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Overview of the paper

Proposes generalized notions of the Indian Buffet Process (IBP)

Allows principled extensions of the standard IBP to more general settings
involving non-binary latent features

Provides a unified and (perhaps) simpler/cleaner treatment than some other
recent attempts to such problems

Also allows extensions to multivariate latent features (each latent feature
can be a vector - multinomial or a general multivariate vector)

Based on ideas from Poisson Partition Calculus (proposed earlier by the same
author)
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The IBP

A nonparametric Bayesian prior on random binary matrices Z = [Z1; . . . ;ZM ]
with M rows and unbounded number of columns

Prior denoted as IBP(θ): θ > 0, with latent features ω̃k , k = 1, 2, . . .

Entry (i , k) = 1 if object i has latent feature k , zero otherwise

Generative model: Customers (objects) selecting dishes (latent features)

Customer 1 selects Poisson(θ) dishes

Customer i selects each already selected dish k with prob. mk/i (where mk is
# of previous customers who chose dish k), and Poisson(θ/i) new dishes
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Generalization of the IBP

Standard IBP(θ): Z1, . . . ,ZM | µ
µ =

∑∞
k=1 pkδω̃k

Atoms ω̃k drawn from a base
measure B0

pk : points from a Poisson random
measure with a restricted mean
intensity ρ(s) = θs−1I{0<s<1}

Zi =
∑∞

k=1 bi,kδω̃k

bi,k ∼ Bernoulli(pk)

Generalized IBP(θ): Z1, . . . ,ZM | µ
µ =

∑∞
k=1 τkδω̃k

Atoms ω̃k drawn from a base
measure B0

τk : points from a Poisson random
measure with general/unrestricted
Lévy density ρ(s | ω)

Zi =
∑∞

k=1 Ai,kδω̃k

Ai,k ∼ GA(da | τk)

In the generalized IBP proposed here, Ai,k isn’t necessarily binary - can be a more
general r.v. (or even vector valued)

Can also think of Ai,k = bi,kA
′
i,k where bi,k is binary and A′i,k is a general r.v.

(akin to a “spike-and-slab” construction)
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This Paper

Proposes IBP generalizations of the following form

µ =
∑∞

k=1 τkδω̃k

τk : points from a Poisson random measure with Lévy density ρ(s | ω)

Zi =
∑∞

k=1 Ai,kδω̃k

Ai,k ∼ GA(da | τk)

IBP generalizations that work with any GA and any ρ, so long as

GA admits a positive mass at 0 and ρ is a finite measure

The constructions rely on Poisson Partition Calculus (PPC)

Conjugacy not a requirement

No need for combinatorial arguments or long proofs
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Notations

Recall Z1, . . . ,ZM | µ where µ =
∑∞

k=1 τkδω̃k

Can express µ(dω) =
∫∞

0
sN(ds, dω)

N =
∑∞

k=1 δτk ,ω̃k
is a Poisson random measure (PRM) with mean intensity

E[N(ds, dω)] = ρ(s | ω)dsB0(dω) := ν(ds, dω)

Some notations:

N as PRM(ρB0) or PRM(ν), or P(ν)

µ is a completely random measure CRM(ρB0) or CRM(ν)

Z1, . . . ,ZM | µ as iid IBP(GA|µ)

The marginal distribution of Zi as IBP(A|ρB0) or IBP(A, ν)
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The General Scheme

Generally apply the Poisson Calculus

Describe N|Z1, . . . ,ZM

Consequently describe µ|Z1, . . . ,ZM

Describe the marginal structure P(Z1, . . . ,ZM) via integration

Provide descriptions for the marginal

Z =

ξ(ϕ)∑
k=1

Xkδω̃k

and introduce variables (Hi ,Xi ) leading to tractable sampling for many ρ

Describe ZM+1|Z1, . . . ,ZM
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Two Ingredients from Poisson Partition Calculus

Laplace functional exponential change: updating a Poisson random measure

e−N(f )P(dN|ν) = P(dN|νf )e−Ψ(f )

where νf (ds, dω) = e−f (s,ω)ρ(s|ω)dsB0(dω) and e−Ψ(f ) = Eν [e−N(f )] and

Ψ(f ) =

∫
Ω

∫ ∞
0

(1− e−f (s,ω))ρ(s|ω)dsB0(dω)

Using νf , apply the moment measure calculation[
L∏

i=1

N(dWi )

]
P(dN|νf ) = P(dN|νf , s, ω)

K∏
`=1

e−f (s`,ω`)ν(ds`, dω`)

where P(dN|νf , s, ω) corresponds to the law of the random measure

Ñ +
K∑
`=1

δs`,ω`
where Ñ is also PRM(νf )
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Joint Distribution

