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Proof of Theorem 3.1

Each inequality is obtained by first applying Lemma 3.2 and then Lemma 3.3,

Y Vdi< |pY Vd; = /ptr(D) = /pir(A%) < /pir(A) = /pr(VD),
j=1 j=1
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Theorem 3.2 holds according to the upper bound of KL divergence and the proof is straightforward.

S Va = | 30V = (D) = tr(A2) = ——tr(A) = = ix(VD).
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Proof of Theorem 3.3

To see the first inequality in (17), we have
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holds for any p € RP. Note that f(u, D) is an upper bound of g(u, D), fi(p™) < gi1(p™) (the proof is
straightforward). Thus the first inequality in (18a) holds . The second inequality holds since p* is the global
minimum of g1 (w). To see the second inequality in (17), we have that
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o

= Q@trm + g@z v < 23\/2;11(@)

holds for any (p, D) € R? x S . The first jnequality in (18b) holds since f(u, D) is a upper bound of
g(p, D); the second inequality holds since (fx, D) is the global minimum of f(u, D).

Bayesian Lasso Model (Scaled Case)
According to [1]], the Bayesian Lasso model with the scale-mixture of normal representation is as follows,
2 2
ylx, 07~ Na(y; @x,07Ln)

X|0%, TE, T~ N(x 0,,0°D,), D, =diag(r7,...,7;)
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Yoo~ exp (=\*/2v;)v; %, v=1/m, J=1,...,p



0® ~ InvGamma(o®;a,b)

A2~ Gamma(AQ; r,8) )
where representation of Laplace distribution as a scale mixture of normals (with an exponential mixing density)
is exploited,

% exp (—t|2]) = /OOO \/2175 exp (—22/(25))% exp (—t25/2)ds @)

where t > 0,t = Ao, s = 0’1} = 0 /v;.

Data-Augmentation Gibbs Sampler

The full likelihood can be written as follows,

p(ylx,0*)p(x|o®, ¥)p(v)p(c?)p(A?) = Nu(y; ®x, 071, )N, (x; 0p, 0°D-) (H p(w)) p(a”)p(A)
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where D, = diag(1/v1,...,1/%p)-
e Full Conditional distribution of x:
(xly, 0% 7%, ) ~ Ny (D7 + @7 @) '@y, o' (D7 + @7 @) ) “

e Full Conditional distribution of o
(y - ®x)"(y — ®x) + x'D7'x
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e Full Conditional distribution of v; = 1/ Tj22
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p(1/7'j2|)\2,02,xj) o (1/732)_% exp {— (7(33;(/72(1/:\2? )} ~ InvGaussian(l/Tf;g,h) 6)
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where g = |/A202/z% and h = A*.

e Full Conditional distribution of A2

P _2
(N?|77) ~ Gamma(\*;p + 1, s + Z %) (7
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Mean-field VB

We seek a variational distribution ¢(®;TI') to approximate the exact posterior p(®;I'), where ® =
{x,7, o?, )\2}, I" are the variational parameters. Consider the variational expression,

F(T) = / 10q(©;T)n % — “Inp(y) + KL(¢(©;T)|[p(Oly)) ®)

Note that the term p(y) is a constant with respect to I', and therefore the evidence lower bound F(T') is max-
imized when the Kullback-Leibler divergence KL(q(®;T)||p(®]y)) is minimized. To make the computation
of F(T") tractable, we assume q(@®; I') has a factorized form,

k
9(&;T) = [[ai(©5;T) ©
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With appropriate choice of g;, the variational expression F (T") may be evaluated analytically. Maximizing the
lower bound F'(I") with respect to g; (©;; I';) yields
. exp (Eiz;[Inp(y, ©)])
q; (1) = (10)
( ) J exp (Eiz;[Inp(y, ©)])dO;

The update equations are as follows,

e Update for x:
¢ (x[=) ~ Nxp )

(&)



p o= ((D7h+eTe) @7y, =0 (D) +eTe)] T an
where (072) = a/b
e Update foro™~:

¢*(c7%-) ~ Gamma(o *;a,b)

a = %p—l +a
~ 1 1 3
b= ¥y -y () + strace[(@7@ + (D7) )] 45 (12)

where (x) = fi, (xxT) = g + 3.
e Update for \?:

¢ (\’|-) ~ Gamma(\*;#,3), F=p+r, &= Y <L>+5 (13)
=2
e Update for~;,j=1,...,p:
* . A~ 7 ~ <)\2> 7 2
q" (vjl=) ~ InvGaussian(v;; 45, hj), G5 = W? h; = (\%) (14)
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where InvGaussian(z; g, h) = 4/ 27:;3 exp (— h(;gzi) )
(x > 0) denotes the inverse Gaussian distribution with mean () = g and (™) = g~ + h™'. We have
W) =7/s, (@) =05+, () =g +h;', (DY) =diag[g;];,, (15)

The lower bound F (T) can be calculated very straightforwardly both for tracking the monotonic increase
and for possibly setting a convergence criterion.

F(T) = (np(ylx,o%) + (Inp(x|o”, 7)) + (Inp(7)) + (Inp(o)) + (lnp(A))
— (Ing"(x|-)) = (Ing"(v=)) = (Ing* (s *|=)) — (Ing"(¥*-)) (16)
where
(Inp(y|x,0?)) = —g In27m + g(lnaﬂ) - %(U#) (||y — @45+ trace(‘i’T@ﬁl))
(Ino™?) = @) —Inb), (3 =a/b (17)

and +(+) is the digamma function.

(Inp(x|o®,7)) = —g In 27 + g(ln o)+ ;j_1<1n'}/]'> — %<072>trace ((D;l)<xxT>) (18)
and those (In~y;) terms canceled out.
mpt) = S tompia) = 3 (0 )~ (07 ~20m))
(InA%) = (F) —In(3) (19)
—2 b* -2 -2
(Inp(c™7))=In (m) +(a—1){(Inoc™ ") —b(c™") (20)
(Inp(A*)) = In (%) + (r—1){In X%) — 5(\?) (21)
—(Ing*(x|-)) = %ln|27reﬁ]| (22)
~(ing*(21-)) = = S ing" (1) = X (~5 iy + 3 n2m+ S +05) 23
—(Ing*(c7%|=)) = —alnb+1InT(a) — (& — 1)(Ino"2) + b(o™3) (24)
—(Ing*(N*|—)) = —#In§ + InD(7) — (7 — 1)(In A?) + 5(\?) (25)
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