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Variable Selection Setup

# Linear regression model y; = xI' 3 + ¢;
s n observations and p predictor variables
s ;. response for observation ¢
s Xx;. (column) vector of p predictors for observation :
s [3: (column) vector of p regression parameters
s ¢; lld errors - mean zero, constant variance

# Ultra-high dimensional data, p > n
#® Only subset of predictors are relevant

» If 3; = 0 then variable j is effectively removed from the
model
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Variable Selection M ethods

All Subsets - 2P Il

Forward Selection

Backward Elimination - Not possible for p > n
Stepwise

Penalization Methods

© o o o o o

Bayesian Methods
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Penalization M ethods

# Minimize:
ly — XBII° + AT(8)
LASSO: J(8) = 2, |5l
Elastic Net: J(3) = (1—¢)>F_ B2 +c¢> 0 |B;
Adaptive LASSO, SCAD, MCP, OSCAR, ...

A and ¢ chosen by AIC, BIC, Cross-Val, GCV

Shrinkage creates bias
s Reduces variance
» Achieves selection by setting exact zeros

© o o o o
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Ultra High-Dimensional Data

# When p > n, before performing penalization methods,
common to screen down first

# Sure Independence Screening
s Rank by marginal correlations
s Reduce typicallytop < n

# Perform forward selection sequence
s Againreducetop <n

# Then perform penalized regression
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Bayesian Variable Selection

# Each candidate model indexed by 6 = (61, - - - ,5p)T

5. 1 If x; Is Included In the model,
771 0 ifx; is excluded from the model.

® p(d) Is prior over model space

#® Most common p(d) o< wP3(1 — m)P=Ps
s ps§ = >_5_1 0; - number of predictors
s m IS prior inclusion probability for each

s Uniform prior over model space < 7 =1/2

s m Set to apriori guess of proportion of important
predictors

s Put prior on 7 - Beta (a, b)
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Bayesian Variable Selection

» Given ¢, we have I1(368, 0%, 7)

s Typically, o2 gets diffuse prior (Inverse Gamma)
s 7 are other hyperparameters needed

® Most common II(3|6,0%,7) = N (O, 072\/)

s V=1IsorV= (X5Xg)™

s Butps >n= XgX(; not invertible
s FocusonV =1
# 7 either fixed, or given Gamma prior

# Equivalent to Spike-and-Slab, i.e. 3 is mixture of mass
at zero and Normal

NC STATE UNIVERSITY

Howard Bondell — p. 8



Bayesian Variable Selection

# Crank out Bayes’ rule and get posterior probability for
each configuration of

# Instead, use stochastic search (SSVS) to visit models
with MCMC chain

s Estimate posterior probabilities by proportion of
times visited

# Search for highest posterior model

# Alternative: Use marginal posterior for each variable

s Include variable in final model if P(9; = 1|X,y) > ¢ for
some threshold
s Median probability model (Barbieri and Berger,
2004) uset =1/2
s Optimal predictive model under certain conditions
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Drawbacks

# Typical SSVS approach requires:
s Proper prior distribution
» Choice of prior on model space
» Posterior threshold choice
s MCMC chains to estimate posterior probabilities
(often need very long runs)
# Results can be sensitive to each choice
# Marginal inclusion probabilities may be poor under high
correlation

s Highly correlated predictors may each show up
equally often

s But each only a small number of times
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Further Drawback: Lindley’s Paradox

# Problem with using posterior probabilities
# Diffuse prior typical in practice

# Simple case
s Sample of size 1, from N(u, 1)
s 1 =0vs. u+#0-More diffuse prior = Prob of Hy — 1

Prior SD Prior SD

(a) Posterior Probability in favor of Null (b) 95% Posterior Credible Set

for various prior standard deviations. for various prior standard deviations.
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Joint Credible Regions

#® Specify prior only on parameters in full model
[(8lo2,7) = N (o, %21)
p(c?) = 1G(0.01,0.01)

® C,is (1 —a)x 100% credible region
o For fixed hyperparameter, 7, get elliptical regions

Co={B:(B—B)"S71(B - B) < C,}, for some C,
® (3, Y - posterior mean, variance
s Closed form if 7 fixed — 3 = (XTX + 7'])_1 X1y
s Otherwise, simple short MCMC run used
# Prior on 7 = elliptical contours still valid credible sets
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Joint Credible Regions

# All points within region may be feasible parameter
values

# Among these, we seek a sparse solution
# Search within the region for the ‘sparsest’ point

~

G = argminﬁ 118]]o
subject to
B € Cq

# Chosen model for given « defined by set of indices,

AY={j : B; #0}.
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Joint Credible Regions

# Problems with searching for sparsest solution
s High dimensional region - combinatorial search
s Also Non-unique

#® Replace Ly by smooth bridge between Ly and L
(Lv and Fan, 2009)

j= 10@(‘5}‘)

palt) = T = () IE 20+ (GH) L. te[0.00),
po(t) = limg_o+pa(t) = I1(t # 0)
Poo(t) = limg—oopa(t) =t

® Interest on p,(t) for a = 0.
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Computation

# Non-convex penalty function
# Local linear approximation to penalty

pal1B51) = pal151) + A (1351) (1851 = 1351

with p}(5;]) = =55

® (3 is posterior mean
# Using Lagrangian gives

. | et 2 EA
Ig_argmm{(ﬁ B) X (03 B)+Aa2§z1 (a+3j|)2}

#® Constant absorbed into )\,
# One-to-one correspondence between )\, and «
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Computation

# Optimization becomes

S et 2 . 1851
B = arg mi {(,3 B) X8 ’3)+)\O‘Z§:1 (G+Bj)2}

® Fora— 0,

~

,Bzargmin{(,ﬁ—ﬁ) (/6 /6)+)‘ Z] 1‘|§j|2}

# Adaptive Lasso form
s LARS algorithm gives full path as vary «
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Selection Consistency

® Sequence of credible sets (3 — 3)T's1(8 - B) < C,
# Sequence of models A%~

# One-to-one correspondence between o, and C,

#® True model A

THEOREM 1. Under general conditions, if C,, — oo and n~1C,, — 0,
then the credible set method is consistent in variable selection, i.e.

