Poisson Latent Feature Calculus for Generalized Indian Buffet Processes

Lancelot F. James

(paper from arXiv [math.ST] , Dec'14)

Discussion by: Piyush Rai

January 23, 2015

Overview of the paper

Proposes generalized notions of the Indian Buffet Process (IBP)

- Allows principled extensions of the standard IBP to more general settings involving non-binary latent features
- Provides a unified and (perhaps) simpler/cleaner treatment than some other recent attempts to such problems
- Also allows extensions to multivariate latent features (each latent feature can be a vector - multinomial or a general multivariate vector)
- Based on ideas from Poisson Partition Calculus (proposed earlier by the same author)

The IBP

• A nonparametric Bayesian prior on random binary matrices $Z = [Z_1; ...; Z_M]$ with M rows and unbounded number of columns

- Prior denoted as $IBP(\theta)$: $\theta > 0$, with latent features $\tilde{\omega}_k, k = 1, 2, \dots$
- Entry (i, k) = 1 if object i has latent feature k, zero otherwise
- Generative model: Customers (objects) selecting dishes (latent features)
 - Customer 1 selects $Poisson(\theta)$ dishes
 - Customer i selects each already selected dish k with prob. m_k/i (where m_k is # of previous customers who chose dish k), and Poisson(θ/i) new dishes

Generalization of the IBP

Standard $IBP(\theta)$: $Z_1, \ldots, Z_M \mid \mu$

- $\mu = \sum_{k=1}^{\infty} p_k \delta_{\tilde{\omega}_k}$
- Atoms $\tilde{\omega}_k$ drawn from a base measure B_0
- p_k : points from a Poisson random measure with a restricted mean intensity $\rho(s) = \theta s^{-1} \mathbb{I}_{\{0 < s < 1\}}$
- $Z_i = \sum_{k=1}^{\infty} b_{i,k} \delta_{\tilde{\omega}_k}$
- $b_{i,k} \sim Bernoulli(p_k)$

Generalized $IBP(\theta)$: $Z_1, \ldots, Z_M \mid \mu$

- $\mu = \sum_{k=1}^{\infty} \tau_k \delta_{\tilde{\omega}_k}$
- Atoms $\tilde{\omega}_k$ drawn from a base measure B_0
- τ_k : points from a Poisson random measure with general/unrestricted Lévy density $\rho(s \mid \omega)$
- $Z_i = \sum_{k=1}^{\infty} A_{i,k} \delta_{\tilde{\omega}_k}$
- $A_{i,k} \sim G_A(da \mid \tau_k)$

In the generalized IBP proposed here, $A_{i,k}$ isn't necessarily binary - can be a more general r.v. (or even vector valued)

Generalization of the IBP

Standard $IBP(\theta)$: $Z_1, \ldots, Z_M \mid \mu$

- $\mu = \sum_{k=1}^{\infty} p_k \delta_{\tilde{\omega}_k}$
- Atoms $\tilde{\omega}_k$ drawn from a base measure B_0
- p_k : points from a Poisson random measure with a restricted mean intensity $\rho(s) = \theta s^{-1} \mathbb{I}_{\{0 < s < 1\}}$
- $Z_i = \sum_{k=1}^{\infty} b_{i,k} \delta_{\tilde{\omega}_k}$
- $b_{i,k} \sim Bernoulli(p_k)$

Generalized $IBP(\theta)$: $Z_1, \ldots, Z_M \mid \mu$

- $\mu = \sum_{k=1}^{\infty} \tau_k \delta_{\tilde{\omega}_k}$
- Atoms $\tilde{\omega}_k$ drawn from a base measure B_0
- au_k : points from a Poisson random measure with general/unrestricted Lévy density $ho(s \mid \omega)$
- $Z_i = \sum_{k=1}^{\infty} A_{i,k} \delta_{\tilde{\omega}_k}$
- $A_{i,k} \sim G_A(da \mid \tau_k)$

In the generalized IBP proposed here, $A_{i,k}$ isn't necessarily binary - can be a more general r.v. (or even vector valued)

Can also think of $A_{i,k} = b_{i,k} A'_{i,k}$ where $b_{i,k}$ is binary and $A'_{i,k}$ is a general r.v. (akin to a "spike-and-slab" construction)

