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...in which we dilate upon the question...

How big is a cone?

(and why you should care)
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Statistical.
Dimension
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The Statistical Dimension of a Cone

Definition [Amelunxen, Lotz, McCoy, T 2013].

.

The statistical dimension δ(K) of a closed, convex cone K

is the quantity

δ(K) := E
(
‖ΠK(g)‖22

)
.

where

§ ΠK is the Euclidean projection onto K

§ g is a standard normal vector
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Statistical Dimension: The Motion Picture
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Basic Statistical Dimension Calculations

Cone Notation Statistical Dimension

Subspace Lj j

Nonnegative orthant Rd+ 1
2d

Second-order cone Ld+1 1
2(d+ 1)

Real psd cone Sd+ 1
4d(d− 1)

Complex psd cone Hd+ 1
2d

2
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Descent Cones

Definition. The descent cone of a function f at a point x is

D(f,x) := {h : f(x+ εh) ≤ f(x) for some ε > 0}

{y : f(y) ≤ f(x)}

x+ D(f,x)

x
{h : f(x+ h) ≤ f(x)}

D(f,x)

0
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Descent Cone of `1 Norm at Sparse Vector

0 1/4 1/2 3/4 1
0

1/4

1/2

3/4

1

1

Living on the Edge, SAHD 2013, Durham, 24 July 2013 8



Descent Cone of S1 Norm at Low-Rank Matrix
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Aside: The Gaussian Width

§ The Gaussian width w(K) of a convex cone K can be defined as

w(K) := E sup
x∈K∩ S

〈g, x〉

§ We have the relationship

w(K)2 ≤ δ(K) ≤ w(K)2 + 1

§ Statistical dimension is the canonical extension of the linear dimension

to the class of convex cones. Gaussian width ain’t.
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Regularized
Denoising
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Setup for Regularized Denoising

§ Let x\ ∈ Rd be “structured” but unknown

§ Let f : Rd → R be a convex function that reflects “structure”

§ Observe z = x\ + σw where w ∼ normal(0, I)

§ Remove noise by solving the convex program*

minimize
1

2
‖z − x‖22 subject to f(x) ≤ f(x\)

§ Hope: The minimizer x̂ approximates x\

*We assume the side information f(x\) is available. This is equivalent** to knowing the

optimal choice of Lagrange multiplier for the constraint.

Living on the Edge, SAHD 2013, Durham, 24 July 2013 12



Geometry of Denoising

{x : f(x) ≤ f(x\)}
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The Risk of Regularized Denoising

Theorem 1. [Oymak & Hassibi 2013] Assume

§ We observe z = x\ + σw where w is standard normal

§ The vector x̂ solves

minimize
1

2
‖z − x‖22 subject to f(x) ≤ f(x\)

Then

sup
σ>0

E ‖x̂− x\‖2

σ2
= δ

(
D(f,x\)

)
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.

Regularized Linear
Inverse Problems
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Setup for Linear Inverse Problems

§ Let x\ ∈ Rd be a structured, unknown vector

§ Let f : Rd → R be a convex function that reflects structure

§ Let A ∈ Rm×d be a measurement operator

§ Observe z = Ax\

§ Find estimate x̂ by solving convex program

minimize f(x) subject to Ax = z

§ Hope: x̂ = x\
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Geometry of Linear Inverse Problems

x\ + null(A)

{x : f(x) ≤ f(x\)}

x\

x\ + D(f,x\)
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Linear Inverse Problems with Random Data

Theorem 2. [Amelunxen, Lotz, McCoy, T 2013] Assume

§ The vector x\ ∈ Rd is unknown

§ The observation z = Ax\ where A ∈ Rm×d is standard normal

§ The vector x̂ solves

minimize f(x) subject to Ax = z

Then
m & δ

(
D(f,x\)

)
=⇒ x̂ = x\ whp

m . δ
(
D(f,x\)

)
=⇒ x̂ 6= x\ whp

Related work: Rudelson–Vershynin 2006, Donoho–Tanner 2008, Stojnic 2009, Chandrasekaran et al. 2010
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Sparse Recovery via `1 Minimization
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Low-Rank Recovery via S1 Minimization
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.

Demixing
Structured Signals
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Setup for Demixing Problems

§ Let x\ ∈ Rd and y\ ∈ Rd be structured, unknown vectors

§ Let f, g : Rd → R be convex functions that reflect “structure”

§ Let U ∈ Rd×d be a known orthogonal matrix

§ Observe z = x\ +Uy\

§ Demix via convex program

minimize f(x) subject to g(y) ≤ g(y\)

x+Uy = z

§ Hope: (x̂, ŷ) = (x\,y\)

Living on the Edge, SAHD 2013, Durham, 24 July 2013 22



Geometry of Demixing Problems

x\

x\ + D(f,x\)
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Failure!
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Demixing Problems with Random Incoherence

Theorem 3. [Amelunxen, Lotz, McCoy, T 2013] Assume

§ The vectors x\ ∈ Rd and y\ ∈ Rd are unknown

§ The observation z = x\ +Qy\ where Q is random orthogonal

§ The pair (x̂, ŷ) solves

minimize f(x) subject to g(y) ≤ g(y\)

x+Qy = z

Then

δ
(
D(f,x\)

)
+ δ
(
D(g,y\)

)
. d =⇒ (x̂, ŷ) = (x\,y\) whp

δ
(
D(f,x\)

)
+ δ
(
D(g,y\)

)
& d =⇒ (x̂, ŷ) 6= (x\,y\) whp
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Sparse + Sparse via `1 + `1 Minimization
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Low-Rank + Sparse via S1 + `1 Minimization
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To learn more...

E-mail: mccoy@cms.caltech.edu

jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~mccoy

http://users.cms.caltech.edu/~jtropp

Papers:

§ MT, “Sharp recovery bounds for convex deconvolution, with applications.” arXiv cs.IT

1205.1580

§ ALMT, “Living on the edge: A geometric theory of phase transitions in convex

optimization.” arXiv cs.IT 1303.6672

§ Oymak & Hassibi, “Asymptotically exact denoising in relation to compressed sensing,”

arXiv cs.IT 1305.2714

§ More to come!
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Inference, Control, & Optimization

New doctoral program, Department of Computing + Mathematical Sciences at Caltech

§ A unified view of inference and decision making, emphasizing methods

that are computationally efficient and theoretically grounded

§ Core faculty: Jim Beck, Venkat Chandrasekaran, John Doyle,

Babak Hassibi, Steven Low, Richard Murray, Houman Owhadi,

Joel Tropp, Adam Wierman

§ Key Research Areas: Signal processing, statistics, optimization,

control, uncertainty quantification, and their applications in science +

engineering

Living on the Edge, SAHD 2013, Durham, 24 July 2013 28


