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Time-constrained Inference 

o Require decision after a fixed (usually small) 
amount of time 

 
Ad exchange 



Classical Analysis in Statistics 

o Previously, key bottleneck: amount of data 
 

o Consider ``best’’ estimator without much regard 
for computational considerations 
‒ Minimax analysis 

 
o More recently, time is key bottleneck 

‒ Data is plentiful in several domains 

 
o Need to incorporate time constraints 



A Thought Experiment 

o Consider a typical inference scenario 
‒ 1 hour for inference task with n = 5000, risk = 0.03 
‒ 20 days for same task with n = 500000, risk = 0.0003 

 
o Happy with risk = 0.03, but given n = 500000 

‒ Don’t care about small improvements in risk 
‒ Statistical models are only approximations of reality 
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o More data useful for less computation? 



Computer Science vs. Statistics 
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Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 
o Inference procedures viewed as points in plot 

 

Runtime 

Minimax risk lower bound 
- well understood 

Computational lower bound 
- poorly understood 
- depends on comp’l model 
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Time-Data Tradeoffs 

o Consider an inference problem with fixed risk 

o Need “weaker” algorithms 
for larger datasets 

o At some stage, throw away 
data 

o Tradeoff runtime upper 
bounds 
– More data means smaller 

runtime upper bound 
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An Estimation Problem 

o Signal                          from known (bounded) set 
o Noise 

 
o Observation model 

 
 

o Observe n i.i.d. samples  



Convex Programming Estimator 

o Sample mean                         is sufficient statistic 
 

o Natural M-estimator 
 
 

o Convex programming M-estimator 
 
 

‒ C is a convex set such that  



Convex Programming Estimator 

o Long history of shrinkage estimation in statistics 
‒ James, Stein (1961) 
‒ Donoho, Johnstone (early 1990s) 
‒ Shrinkage onto convex sets for tractability 

 
o Many surprises in high dimensions, i.e., large p 

 
o More recently 

‒ L1 norm, trace norm, max norm, … 



Statistical Performance of Estimator 

o Defn 1: The cone of feasible directions into a 
convex set C is defined as 
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o Defn 1: The cone of feasible directions into a 
convex set C is defined as 
 

 
 
o Defn 2: The Gaussian (squared) complexity of a 

cone T is defined as 



Statistical Performance of Estimator 

o Prop: The risk of the estimator              is  
 
 
 

o Proof: Apply optimality conditions 
 

o Intuition: Only consider error in feasible cone 
 
 



Weakening via Convex Relaxation 

o Prop: The risk of the estimator              is  
 
 
 
 

o Corr: To obtain risk of at most 1, 
 



Weakening via Convex Relaxation 

o Corr: To obtain risk of at most 1, 
 
 

 
 

Monotonic in C 



Weakening via Convex Relaxation 
 

 
  
 

If we have access to larger n, can use larger C 
 
 Obtain “weaker” estimation algorithm 



Hierarchy of Convex Relaxations 

o If       “algebraic”, then one can obtain family of 
outer convex approximations 

 
 

‒ Polyhedral, semidefinite, hyperbolic relaxations 
(Sherali-Adams, Boyd, Parrilo, Lasserre, Renegar) 

 
o Sets           ordered by computational complexity 

‒ Central role played by lift-and-project 



Contrast to Previous Work 

o Binary classifier learning 
‒ Decatur et al. [1998], Servedio [2000], Shalev-Shwarz et 

al. [2008, 2012], Perkins & Hallett [2010] 
‒ Lots of extra data required for simpler algorithms 
‒ Our examples: modest extra data for simpler algorithms 

 
o Sparse PCA, clustering, network inference 

‒ Amini & Wainwright [2009], Kolar et al. [2011] 

o Model selection 
‒ Agarwal et al. [2011] 



Contrast to Previous Work 

o Our work: Emphasis on algorithm weakening 
 

o Convex relaxation is a principled, general way to 
do this 



Example 1 

o       consists of cut matrices 
 
 

o E.g., collaborative filtering, clustering 
 



Example 2 

o Signal set      consists of all perfect matchings in 
complete graph 

o E.g., network inference 
 
 
 
 



Example 3 

o     consists of all adjacency matrices of graphs 
with only a clique on square-root of the nodes 

o E.g., sparse PCA, gene expression patterns 
o Kolar et al. (2010) 

 
 
 
 



Some Questions 
o In several examples, not too many extra 

samples required for really simple algorithms 
 

o Quality of approximation of convex sets 
‒ Approximation ratio is focus in theoretical CS 
‒ Gaussian complexities in statistical inference 

 

vs. 

Approximation 
ratio in CS 

Gaussian 
complexity 
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Summary 

o Challenges with massive datasets 
o Considered simple denoising problem 
o Time-data tradeoffs via convex relaxation 

 
o Future work: 

‒ Gaussian complexities of LP/SDP hierarchies 
‒ Other methods to weaken algorithms 
‒ Other inference problems 

users.cms.caltech.edu/~venkatc 
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