This Paper

Proposes IBP generalizations of the following form

- $\mu = \sum_{k=1}^{\infty} \tau_k \delta_{\tilde{\omega}_k}$
- τ_k : points from a Poisson random measure with Lévy density $\rho(s \mid \omega)$
- $Z_i = \sum_{k=1}^{\infty} A_{i,k} \delta_{\tilde{\omega}_k}$
- $A_{i,k} \sim G_A(da \mid \tau_k)$

IBP generalizations that work with any G_A and any ρ , so long as

• G_A admits a positive mass at 0 and ρ is a finite measure

The constructions rely on Poisson Partition Calculus (PPC)

Conjugacy not a requirement

No need for combinatorial arguments or long proofs

Notations

Recall
$$Z_1,\dots,Z_M\mid \mu$$
 where $\mu=\sum_{k=1}^\infty au_k\delta_{ ilde{\omega}_k}$

Can express
$$\mu(d\omega) = \int_0^\infty sN(ds, d\omega)$$

 $N=\sum_{k=1}^\infty \delta_{ au_k, ilde{\omega}_k}$ is a Poisson random measure (PRM) with mean intensity

$$\mathbb{E}[N(ds,d\omega)] = \rho(s \mid \omega)dsB_0(d\omega) := \nu(ds,d\omega)$$

Some notations:

- N as $PRM(\rho B_0)$ or $PRM(\nu)$, or $\mathcal{P}(\nu)$
- μ is a completely random measure CRM(ρB_0) or CRM(ν)
- $Z_1, \ldots, Z_M \mid \mu$ as iid IBP $(G_A | \mu)$
- The marginal distribution of Z_i as $\mathsf{IBP}(A|\rho B_0)$ or $\mathsf{IBP}(A,\nu)$

The General Scheme

- Generally apply the Poisson Calculus
- Describe $N|Z_1,\ldots,Z_M$
- Consequently describe $\mu|Z_1,\ldots,Z_M$
- Describe the marginal structure $\mathbb{P}(Z_1,\ldots,Z_M)$ via integration
- Provide descriptions for the marginal

$$Z = \sum_{k=1}^{\xi(\varphi)} X_k \delta_{\tilde{\omega_k}}$$

and introduce variables (H_i, X_i) leading to tractable sampling for many ρ

• Describe $Z_{M+1}|Z_1,\ldots,Z_M$

Two Ingredients from Poisson Partition Calculus

• Laplace functional exponential change: updating a Poisson random measure

$$e^{-N(f)}\mathcal{P}(dN|\nu) = \mathcal{P}(dN|\nu_f)e^{-\Psi(f)}$$

where $\nu_f(ds,d\omega)=e^{-f(s,\omega)}\rho(s|\omega)dsB_0(d\omega)$ and $e^{-\Psi(f)}=\mathbb{E}_{\nu}[e^{-N(f)}]$ and

$$\Psi(f) = \int_{\Omega} \int_{0}^{\infty} (1 - \mathrm{e}^{-f(s,\omega)})
ho(s|\omega) ds B_0(d\omega)$$

ullet Using u_f , apply the moment measure calculation

$$\left[\prod_{i=1}^L \mathsf{N}(\mathsf{d}W_i)
ight]\!\mathcal{P}(\mathsf{d}\mathsf{N}|
u_f) = \mathcal{P}(\mathsf{d}\mathsf{N}|
u_f,\mathbf{s},\omega)\prod_{\ell=1}^K e^{-f(s_\ell,\omega_\ell)}
u(\mathsf{d}s_\ell,\mathsf{d}\omega_\ell)$$

where $\mathcal{P}(dN|\nu_f,\mathbf{s},\omega)$ corresponds to the law of the random measure

$$\tilde{N} + \sum_{\ell=1}^{K} \delta_{s_{\ell},\omega_{\ell}}$$
 where \tilde{N} is also $\mathsf{PRM}(\nu_{f})$

Joint Distribution

• Joint distribution of **A** (or, equivalently, of $Z = [Z_1; ...; Z_M]$)

$$\prod_{i=1}^{M} \prod_{j=1}^{\infty} [G_{A}(da_{i,j}|\tau_{j})]^{\mathbb{I}_{\{a_{i,j}\neq 0\}}} [1 - \mathbb{P}(A \neq 0|\tau_{j})]^{1 - \mathbb{I}_{\{a_{i,j}\neq 0\}}}$$

and setting $\pi_A(s) = \mathbb{P}(A \neq 0|s)$, the above becomes

$$e^{-\sum_{j=1}^{\infty} [-M \log(1-\pi_A(\tau_j))]} \prod_{i=1}^{M} \prod_{j=1}^{\infty} \left[\frac{G_A(da_{i,j}|\tau_j)}{1-\pi_A(\tau_j)} \right]^{\mathbb{I}_{\{a_{i,j}\neq 0\}}}$$

