Deep Learning and Representation Learning

Discussion by: Piyush Rai

(Some figures from Ruslan Salakhutdinov)

August 01, 2014
Deep Feature Learning

Layer 1

Layer 2

Layer 3

High-level linguistic representations

Parts combine to form objects
Some Deep Architectures

Undirected graphical model based deep architectures (e.g., Deep Belief Nets):

- Usually based on undirected models such as Restricted Boltzmann Machine (RBM) as building blocks
- Inference for the hidden variables is easy: \(P(h|x) = \prod_i P(h_i|x) \)
- It's possible to train the model in a layer-wise fashion. Training not so easy but possible via approximations such as Contrastive Divergence
Today

- Restricted Boltzmann Machine and its variants
- Autoencoder and its variants
- Building invariances: Convolutional Neural Networks
- Deep architectures for supervised learning
- Global training of deep architectures
A typical RBM

Binary visible $\mathbf{v} \in \{0, 1\}^D$, binary hidden units $\mathbf{h} \in \{0, 1\}^F$

Probability of the joint configuration is given by the Boltzmann distribution:

$$P_\theta(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left(- E(\mathbf{v}, \mathbf{h}; \theta) \right)$$

$$\mathcal{Z}(\theta) = \sum_{\mathbf{h}, \mathbf{v}} \exp \left(- E(\mathbf{v}, \mathbf{h}; \theta) \right)$$

Or

- Pair-wise
- Unary
RBM for real-valued data

- Real-valued visible units \(\mathbf{v} \), binary-valued hidden units \(\mathbf{h} \)

\[
P_\theta(\mathbf{v}, \mathbf{h}) = \frac{1}{Z(\theta)} \exp \left(\sum_{i=1}^{D} \sum_{j=1}^{F} W_{ij} h_j \frac{v_i}{\sigma_i} + \sum_{i=1}^{D} \frac{(v_i - b_i)^2}{2\sigma_i^2} + \sum_{j=1}^{F} a_j h_j \right)
\]

\[
\theta = \{W, a, b\}
\]

\[
P_\theta(\mathbf{v} | \mathbf{h}) = \prod_{i=1}^{D} P_\theta(v_i | \mathbf{h}) = \prod_{i=1}^{D} \mathcal{N} \left(b_i + \sum_{j=1}^{F} W_{ij} h_j, \sigma_i^2 \right)
\]

Gaussian-Bernoulli RBM:

- Stochastic real-valued visible variables \(\mathbf{v} \in \mathbb{R}^D \).
- Stochastic binary hidden variables \(\mathbf{h} \in \{0, 1\}^F \).
- Bipartite connections.
RBM for word counts

- Count-valued visible units v, binary-valued hidden units h

$$P(\theta, v, h) = \frac{1}{Z(\theta)} \exp \left(\sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{F} W_{ij}^k v_i^k h_j + \sum_{i=1}^{D} \sum_{k=1}^{K} v_i^k b_k^i + \sum_{j=1}^{F} h_j a_j \right)$$

$$\theta = \{W, a, b\}$$

$$P(\theta, v_i^k = 1|h) = \frac{\exp \left(b_i^k + \sum_{j=1}^{F} h_j W_{ij}^k \right)}{\sum_{q=1}^{K} \exp \left(b_i^q + \sum_{j=1}^{F} h_j W_{ij}^q \right)}$$

Replicated Softmax Model: undirected topic model:

- Stochastic 1-of-K visible variables.
- Stochastic binary hidden variables $h \in \{0, 1\}^F$.
- Bipartite connections.

(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)
Conditional RBM

- Traditional RBM $P_{\theta}(x, h)$ has observed variables x, hidden variables h and parameters $\theta = \{W, b, c\}$

- Often, we may have some context variables (or covariates) z

- Conditional RBM $P_{\theta}(x, h|z)$ assumes that the parameters $\theta = f(z, \omega)$ where ω are the actual “free” parameters

- Example: hidden unit bias $c = \beta + Mz$; weights W could also depend on the context variables/covariates in some applications
Autoencoder

- Provides a direct **parametric mapping** from inputs to feature representation
- Often used as a building block in deep architectures (just like RBMs)
- Basic principle: Learns an encoding of the inputs so as to recover well the original input from the encodings
Real-valued inputs, binary-valued encodings

Sigmoid encoder (parameter matrix W), linear decoder (parameter matrix D), learned via:

$$\text{arg min}_{D, W} E(D, W) = \sum_{n=1}^{N} \| Dz_n - x_n \|^2 = \sum_{n=1}^{N} \| D\sigma(Wx_n) - x_n \|^2$$

If encoder is also linear, then autoencoder is equivalent to PCA
Autoencoder

- Binary-valued inputs, binary-valued encodings

- Similar to an RBM
- Need constraints to avoid an identity mapping (e.g., by imposing sparsity on the encodings or by “corrupting” the inputs)
Sparse Autoencoders

- Sparse binary encodings. Can impose L_1 penalty on the codes

\[\arg \min_{D, W, z} \sum_{n=1}^{N} \|Dz_n - x_n\|^2 + \lambda |z_n| + \|\sigma(Wx_n) - z_n\|^2 \]

- Predictive Sparse Decomposition (learns an explicit mapping from the input to the encoding)
Denoising Autoencoders

- Idea: introduce stochastic corruption to the input; e.g.:
 - Hide some features
 - Add gaussian noise
Stacked Autoencoders

- Can be learned in a greedy layer-wise fashion
Exploits topological structure in the data via three key ideas: local receptive field, shared weights, and spatial or temporal sub-sampling.

Ensures some degree of shift/scale/distortion invariance in the learned representation.
Building Invariances: Other ways

- Generating transformed examples
 - .. via introducing random deformations that don’t change the target label
- Temporal coherence and slow feature analysis
Supervised Learning with Deep Architectures

- Consider a Deep Belief Net trained in a supervised fashion

- Given labels \(y \), train on the joint log-likelihood of inputs and their labels \(\log P(x, y) \)

- Usually a two-step procedure is used
 1. Unsupervised pre-training of DBN without labels
 2. Fine-tuning the parameters by maximizing the conditional log-likelihood \(\log P(y|x) \)
Early successes were mainly attributed to layer-wise pre-training

Some recent successes with global training of deep architectures

- Lots of labeled data, lots of tasks, artificially transformed examples
- Proper initialization, efficient training (e.g., using GPUs), adaptive step-sizes
- Choice of nonlinearities

Unsupervised layer-wise pre-training seems to act like a regularizer

- .. less of a necessity when labeled training data is abundant
Other extensions of deep architectures

- Hierarchical Deep Models: Deep + (NP)Bayes
 - Putting an HDP over the states of the top layer of a deep model
 - Allows sharing of statistical strengths across categories/classes and/or helps generalize to novel/unseen categories by transfer learning
- Deep models for multimodal data (text and images)

Thanks! Questions?