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Variable Selection Setup

Linear regression model yi = x
T
i β + ǫi

n observations and p predictor variables
yi: response for observation i

xi: (column) vector of p predictors for observation i

β: (column) vector of p regression parameters
ǫi iid errors - mean zero, constant variance

Ultra-high dimensional data, p ≫ n

Only subset of predictors are relevant

If βj = 0 then variable j is effectively removed from the
model
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Variable Selection Methods
All Subsets - 2p !!!!

Forward Selection

Backward Elimination - Not possible for p > n

Stepwise

Penalization Methods

Bayesian Methods
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Penalization Methods
Minimize:

‖y −Xβ‖2 + λJ(β)

LASSO: J(β) =
∑p

j=1 |βj |

Elastic Net: J(β) = (1− c)
∑p

j=1 β
2
j + c

∑p
j=1 |βj |

Adaptive LASSO, SCAD, MCP, OSCAR, ...

λ and c chosen by AIC, BIC, Cross-Val, GCV

Shrinkage creates bias
Reduces variance
Achieves selection by setting exact zeros

Howard Bondell – p. 5



Ultra High-Dimensional Data
When p ≫ n, before performing penalization methods,
common to screen down first

Sure Independence Screening
Rank by marginal correlations
Reduce typically to p < n

Perform forward selection sequence
Again reduce to p < n

Then perform penalized regression
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Bayesian Variable Selection

Each candidate model indexed by δ = (δ1, · · · , δp)
T

δj =

{

1 if xj is included in the model,
0 if xj is excluded from the model.

p(δ) is prior over model space

Most common p(δ) ∝ πpδ(1− π)p−pδ

pδ =
∑p

j=1 δj - number of predictors

π is prior inclusion probability for each
Uniform prior over model space ⇔ π = 1/2

π set to apriori guess of proportion of important
predictors
Put prior on π - Beta (a, b)
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Bayesian Variable Selection

Given δ, we have Π(β|δ, σ2, τ)

Typically, σ2 gets diffuse prior (Inverse Gamma)
τ are other hyperparameters needed

Most common Π(β|δ, σ2, τ) = N
(

0, σ
2

τ V
)

V = Ipδ
or V = (XT

δ
Xδ)

−1

But pδ > n ⇒ XT
δ
Xδ not invertible

Focus on V = I

τ either fixed, or given Gamma prior

Equivalent to Spike-and-Slab, i.e. β is mixture of mass
at zero and Normal
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Bayesian Variable Selection
Crank out Bayes’ rule and get posterior probability for
each configuration of δ

Instead, use stochastic search (SSVS) to visit models
with MCMC chain

Estimate posterior probabilities by proportion of
times visited

Search for highest posterior model

Alternative: Use marginal posterior for each variable
Include variable in final model if P (δj = 1|X, y) > t for
some threshold

Median probability model (Barbieri and Berger,
2004) use t = 1/2
Optimal predictive model under certain conditions
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Drawbacks
Typical SSVS approach requires:

Proper prior distribution
Choice of prior on model space
Posterior threshold choice
MCMC chains to estimate posterior probabilities
(often need very long runs)

Results can be sensitive to each choice

Marginal inclusion probabilities may be poor under high
correlation

Highly correlated predictors may each show up
equally often
But each only a small number of times
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Further Drawback: Lindley’s Paradox
Problem with using posterior probabilities

Diffuse prior typical in practice

Simple case
Sample of size 1, from N(µ, 1)

µ = 0 vs. µ 6= 0 - More diffuse prior ⇒ Prob of H0 → 1
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Joint Credible Regions
Specify prior only on parameters in full model

Π(β|σ2, τ) = N
(

0, σ
2

τ I
)

p(σ2) = IG(0.01, 0.01)

Cα is (1− α)× 100% credible region

For fixed hyperparameter, τ , get elliptical regions

Cα = {β : (β − β̂)TΣ−1(β − β̂) ≤ Cα}, for some Cα

β̂, Σ - posterior mean, variance

Closed form if τ fixed —- β̂ =
(

XTX + τI
)−1

XT y

Otherwise, simple short MCMC run used

Prior on τ ⇒ elliptical contours still valid credible sets
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Joint Credible Regions
All points within region may be feasible parameter
values

Among these, we seek a sparse solution

Search within the region for the ‘sparsest’ point

β̃ = argminβ ||β||0

subject to
β ∈ Cα

Chosen model for given α defined by set of indices,
Aα

n = {j : β̃j 6= 0}.
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Joint Credible Regions
Problems with searching for sparsest solution

High dimensional region - combinatorial search
Also Non-unique

Replace L0 by smooth bridge between L0 and L1

(Lv and Fan, 2009)
∑p

j=1 ρa(|βj |),

ρa(t) =
(a+1)t
a+t =

(

t
a+t

)

I(t 6= 0) +
(

a
a+t

)

t, t ∈ [0,∞),

ρ0(t) = lima→0+ρa(t) = I(t 6= 0)

ρ∞(t) = lima→∞ρa(t) = t

Interest on ρa(t) for a ≈ 0.
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Computation
Non-convex penalty function

Local linear approximation to penalty

ρa(|βj |) ≈ ρa(|β̂j |) + ρ′a(|β̂j |)
(

|βj | − |β̂j |
)

,

with ρ′a(|β̂j |) =
a(a+1)