• After some further simplifications, the joint distribution of $((Z_1,\ldots,Z_M),(J_1,\ldots,J_K),N)$ where $(J_1=s_1,\ldots,J_K=s_K)$ are the unique jumps, becomes

$$\mathcal{P}(dN|\nu_{f_M},\mathbf{s},\omega)e^{-\Psi(f_M)}\prod_{\ell=1}^K[1-\pi_A(s_\ell)]^M\rho(s_\ell|\omega_\ell)B_0(d\omega_\ell)\prod_{i=1}^Mh_{i,\ell}(s_\ell)$$

where
$$h_{i,\ell}(s) = \left[\frac{G_A(da_{i,\ell}|s)}{1-\pi_A(s)}\right]^{\mathbb{I}_{\{a_{i,\ell}\neq 0\}}}$$
 and $\Psi(f) = \int_{\Omega} \int_0^{\infty} (1-\left[1-\pi_A(s)\right]^M) \rho(s\mid\omega) ds B_0(d\omega)$

Posterior and Marginal Distribution

• Integrating out N leads to the joint distribution of $((Z_i), (J_\ell))$

$$e^{-\Psi(f_M)} \prod_{\ell=1}^K [1-\pi_A(s_\ell)]^M \rho(s_\ell|\omega_\ell) B_0(d\omega_\ell) \prod_{i=1}^M h_{i,\ell}(s_\ell)$$

• $(J_{\ell})|(Z_i)$ are conditionally independent with density

$$\mathbb{P}_{\ell,M}(J_\ell \in ds) \propto [1-\pi_A(s)]^M
ho(s|\omega_\ell) \prod_{i=1}^M h_{i,\ell}(s) ds$$

• .. and the marginal of (Z_1, \ldots, Z_M) is

$$\mathbb{P}(Z_1,\ldots,Z_M) = e^{-\Psi(f_M)} \prod_{\ell=1}^K \left[\int_0^\infty [1-\pi_A(s)]^M \rho(s|\omega_\ell) \prod_{i=1}^M h_{i,\ell}(s) ds \right] B_0(d\omega_\ell)$$

Main Result

Notation: $\nu_{f_M}(ds, d\omega) := \rho_M(s|\omega)B_0(d\omega)ds$ where $\rho_M(s|\omega) = [1 - \pi_A(s)]^M \rho(s|\omega)$

Theorem: Suppose that $Z_1, \ldots, Z_M | \mu$ are iid IBP($G_A | \mu$), μ is CRM(ρB_0), then

• The posterior distribution of $N|Z_1,\ldots,Z_M$ is equivalent to the distribution of

$$N_M + \sum_{\ell=1}^K \delta_{J_\ell,\omega_\ell}$$

where N_M is PRM($\rho_M B_0$), and the distribution of (J_ℓ) is (cf. previous slide)

ullet The posterior distribution of $\mu|Z_1,\ldots,Z_M$ is equivalent to the distribution of

$$\mu_M + \sum_{\ell=1}^K J_\ell \delta_{\omega_\ell}$$
 where μ_M is $CRM(\rho_M B_0)$

• The marginal distribution of (Z_1, \ldots, Z_M) is (cf., previous slide)

Proposition: Suppose $Z_1, \ldots, Z_M, Z_{M+1}|\mu$ are iid IBP($G_A|\mu$) then

$$Z_{M+1}|Z_1,\ldots,Z_M\sim \tilde{Z}_{M+1}+\sum_{\ell=1}^n A_\ell \delta_{\omega_\ell}$$

where \tilde{Z}_{M+1} is IBP($A, \rho_M B_0$) and each $A_\ell | J_\ell = s$ has distribution $G_A(da|s)$

Special Cases: Bernoulli, Poisson, Negative-Binomial

• Bernoulli: $G_A(.|s) = Bernoulli(s)$

$$\mathbb{P}(A=0|s)=1-\pi_A(s)=1-s$$

• Poisson: $G_A(.|s) = Poisson(bs)$

$$\mathbb{P}(A = 0|s) = 1 - \pi_A(s) = e^{-bs}$$

• Negative Binomial: $G_A(.|s) = NB(r,s)$ where r is the overdispersion param.