PAS = A) = 1

# Also holds for p — oo, but p/n — 0
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Selection Consistency

What about p > n ?
Asymptotics with p/n — 0 not entirely relevant
Posterior mean - Ridge Regression form

B=(XTX +7I) XTy

© o o o o

If lim,, , 00 p/n > 0, can show that 3 not mean square
consistent

limy, oo B { (8- 6°)T (B-5) } >0
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Selection Consistency

# Consider rectangular credible regions - not elliptical
# Just use diagonal elements of X ignoring covariances
# Construct credible sets separately for each parameter
o

Simple componentwise thresholding on posterior mean
(t-statistics)

1/3
THEOREM 2. LetT — ocand 7 = O ((n2 logp) / ) then the

posterior thresholding approach is consistent in selection when the
dimension p satisfies log p = O (n®) forsome 0 < ¢ < 1.

# Selection consistency for exponential growing
dimension, logp = o(n)

# Also applies to ridge regression with ridge parameter
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Simulation Study

# Linear Regression Model with N (0, 1) errors

#® n = 60 observations (same as real data example)

® p e {500,2000} also N(0,1) with AR(1), p € {0.5,0.9}

#® Results based on 200 datasets for each of the 4 setups
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Simulation Study

# Consider ordering of predictors induced by:
s Joint credible regions
» Marginal posterior thresholding
s Stochastic Search (with various choices of prior)
s LASSO (L penalization)

# To measure reliability of ordering:
s ROC curve - measures sensitivity vs. specificity

NC STATE UNIVERSITY

Howard Bondell — p. 21



Simulation Study

® p=500,n=60 p=0.5(Top) and p = 0.9 (Bottom)

S
[ce)
g
2
= <
= o
(2]
-
) [—
e —— Cred. Set
~ | - - SSVS (f,f)
© - SSVS(r,r)
T T T T T T
00 02 04 06 08 1.0
one.minus.specificity
o' - .
s 11,7
2 Y
> © 1y
= o
(2]
C
& I -
—— Cred. Set
~ | - - SSVS (f,f)
© - SSVS(r,r)

I I I I I I
00 02 04 06 08 1.0

one.minus.specificity

NC STATE UNIVERSITY

Howard Bondell — p. 22



Simulation Study

® p=2000,n=60 p=0.5(Top) and p = 0.9 (Bottom)
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Ultra High-Dimension

Table 1: Selection performance for p = 10,000 with 3 important predictors for various
choices of n based on 100 datasets. The entries in the table denote Correct Selection
Proportion (CS), Coverage Proportion (COV), Average Model Size (MS), and Average

Number of Important Predictors out of the 3 Included (IP).

n = 100 n = 200 n = 500
CS COV MS IP | CS COV MS IP | CS COV MS IP

Marginal Sets | 9.0 31.0 3.22  2.06 | 24.0 47.0 3.37  2.38 | 39.0 54.0 3.01  2.49
SIS + SCAD | 1.0 15.0 4.08 1.82 | 5.0 35.0 6.06 2.28 | 6.0 59.0 11.62  2.56

n = 1000 n = 2000
CS COV MS IP | CS COV MS IP

Marginal Sets | 45.0 61.0 298 2.58 | 62.0 74.0 289 271
SIS + SCAD | 12.0 64.0 14.62 2.62 | 23.0 79.0 17.96  2.78
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Real Data Analysis

9
¥
9
9

Mouse Gene Expression (Lan et al.,

60 arrays (31 female, 29 male mice)
22,575 genes + gender (p = 22,576)
Fit with n = 55, leave out 5 for testing

2006)

Table 1: Mean squared prediction error and model size based on 100 random splits

of the real data, with standard errors in parenthesis. The 3 response variables are

PEPCK, GPAT, and SCDI1.

PEPCK GPAT SCD1
MSPE Model Size MSPE Model Size MSPE Model Size
Marginal Sets (p = 22,576) | 2.14 (0.15) 7.1 (0.41) | 4.70 (0.45) 9.3 (0.59) | 3.54 (0.26) 7.6 (0.54)
SIS + SCAD (p = 22,576) | 2.82 (0.18) 2.3 (0.09) | 5.88 (0.44) 2.6 (0.10) | 3.44 (0.22) 3.2 (0.14)
Joint Sets (p = 2,000) 2.03 (0.14) 9.6 (0.46) | 3.83 (0.34) 4.2 (0.43) | 3.04 (0.22) 22.0 (0.56)
Marginal Sets (p = 2,000) | 1.84 (0.14) 23.3 (0.67) | 5.33 (0.41) 21.8 (0.72) | 3.27 (0.21) 19.1 (0.71)
LASSO (p = 2,000) 3.03 (0.19) 7.7 (0.96) | 5.03 (0.42) 3.3 (0.79) | 3.25 (0.31) 19.7 (0.77)
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Conclusion

# Variable selection via Bayesian Credible sets
s Sparse solution within set
s Elliptical regions consistent if p/n — 0
s Rectangular regions consistent if logp = o(n)

# Computationally feasible even in high dimensions
# Excellent finite sample performance
# Extensions to other models
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