X) when we integrate over W drawn from the
IBP. Let mK(X) be the marginal distribution when
W are drawn from the truncated stick-breaking prior
with truncation level K.

Using the Beta Process representation for the IBP
(Thibaux & Jordan, 2007) and using an analysis sim-
ilar to the one in (Ishwaran & James, 2001), we can
show that the difference between these distributions is

at most
1
4

∫
|mK(X)−m∞(X)|dX

≤ Pr(∃k > K,n with znk = 1)
= 1− Pr (all zik = 0, i ∈ {1, . . . , N}, k > K)

= 1− E

( ∞∏
i=K+1

(1− πi)

)N (4)

We present here one formal bound for this difference.
The extended version of this paper will include simi-
lar bounds which can be derived directly by applying
Jensen’s inequality to the expectation above as well as
a heuristic bound which tends to be tighter in practice.

We begin the derivation of the truncation bound by
applying Jensen’s inequality to equation (4):

−E

( ∞∏
i=K+1

(1− πi)

)N ≤ −

(
E

[ ∞∏
i=K+1

(1− πi)

])N
(5)

The Beta Process construction for the IBP (Thibaux &
Jordan, 2007) implies that the sequence π1, π2, . . . can
be modeled as a Poisson process on the unit interval
(0, 1) with rate µ(x)dx = αx−1dx. It follows that the
unordered truncated sequence πK+1, πK+2, . . . may be
modeled as a Poisson process on the interval (0, πK)
with the same rate. The Levy-Khintchine formula
states that the moment generating function of a Pois-
son process X with rate µ can be written as

E[exp(f(X))] = exp
(∫

(exp(f(x))− 1)µ(x)dx
)

where f(X) =
∑
x∈X f(x). We apply the Levy-

Khintchine formula to simplify the inner expectation
of equation (5):

E

[ ∞∏
i=K+1

(1− πi)

]
= E

[
exp

( ∞∑
i=K+1

ln(1− πi)

)]

= EπK

[
exp

(∫ πK

0

(exp(ln(1− x))− 1)µ(x)dx
)]

= EπK
[exp (−απK)] .

Finally, we apply Jensen’s inequality, using the fact
that πK is the product of independent Beta(α, 1) vari-
ables to get

EπK
[exp (−απK)] ≥ exp (Eπk

[−απK ])

= exp

(
−α

(
α

1 + α

)K)
Substituting the expression into equation (5) gives

1
4

∫
|mK(X)−m∞(X)|dX ≤ 1−exp

(
−Nα

(
α

1 + α

)K)
(6)
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Similar to truncation bound for the Dirichlet Process,
we see that for fixed K, the expected error increases
with N and α— the factors that increase the expected
number of features in a dataset. However, the bound
decreases exponentially quickly as K is increased.

Figure 2 shows our truncation bound and the true L1

distance based on 1000 Monte Carlo simulations of an
IBP matrix with N = 30 observations and α = 5. As
expected, the bound decreases exponentially fast with
the truncation level K. However, the bound is fairly
loose. In practice, we find that heuristic bound us-
ing Taylor expansions (see extended version) provides
much tighter estimates of the loss.
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Figure 2: Truncation bound and true L1 distance.

4 RESULTS

We compared our variational approaches with both
Gibbs sampling and particle filtering. Mean field vari-
ational algorithms are only guaranteed to converge to
a local optima, so we applied standard optimisation
tricks to avoid issues of bad minima. Each run was
given a number of random restarts and the hyperpa-
rameters for the noise and feature variance were tem-
pered to smooth the posterior. We also experimented
with several other techniques such as gradually in-
troducing data and merging correlated features that
were less useful as the size and dimensionality of the
datasets increased; they were not included in the final
experiments.