$$\mathbb{P}(A = 0|s) = 1 - \pi_A(s) = (1 - s)^r$$

• Setting $c_{\ell,M} = \sum_{i=1}^M a_{i,\ell}$, we have $\prod_{i=1}^M h_{i\ell}(s)$ given by

$$\left(\frac{s}{1-s}\right)^{c_{\ell,M}}, \frac{b^{c_{\ell,M}}s^{c_{\ell,M}}}{\prod_{i=1}^{M}a_{i,\ell}!}, \quad \text{and} \quad s^{c_{\ell,M}}\prod_{i=1}^{M}\binom{a_{i,\ell}+r-1}{a_{i,\ell}}$$

for Bernoulli, Poisson, and NB cases, respectively (for the homogeneous case $\rho(s)$; the case $\rho(s|\omega)$ can be likewise worked out)

Describing posterior, marginal, and other quantities

- Specify $G_A(s)$
- Identify $\pi_A(s) = \mathbb{P}(A \neq 0|s)$
- For each $M=0,1,2,\ldots$, define $\rho_M(s)=[1-\pi_A(s)]^M \rho(s|\omega)$
- Specify $N_M \sim PRM(\rho_M B_0)$, $\mu_M \sim CRM(\rho_M B_0)$ and $\tilde{Z}_{M+1} \sim IBP(A, \rho_M B_0)$
- Identify $h_{i,\ell}(s)$ and if possible try to simplify $\prod_{i=1}^M h_{i,\ell}(s)$ where

$$h_{i,\ell}(s) = \left[rac{G_{\mathcal{A}}(da_{i,\ell}|s_{\ell})}{1-\pi_{\mathcal{A}}(s_{\ell})}
ight]^{\mathbb{I}_{\{a_{i,\ell}
eq 0\}}}$$

ullet Use this to get the distribution of (J_ℓ) and the marginal of (Z_1,\ldots,Z_M)

Steps for sequential generalized IBP construction

- For each $M=0,1,2,\ldots$ define $ho_M(s)=[1-\pi_A(s)]^M
 ho(s)$
- Calculate and check

$$\varphi_{M+1}(
ho) = \int_0^\infty \pi_A(s)
ho_M(s) ds < \infty$$

• Then if \tilde{Z}_{M+1} is IBP $(A, \rho_M B_0)$,

$$\tilde{Z}_{M+1} = \sum_{k=1}^{\xi(\varphi)} X_k \delta_{\tilde{\omega_k}}$$

where $\varphi := \varphi_{M+1}(\rho)$ and $\xi(\varphi)$ is a Poisson (φ) r.v., and (X_k) are taken from an IBP (A, ρ_M) process $((X_i, H_i))$

- $X_i|H_i=s$ has distribution $\frac{\mathbb{I}_{\{a\neq 0\}}G_A(da|s)}{\pi_A(s)}$ and H_i has marginal density $\frac{\pi_A(s)\rho_M(s)}{\varphi_{M+1}(\rho)}$
- X_i has marginal distribution $\mathbb{P}(X_i \in da) = \frac{\mathbb{I}_{\{a \neq 0\}} \int_0^\infty G_A(da|s) \rho_M(s) ds}{\varphi_{M+1}(\rho)}$ and the distribution of $H_i|X_i = a$ is given by $\mathbb{P}(H_i \in ds|X_i = a) = \frac{\mathbb{I}_{\{a \neq 0\}} G_A(da|s) \rho_M(s) ds}{\int_0^\infty G_A(da|v) \rho_M(v) dv}$

Generalized IBP: The Sequential Generative Process

Sequential generative process for IBP(A, ρB_0):

