Living on the Edge

Phase Transitions in Random Convex Programs

Joel A. Tropp Michael B. McCoy

Computing + Mathematical Sciences California Institute of Technology

Joint with Dennis Amelunxen and Martin Lotz (Manchester) Including work of Samet Oymak and Babak Hassibi (Caltech)

Research supported in part by ONR, AFOSR, DARPA, and the Sloan Foundation

...in which we dilate upon the question...

How big is a cone?

(and why you should care)

Statistical Dimension

The Statistical Dimension of a Cone

Definition [Amelunxen, Lotz, McCoy, T 2013].

The statistical dimension $\delta(K)$ of a closed, convex cone K is the quantity

$$\delta(K) := \mathbb{E}\left(\left\| \mathbf{\Pi}_{K}(\boldsymbol{g}) \right\|_{2}^{2} \right)$$

where

> Π_K is the Euclidean projection onto K
> g is a standard normal vector

Statistical Dimension: The Motion Picture

small cone

big cone

Basic Statistical Dimension Calculations

Cone	Notation	Statistical Dimension
Subspace	L_{j}	j
Nonnegative orthant	\mathbb{R}^d_+	$rac{1}{2}d$
Second-order cone	\mathbb{L}^{d+1}	$\frac{1}{2}(d+1)$
Real psd cone	\mathbb{S}^d_+	$\frac{1}{4}d(d-1)$
Complex psd cone	\mathbb{H}^d_+	$\frac{1}{2}d^2$

Descent Cones

Definition. The descent cone of a function f at a point x is

$$\mathscr{D}(f, oldsymbol{x}) := \{oldsymbol{h}: f(oldsymbol{x} + arepsilon oldsymbol{h}) \leq f(oldsymbol{x}) \ \ ext{for some} \ arepsilon > 0\}$$

Descent Cone of ℓ_1 **Norm at Sparse Vector**

Descent Cone of S_1 **Norm at Low-Rank Matrix**

Aside: The Gaussian Width

The *Gaussian width* w(K) of a convex cone K can be defined as

$$w(K) := \mathbb{E} \sup_{\boldsymbol{x} \in K \cap S} \langle \boldsymbol{g}, \boldsymbol{x} \rangle$$

We have the relationship

$$w(K)^2 \le \delta(K) \le w(K)^2 + 1$$

Statistical dimension is the canonical extension of the linear dimension to the class of convex cones. Gaussian width ain't.

Regularized Denoising

Setup for Regularized Denoising

- \blacktriangleright Let $x^{
 atural} \in \mathbb{R}^d$ be "structured" but unknown
- ▶ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function that reflects "structure"
- Normallow Observe $oldsymbol{z} = oldsymbol{x}^{\natural} + \sigma oldsymbol{w}$ where $oldsymbol{w} \sim ext{NORMAL}(0, \mathbf{I})$
- Remove noise by solving the convex program*

minimize
$$\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{x} \|_2^2$$
 subject to $f(\boldsymbol{x}) \leq f(\boldsymbol{x}^{\natural})$

a Hope: The minimizer \widehat{x} approximates x^{\natural}

*We assume the side information $f(x^{\natural})$ is available. This is equivalent** to knowing the optimal choice of Lagrange multiplier for the constraint.

Geometry of Denoising

The Risk of Regularized Denoising

Theorem 1. [Oymak & Hassibi 2013] Assume

- \blacktriangleright We observe $oldsymbol{z} = oldsymbol{x}^{
 angle} + \sigma oldsymbol{w}$ where $oldsymbol{w}$ is standard normal
- \blacktriangleright The vector \widehat{x} solves

minimize
$$\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{x} \|_2^2$$
 subject to $f(\boldsymbol{x}) \leq f(\boldsymbol{x}^{\natural})$

Then

$$\sup_{\sigma>0} \frac{\mathbb{E} \|\widehat{\boldsymbol{x}} - \boldsymbol{x}^{\natural}\|^2}{\sigma^2} = \delta\big(\mathscr{D}(f, \boldsymbol{x}^{\natural})\big)$$

Regularized Linear Inverse Problems

Setup for Linear Inverse Problems

- \blacktriangleright Let $x^{
 ature} \in \mathbb{R}^d$ be a structured, unknown vector
- ▶ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function that reflects structure
- ***** Let $\boldsymbol{A} \in \mathbb{R}^{m imes d}$ be a measurement operator
- 🍋 Observe $z = A x^{
 atural}$
- \blacktriangleright Find estimate \widehat{x} by solving convex program

minimize $f(\boldsymbol{x})$ subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{z}$