The sampling methods we compared against were the
collapsed Gibbs sampler of (Griffiths & Ghahramani,
2005) and a partially-uncollapsed alternative in which
instantiated features are explicitly represented and
new features are integrated out. In contrast to the
variational methods, the number of features present in
the IBP matrix will adaptively grow or shrink in the
samplers. To provide a fair comparison with the varia-
tional approaches, we also tested finite variants of the
collapsed and uncollapsed Gibbs samplers. Finally, we
also tested against the particle filter of (Wood & Grif-
fiths, 2007). All sampling methods were tempered and
given an equal number of restarts as the variational
methods.

Both the variational and Gibbs sampling algorithms
were heavily optimised for efficient matrix computa-
tion so we could evaluate the algorithms both on their
running times and the quality of the inference. For the
particle filter, we used the implementation provided by
(Wood & Griffiths, 2007). To measure the quality of
these methods, we held out one third of the observa-
tions on the last half of the dataset. Once the inference
was complete, we computed the predictive likelihood
of the held out data and averaged over restarts.

4.1 SYNTHETIC DATA

The synthetic datasets consisted of Z and A matrices
randomly generated from the truncated stick-breaking
prior. Figure 3 shows the evolution of the test-
likelihood over a thirty minute interval for a dataset
with 500 observations of 500 dimensions each gener-
ated with 20 latent features.1 The error bars indicate
the variation over the 5 random starts. The finite un-
collapsed Gibbs sampler (dotted green) rises quickly
but consistently gets caught in a lower optima and has
higher variance. This variance is not due to the sam-
plers mixing, but instead due to each sampler getting
stuck in widely varying local optima. The variational
methods are slightly slower per iteration but soon find
regions of higher predictive likelihoods. The remaining
samplers are much slower per iteration, often failing to
mix within the allotted interval.
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Figure 3: Evolution of test log-likelihoods over a
thirty-minute interval for N = 500, D = 500, and
K = 20. The finite uncollapsed Gibbs sampler has the
fastest rise but gets caught in a lower optima than the
variational approach.

Figures 4 and 5 show results from a systematic series
of tests in which we tested all combinations of observa-
tion count N = {5, 10, 50, 100, 500, 1000}, dimension-
ality D = {5, 10, 50, 100, 500, 1000}, and truncation

1The particle filter must be run to completion before
making prediction, so we cannot test its predictive perfor-
mance over time. We instead plot the test likelihood only
at the end of the inference for particle filters with 10 and
50 particles (the two magenta points).



Doshi-Velez, Miller, Van Gael, Teh

5 10 15 20 25
10

−1

10
0

10
1

10
2

10
3

10
4

Truncation vs. Time

Truncation K

C
P

U
 T

im
e
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(K). The variational approaches
are generally orders of magnitude
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Figure 5: Time versus log-likelihood plot for K = 20. The larger dots corre-
spond to D = 5 the smaller dots to D = 10, 50, 100, 500, 1000.

level K = {5, 10, 15, 20, 25}. Each of the samplers was
run for 1000 iterations on three chains and the particle
filter was run with 500 particles. For the variational
methods, we used a stopping criterion that halted the
optimisation when the variational lower bound be-
tween the current and previous iterations changed by
a multiplicative factor of less than 10−4 and the tem-
pering process had completed.

Figure 4 shows how the computation time scales with
the truncation level. The variational approaches and
the uncollapsed Gibbs are consistently an order of
magnitude faster than other algorithms.

Figure 5 shows the interplay between dimensionality,
computation time, and test log-likelihood for datasets
of size N = 5 and N = 1000 respectively. For
N = 1000, the collapsed Gibbs samplers and particle
filter did not finish, so they do not appear on the plot.
We chose K = 20 as a representative truncation level.
Each line represents increasing dimensionality for a
particular method (the large dot indicates D = 5, the
subsequent dots correspond to D = 10, 50, etc.). The
nearly vertical lines of the variational methods show
that they are quite robust to increasing dimension.
As dimensionality and dataset size increase, the vari-
ational methods become increasingly faster than the
samplers. By comparing the lines across the likelihood
dimension, we see that for the very small dataset, the
variational method often has a lower test log-likelihood
than the samplers. In this regime, the samplers are fast
to mix and explore the posterior. However, the test
log-likelihoods are comparable for the larger dataset.