Joint distribution of A (or, equivalently, of Z = [Z1; . . . ;ZM ])
M∏
i=1

∞∏
j=1

[GA(dai,j |τj)]
I{ai,j 6=0} [1− P(A 6= 0|τj)]

1−I{ai,j 6=0}

and setting πA(s) = P(A 6= 0|s), the above becomes

e−
∑∞

j=1[−M log(1−πA(τj ))]
M∏
i=1

∞∏
j=1

[
GA(dai,j |τj)
1− πA(τj)

]I{ai,j 6=0}

After some further simplifications, the joint distribution of
((Z1, . . . ,ZM), (J1, . . . , JK ),N) where (J1 = s1, . . . , JK = sK ) are the unique
jumps, becomes

P(dN|νfM , s, ω)e−Ψ(fM )
K∏
`=1

[1− πA(s`)]Mρ(s`|ω`)B0(dω`)
M∏
i=1

hi,`(s`)

where hi,`(s) = [
GA(dai,`|s)

1−πA(s) ]
I{ai,` 6=0} and

Ψ(f ) =
∫

Ω

∫∞
0

(1− [1− πA(s)]M)ρ(s | ω)dsB0(dω)
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Posterior and Marginal Distribution

Integrating out N leads to the joint distribution of ((Zi ), (J`))

e−Ψ(fM )
K∏
`=1

[1− πA(s`)]Mρ(s`|ω`)B0(dω`)
M∏
i=1

hi,`(s`)

(J`)|(Zi ) are conditionally independent with density

P`,M(J` ∈ ds) ∝ [1− πA(s)]Mρ(s|ω`)
M∏
i=1

hi,`(s)ds

.. and the marginal of (Z1, . . . ,ZM) is

P(Z1, . . . ,ZM) = e−Ψ(fM )
K∏
`=1

[∫ ∞
0

[1− πA(s)]Mρ(s|ω`)
M∏
i=1

hi,`(s)ds

]
B0(dω`)
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Main Result

Notation: νfM (ds, dω) := ρM(s|ω)B0(dω)ds where ρM(s|ω) = [1− πA(s)]Mρ(s|ω)

Theorem: Suppose that Z1, . . . ,ZM |µ are iid IBP(GA|µ), µ is CRM(ρB0), then

The posterior distribution of N|Z1, . . . ,ZM is equivalent to the distribution of

NM +
K∑
`=1

δJ`,ω`

where NM is PRM(ρMB0), and the distribution of (J`) is (cf, previous slide)

The posterior distribution of µ|Z1, . . . ,ZM is equivalent to the distribution of

µM +
K∑
`=1

J`δω`
where µM is CRM(ρMB0)

The marginal distribution of (Z1, . . . ,ZM) is (cf, previous slide)

Proposition: Suppose Z1, . . . ,ZM ,ZM+1|µ are iid IBP(GA|µ) then

ZM+1|Z1, . . . ,ZM ∼ Z̃M+1 +
K∑
`=1

A`δω`

where Z̃M+1 is IBP(A, ρMB0) and each A`|J` = s has distribution GA(da|s)
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Special Cases: Bernoulli, Poisson, Negative-Binomial

Bernoulli: GA(.|s) = Bernoulli(s)

P(A = 0|s) = 1− πA(s) = 1− s

Poisson: GA(.|s) = Poisson(bs)

P(A = 0|s) = 1− πA(s) = e−bs

Negative Binomial: GA(.|s) = NB(r , s) where r is the overdispersion param.

P(A = 0|s) = 1− πA(s) = (1− s)r

Setting c`,M =
∑M

i=1 ai,`, we have
∏M

i=1 hi`(s) given by(
s

1− s

)c`,M

,
bc`,M sc`,M∏M

i=1 ai,`!
, and sc`,M

M∏
i=1

(
ai,` + r − 1

ai,`

)
for Bernoulli, Poisson, and NB cases, respectively (for the homogeneous case
ρ(s); the case ρ(s|ω) can be likewise worked out)
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Describing posterior, marginal, and other quantities

Specify GA(s)

Identify πA(s) = P(A 6= 0|s)

For each M = 0, 1, 2, . . ., define ρM(s) = [1− πA(s)]Mρ(s|ω)

Specify NM ∼ PRM(ρMB0), µM ∼ CRM(ρMB0) and Z̃M+1 ∼ IBP(A, ρMB0)

Identify hi,`(s) and if possible try to simplify
∏M

i=1 hi,`(s) where

hi,`(s) =

[
GA(dai,`|s`)
1− πA(s`)