- Customer 1 selects dishes and scores them according to IBP $(A, \rho B_0)$ as
 - Draw Poisson $(\varphi_1(\rho)) = J$ number of variables
 - Draw $((\omega_1, H_1), \dots, (\omega_J, H_J))$ iid from B_0 and distribution for H_i with M=0
 - Draw $X_i|H_i$, for $i=1,\ldots,J$, or draw X_i directly (if so possible)
- After M customers have chosen K dishes $\omega_1, \ldots, \omega_K$, customer M+1:
 - Selects/skips each existing dish ω_ℓ and scores (if selected) it according to A_ℓ , where $A_\ell | J_\ell$ has distribution $G_A(da|J_\ell)$. The probability that $A_\ell | J_\ell$ takes value zero is $1 \pi_A(J_\ell)$
 - Also chooses and scores new dishes according to IBP($A, \rho_M B_0$) process \tilde{Z}_{M+1} with $\rho_M(s) = [1 \pi_A(s)]^M \rho(s)$

Note: Specific cases when A is Poisson and Negative-Binomial are shown in the paper (sec 4.1 and 4.2)

Multivariate Generalizations

Multivariate CRM is also considered. Generalizes the IBP for vector-valued $A_{i,k}$

- Consider $\mu_0 = (\mu_j, j = 1, \dots, q)$ with $\mu_j = \sum_{k=1}^{\infty} p_{j,k} \delta_{\tilde{\omega_k}}$ (note: all μ_j 's assumed to the same base measure)
- $\mu_{\cdot} = \sum_{j=1}^{q} \mu_{j} = \sum_{k=1}^{\infty} p_{\cdot,k} \delta_{\tilde{\omega_{k}}}$ for $p_{\cdot,k} = \sum_{j=1}^{q} p_{j,k}$
- The multivariate CRM μ_0 can be constructed from a Poisson random measure on (\mathbb{R}^q_+,Ω)

$$\mathcal{N} := \sum_{k=1}^\infty \delta_{\mathbf{p}_{q,k}, ilde{\omega_k}} \qquad ext{where } \mathbf{p}_{q,k} = (p_{1,k},\dots,p_{q,k})$$

A simple case (sec 5.1 in the paper): Multinomial extension of the IBP. The joint probability of the $M \times K$ IBP "matrix" (each entry a multinomial vector)

$$\bigg[\prod_{\ell=1}^K\prod_{j=1}^q\bigg(\frac{\rho_{j,\ell}}{1-\rho_{.,\ell}}\bigg)^{c_j,\ell,M}\bigg]\mathrm{e}^{-M\sum_{j=1}^\infty[-\log(1-\rho_{.,j})]}$$

.. akin to an "IBP with a condiment". All the theorems generalize for this case too. Other multivariate generalizations also possible (sec 5.2 in the paper)

Multivariate Generalizations

A more general case (sec 5.2):

Let $A_0:=(A_1,\ldots,A_{v})\in\mathbb{R}^{v}$ with distribution $G_{A_0}(.|\mathbf{s}_q)$ where $\mathbf{s}_q\in\mathbb{R}^q_+$

$$1 - \pi_{A_0} = \mathbb{P}(A_1 = 0, \dots, A_v = 0 | \mathbf{s}_q) > 0$$

Define a vector-valued process $Z_0^{(i)}:=(Z_1^{(i)},\ldots,Z_v^{(i)})$ where $Z_j^{(i)}=\sum_{k=1}^\infty A_{j,k}^{(i)}\delta_{\tilde{\omega_k}}$

$$Z_{\cdot}^{(i)} = \sum_{j=1}^{v} Z_{j}^{(i)} = \sum_{k=1}^{\infty} A_{\cdot,k}^{(i)} \delta_{\tilde{\omega_{k}}}$$

For each (i,k), $A_{0,k}^{(i)}:=(A_{1,k}^{(i)},\ldots,A_{v,k}^{(i)})$ is independent $G_{A_0}(.|\mathbf{s}_{q,k})$ where $\mathbf{s}_{q,k}$ are vector-valued points of a PRM with intensity $\rho_q(.|\omega)$

We say that $Z_0^{(1)},\dots,Z_0^{(M)}|\mu_0$ are iid IBP($\mathcal{G}_{A_0}|\mu_0$), with the likelihood being

$$e^{-\sum_{j=1}^{\infty} [-M \log(1-\pi_{A_0}(\mathbf{s}_{q,j}))]} \prod_{i=1}^{M} \prod_{j=1}^{\infty} \left[\frac{G_{A_0}(d\mathbf{a}_{0,j}^{(i)}|\mathbf{s}_{q,j})}{1-\pi_{A_0}(\mathbf{s}_{q,j})} \right]^{\mathbb{I}_{\{a_{i,j}\neq 0\}}}$$

Thanks! Questions?