4.2 REAL DATA

We next tested two real-world datasets to show how
our approach fared with complex, noisy data not
drawn from the IBP prior (our main goal was not
to demonstrate low-rank approximations). The Yale
Faces (Georghiades et al., 2001) dataset consisted of
721 32x32 pixel frontal-face images of 14 people with
varying expressions and lighting conditions. We set
σa and σn based on the variance of the data. The
speech dataset consisted of 245 observations sampled
from a 10-microphone audio recording of 5 different
speakers. We applied the ICA version of our inference
algorithm, where the mixing matrix S modulated the
effect of each speaker on the audio signals. The feature
and noise variances were taken from an initial run of
the Gibbs sampler where σn and σa were also sampled.

Tables 1 and 2 show the results for each of the datasets.
All Gibbs samplers were uncollapsed and run for 200
iterations.2 In the higher dimensional Yale dataset,
the variational methods outperformed the uncollapsed
Gibbs sampler. When started from a random posi-
tion, the uncollapsed Gibbs sampler quickly became
stuck in a local optima. The variational method was
able to find better local optima because it was ini-
tially very uncertain about which features were present
in which data points; expressing this uncertainty ex-
plicitly through the variational parameters (instead of
through a sequence of samples) allowed it the flexibil-
ity to improve upon its bad initial starting point.

2On the Yale dataset, we did not test the collapsed sam-
plers because the finite collapsed Gibbs sampler required
one hour per iteration with K = 5 and the infinite collapsed
Gibbs sampler generated one sample every 50 hours. In the
iICA model, the features A cannot be marginalised.
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The story for the speech dataset, however, is quite
different. Here, the variational methods were not
only slower than the samplers, but they also achieved
lower test-likelihoods. The evaluation on the synthetic
datasets points to a potential reason for the differ-
ence: the speech dataset is much simpler than the
Yale dataset, consisting of 10 dimensions (vs. 1032
in the Yale dataset). In this regime, the Gibbs sam-
plers perform well and the approximations made by
the variational method become apparent. As the di-
mensionality grows, the samplers have more trouble
mixing, but the variational methods are still able to
find regions of high probability mass.

Table 1: Running times in seconds and test log-
likelihoods for the Yale Faces dataset.

Algorithm K Time Test Log-
Likelihood
(×106)

5 464.19 -2.250
Finite Gibbs 10 940.47 -2.246

25 2973.7 -2.247
5 163.24 -1.066

Finite Variational 10 767.1 -0.908
25 10072 -0.746
5 176.62 -1.051

Infinite Variational 10 632.53 -0.914
25 19061 -0.750

Table 2: Running times in seconds and test log-
likelihoods for the speech dataset.

Algorithm K Time Test Log-
Likelihood

2 56 -0.7444
Finite Gibbs 5 120 -0.4220

9 201 -0.4205
Infinite Gibbs na 186 -0.4257

2 2477 -0.8455
Finite Variational 5 8129 -0.5082

9 8539 -0.4551
2 2702 -0.8810

Infinite Variational 5 6065 -0.5000
9 8491 -0.5486

5 SUMMARY

The combinatorial nature of the Indian Buffet Process
poses specific challenges for sampling-based inference
procedures. In this paper, we derived a mean field
variational inference procedure for the IBP. Whereas

sampling methods work in the discrete space of bi-
nary matrices, the variational method allows for soft
assignments of features because it approaches the in-
ference problem as a continuous optimisation. We
showed experimentally that, especially for high dimen-
sional problems, the soft assignments allow the varia-
tional methods to explore the posterior space faster
than sampling-based approaches.
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