Hope: $\widehat{x} = x^{\natural}$

Geometry of Linear Inverse Problems

Linear Inverse Problems with Random Data

Theorem 2. [Amelunxen, Lotz, McCoy, T 2013] Assume

- **•** The vector $x^{\natural} \in \mathbb{R}^d$ is unknown
- * The observation $m{z} = m{A} m{x}^{
 atural}$ where $m{A} \in \mathbb{R}^{m imes d}$ is standard normal
- \blacktriangleright The vector \widehat{x} solves

minimize f(x) subject to Ax = z

Then

$$egin{aligned} &m\gtrsim\deltaig(\mathscr{D}(f,oldsymbol{x}^{\natural})ig)&\Longrightarrow&\widehat{oldsymbol{x}}=oldsymbol{x}^{\natural}& ext{whp}\ &m\lesssim\deltaig(\mathscr{D}(f,oldsymbol{x}^{\natural})ig)&\Longrightarrow&\widehat{oldsymbol{x}}
eqoldsymbol{x}^{\natural}& ext{whp} \end{aligned}$$

Related work: Rudelson-Vershynin 2006, Donoho-Tanner 2008, Stojnic 2009, Chandrasekaran et al. 2010

Sparse Recovery via ℓ_1 Minimization

Low-Rank Recovery via S_1 Minimization

Demixing Structured Signals

Setup for Demixing Problems

- \blacktriangleright Let $x^{\natural} \in \mathbb{R}^d$ and $y^{\natural} \in \mathbb{R}^d$ be structured, unknown vectors
- ▶ Let $f, g : \mathbb{R}^d \to \mathbb{R}$ be convex functions that reflect "structure"
- \blacktriangleright Let $\boldsymbol{U} \in \mathbb{R}^{d imes d}$ be a known orthogonal matrix
- 🍋 Observe $oldsymbol{z} = oldsymbol{x}^{
 atural} + oldsymbol{U} oldsymbol{y}^{
 atural}$
- Demix via convex program

minimize $f(\boldsymbol{x})$ subject to $g(\boldsymbol{y}) \leq g(\boldsymbol{y}^{\natural})$ $\boldsymbol{x} + \boldsymbol{U} \boldsymbol{y} = \boldsymbol{z}$

 \blacktriangleright Hope: $(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}) = (\boldsymbol{x}^{\natural}, \boldsymbol{y}^{\natural})$

Geometry of Demixing Problems

Success!

Failure!

Demixing Problems with Random Incoherence

Theorem 3. [Amelunxen, Lotz, McCoy, T 2013] Assume

- **•** The vectors $oldsymbol{x}^{
 atural} \in \mathbb{R}^d$ and $oldsymbol{y}^{
 atural} \in \mathbb{R}^d$ are unknown
- lpha The observation $oldsymbol{z} = oldsymbol{x}^{
 atural} + oldsymbol{Q}oldsymbol{y}^{
 atural}$ where $oldsymbol{Q}$ is random orthogonal
- ▶ The pair $(\widehat{m{x}}, \widehat{m{y}})$ solves

minimize
$$f(\boldsymbol{x})$$
 subject to $g(\boldsymbol{y}) \leq g(\boldsymbol{y}^{\natural})$
 $\boldsymbol{x} + \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{z}$

Then

$$\begin{split} &\delta\big(\mathscr{D}(f,\boldsymbol{x}^{\natural})\big) + \delta\big(\mathscr{D}(g,\boldsymbol{y}^{\natural})\big) \lesssim d & \Longrightarrow \quad (\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) = (\boldsymbol{x}^{\natural},\boldsymbol{y}^{\natural}) \quad \textit{whp} \\ &\delta\big(\mathscr{D}(f,\boldsymbol{x}^{\natural})\big) + \delta\big(\mathscr{D}(g,\boldsymbol{y}^{\natural})\big) \gtrsim d \quad \Longrightarrow \quad (\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) \neq (\boldsymbol{x}^{\natural},\boldsymbol{y}^{\natural}) \quad \textit{whp} \end{split}$$

Sparse + Sparse via $\ell_1 + \ell_1$ **Minimization**

Low-Rank + Sparse via $S_1 + \ell_1$ Minimization

To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy http://users.cms.caltech.edu/~jtropp

Papers:

- MT, "Sharp recovery bounds for convex deconvolution, with applications." arXiv cs.IT 1205.1580
- ALMT, "Living on the edge: A geometric theory of phase transitions in convex optimization." arXiv cs.IT 1303.6672
- Oymak & Hassibi, "Asymptotically exact denoising in relation to compressed sensing," arXiv cs.IT 1305.2714
- More to come!

Inference, Control, & Optimization

New doctoral program, Department of Computing + Mathematical Sciences at Caltech

- A unified view of inference and decision making, emphasizing methods that are computationally efficient and theoretically grounded
- Core faculty: Jim Beck, Venkat Chandrasekaran, John Doyle, Babak Hassibi, Steven Low, Richard Murray, Houman Owhadi, Joel Tropp, Adam Wierman
- Key Research Areas: Signal processing, statistics, optimization, control, uncertainty quantification, and their applications in science + engineering