]I{ai,` 6=0}

Use this to get the distribution of (J`) and the marginal of (Z1, . . . ,ZM)
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Steps for sequential generalized IBP construction

For each M = 0, 1, 2, . . . define ρM(s) = [1− πA(s)]Mρ(s)

Calculate and check

ϕM+1(ρ) =

∫ ∞
0

πA(s)ρM(s)ds <∞

Then if Z̃M+1 is IBP(A, ρMB0),

Z̃M+1 =

ξ(ϕ)∑
k=1

Xkδω̃k

where ϕ := ϕM+1(ρ) and ξ(ϕ) is a Poisson(ϕ) r.v., and (Xk) are taken from
an IBP(A, ρM) process ((Xi ,Hi ))

Xi |Hi = s has distribution
I{a 6=0}GA(da|s)

πA(s) and Hi has marginal density πA(s)ρM (s)
ϕM+1(ρ)

Xi has marginal distribution P(Xi ∈ da) =
I{a 6=0}

∫∞
0

GA(da|s)ρM (s)ds

ϕM+1(ρ) and the

distribution of Hi |Xi = a is given by P(Hi ∈ ds|Xi = a) =
I{a 6=0}GA(da|s)ρM (s)ds∫∞

0
GA(da|v)ρM (v)dv
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Generalized IBP: The Sequential Generative Process

Sequential generative process for IBP(A, ρB0):

Customer 1 selects dishes and scores them according to IBP(A, ρB0) as

Draw Poisson(ϕ1(ρ)) = J number of variables

Draw ((ω1,H1), . . . , (ωJ ,HJ)) iid from B0 and distribution for Hi with M = 0

Draw Xi |Hi , for i = 1, . . . , J, or draw Xi directly (if so possible)

After M customers have chosen K dishes ω1, . . . , ωK , customer M + 1:

Selects/skips each existing dish ω` and scores (if selected) it according to A`,
where A`|J` has distribution GA(da|J`). The probability that A`|J` takes value
zero is 1− πA(J`)

Also chooses and scores new dishes according to IBP(A, ρMB0) process Z̃M+1

with ρM(s) = [1− πA(s)]Mρ(s)

Note: Specific cases when A is Poisson and Negative-Binomial are shown in the
paper (sec 4.1 and 4.2)
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Multivariate Generalizations

Multivariate CRM is also considered. Generalizes the IBP for vector-valued Ai,k

Consider µ0 = (µj , j = 1, . . . , q) with µj =
∑∞

k=1 pj,kδω̃k
(note: all µj ’s

assumed to the same base measure)

µ. =
∑q

j=1 µj =
∑∞

k=1 p.,kδω̃k
for p.,k =

∑q
j=1 pj,k

The multivariate CRM µ0 can be constructed from a Poisson random
measure on (Rq

+,Ω)

N :=
∞∑
k=1

δpq,k ,ω̃k
where pq,k = (p1,k , . . . , pq,k)

A simple case (sec 5.1 in the paper): Multinomial extension of the IBP. The
joint probability of the M × K IBP “matrix” (each entry a multinomial vector)

[ K∏
`=1

q∏
j=1

(
pj,`

1 − p.,`

)cj,`,M
]
e
−M

∑∞
j=1[− log(1−p.,j )]

.. akin to an “IBP with a condiment”. All the theorems generalize for this case
too. Other multivariate generalizations also possible (sec 5.2 in the paper)
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Multivariate Generalizations

A more general case (sec 5.2):

Let A0 := (A1, . . . ,Av ) ∈ Rv with distribution GA0 (.|sq) where sq ∈ Rq
+

1− πA0 = P(A1 = 0, . . . ,Av = 0|sq) > 0

Define a vector-valued process Z
(i)
0 := (Z

(i)
1 , . . . ,Z

(i)
v ) where Z

(i)
j =

∑∞
k=1 A

(i)
j,kδω̃k

Z (i)
. =

v∑
j=1

Z
(i)
j =

∞∑
k=1

A
(i)
.,kδω̃k

For each (i , k), A
(i)
0,k := (A

(i)
1,k , . . . ,A

(i)
v ,k) is independent GA0 (.|sq,k) where sq,k are

vector-valued points of a PRM with intensity ρq(.|ω)

We say that Z
(1)
0 , . . . ,Z

(M)
0 |µ0 are iid IBP(GA0 |µ0), with the likelihood being

e−
∑∞

j=1[−M log(1−πA0
(sq,j ))]

M∏
i=1

∞∏
j=1

[
GA0 (da

(i)
0,j |sq,j)

1− πA0 (sq,j)

]I{ai,j 6=0}
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Thanks! Questions?
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