(a+|β̂j |)
2

β̂ is posterior mean

Using Lagrangian gives

β̃ = argmin

{

(β − β̂)TΣ−1(β − β̂) + λα
∑p

j=1
|βj |

(a+|β̂j |)
2

}

Constant absorbed into λα

One-to-one correspondence between λα and α
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Computation
Optimization becomes

β̃ = argmin

{

(β − β̂)TΣ−1(β − β̂) + λα
∑p

j=1
|βj |

(a+|β̂j |)
2

}

For a → 0,

β̃ ≈ argmin
{

(β − β̂)TΣ−1(β − β̂) + λα
∑p

j=1
|βj |

|β̂j |2

}

Adaptive Lasso form
LARS algorithm gives full path as vary α

Howard Bondell – p. 16



Selection Consistency

Sequence of credible sets (β − β̂)TΣ−1(β − β̂) ≤ Cn

Sequence of models Aαn
n

One-to-one correspondence between αn and Cn

True model A

THEOREM 1. Under general conditions, if Cn → ∞ and n−1Cn → 0,
then the credible set method is consistent in variable selection, i.e.
P (Aαn

n = A) → 1

Also holds for p → ∞, but p/n → 0
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Selection Consistency
What about p ≫ n ?

Asymptotics with p/n → 0 not entirely relevant

Posterior mean - Ridge Regression form

β̂ =
(

XTX + τI
)−1

XT y

If limn,p→∞ p/n > 0, can show that β̂ not mean square
consistent

limn,p→∞ E

{

(

β̂ − β0
)T (

β̂ − β0
)

}

> 0
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Selection Consistency
Consider rectangular credible regions - not elliptical

Just use diagonal elements of Σ ignoring covariances

Construct credible sets separately for each parameter

Simple componentwise thresholding on posterior mean
(t-statistics)

THEOREM 2. Let τ → ∞ and τ = O
(

(

n2 log p
)1/3

)

then the

posterior thresholding approach is consistent in selection when the
dimension p satisfies log p = O (nc) for some 0 ≤ c < 1.

Selection consistency for exponential growing
dimension, log p = o(n)

Also applies to ridge regression with ridge parameter τ
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Simulation Study
Linear Regression Model with N(0, 1) errors

n = 60 observations (same as real data example)

p ∈ {500, 2000} also N(0, 1) with AR(1), ρ ∈ {0.5, 0.9}

Results based on 200 datasets for each of the 4 setups
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Simulation Study
Consider ordering of predictors induced by:

Joint credible regions
Marginal posterior thresholding
Stochastic Search (with various choices of prior)
LASSO (L1 penalization)

To measure reliability of ordering:
ROC curve - measures sensitivity vs. specificity

Howard Bondell – p. 21



Simulation Study
p = 500, n = 60 ρ = 0.5 (Top) and ρ = 0.9 (Bottom)
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Simulation Study
p = 2000, n = 60 ρ = 0.5 (Top) and ρ = 0.9 (Bottom)
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Ultra High-Dimension
Table 1: Selection performance for p = 10, 000 with 3 important predictors for various

choices of n based on 100 datasets. The entries in the table denote Correct Selection

Proportion (CS), Coverage Proportion (COV), Average Model Size (MS), and Average

Number of Important Predictors out of the 3 Included (IP).

n = 100 n = 200 n = 500

CS COV MS IP CS COV MS IP CS COV MS IP

Marginal Sets 9.0 31.0 3.22 2.06 24.0 47.0 3.37 2.38 39.0 54.0 3.01 2.49

SIS + SCAD 1.0 15.0 4.08 1.82 5.0 35.0 6.06 2.28 6.0 59.0 11.62 2.56

n = 1000 n = 2000

CS COV MS IP CS COV MS IP

Marginal Sets 45.0 61.0 2.98 2.58 62.0 74.0 2.89 2.71

SIS + SCAD 12.0 64.0 14.62 2.62 23.0 79.0 17.96 2.78
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Real Data Analysis
Mouse Gene Expression (Lan et al., 2006)

60 arrays (31 female, 29 male mice)

22,575 genes + gender (p = 22, 576)

Fit with n = 55, leave out 5 for testing

Table 1: Mean squared prediction error and model size based on 100 random splits

of the real data, with standard errors in parenthesis. The 3 response variables are

PEPCK, GPAT, and SCD1.

PEPCK GPAT SCD1

MSPE Model Size MSPE Model Size MSPE Model Size

Marginal Sets (p = 22, 576) 2.14 (0.15) 7.1 (0.41) 4.70 (0.45) 9.3 (0.59) 3.54 (0.26) 7.6 (0.54)

SIS + SCAD (p = 22, 576) 2.82 (0.18) 2.3 (0.09) 5.88 (0.44) 2.6 (0.10) 3.44 (0.22) 3.2 (0.14)

Joint Sets (p = 2, 000) 2.03 (0.14) 9.6 (0.46) 3.83 (0.34) 4.2 (0.43) 3.04 (0.22) 22.0 (0.56)

Marginal Sets (p = 2, 000) 1.84 (0.14) 23.3 (0.67) 5.33 (0.41) 21.8 (0.72) 3.27 (0.21) 19.1 (0.71)

LASSO (p = 2, 000) 3.03 (0.19) 7.7 (0.96) 5.03 (0.42) 3.3 (0.79) 3.25 (0.31) 19.7 (0.77)
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Conclusion
Variable selection via Bayesian Credible sets

Sparse solution within set
Elliptical regions consistent if p/n → 0

Rectangular regions consistent if log p = o(n)

Computationally feasible even in high dimensions

Excellent finite sample performance

Extensions to other models
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