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1 Proof of Theorem 1

Proof of Theorem 1. The gradient of mutual information ∇AI(X;Y ) can be expressed as

∇AI(X;Y ) = ∇A[h(Y )− h(Y |X)] (1)

= ∇Ah(Y ) (2)

The equality follows from the fact that h(Y |X) = EX(h(N (Y ;Aψ(X),Σ))), which is a con-
stant with respect to A. Hence, we have

∇AI(X;Y ) = ∇Ah(Y ) (3)

= −∇A

∫
logPY (y)PY (y)dy (4)

= −
∫
∇APY (y)dy −

∫
logPY (y)∇APY (y)dy (5)

= −∇A

∫
PY (y)dy −

∫
logPY (y)∇APY (y)dy (6)

= −
∫

logPY (y)∇APY (y)dy, (7)

where the change of operator orders in (5) and (6) follows from the assumed regularity
conditions. We now calculate the term ∇APY (y)

∇APY (y) = ∇A

∫
PY |X(y|x)PX(x)dx (8)

=

∫
PX(x)∇APY |X(y|x)dx (9)

=

∫
PX(x)∇AN (y;Aψ(x),Σ)dx (10)

=

∫
PX(x)∇yN (y;Aψ(x),Σ)ψT (x)dx (11)

=

∫
PX(x)∇yPY |X(y|x)ψT (x)dx, (12)
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where (11) follows from the chain rule. Plug in (12) back to (7) and by the Fubini’s Theorem
[1], together with the regularity conditions, we have

∇AI(X;Y ) = −
∫

logPY (y)PX(x)∇yPY |X(y|x)ψT (x)dxdy (13)

= −
∫
∇y(logPY (y))PX(x)PY |X(y|x)ψT (x)dxdy (14)

= −
∫
PX(x)PY |X(y|x)

PY (y)
∇yPY (y)ψT (x)dxdy (15)

= −
∫
∇yPY (y)E[ψT (X)|Y = y]dy, (16)

where (14) invokes the integration by parts [1]. Again via the assumed regularity conditions,
∇yPY (y) can be expressed as

∇yPY (y) =

∫
∇yPY |X(y|x)PX(x)dx (17)

=

∫
∇y logPY |X(y|x)PY |X(y|x)PX(x)dx (18)

=

∫
∇y logN (y;Aψ(x),Σ)PX|Y=y(x|y)PY (y)dx (19)

= E[(∇Y logN (Y ;Aψ(X),Σ))|Y = y]PY (y). (20)

It is straightforward to calculate

∇y logN (y;Aψ(x),Σ) = −Σ−1(y −Aψ(x)). (21)

Hence, we have

∇yPY (y) = E[−Σ−1(Y −Aψ(X))]PY (y) (22)

= −Σ−1E[W |Y = y]PY (y). (23)

Combining (23) with (16), we obtain

∇AI(X;Y ) =

∫
Σ−1E[W |Y = y]PY (y)E[ψT (X)|Y = y]dy (24)

= Σ−1E[E[W |Y ]E[ψT (X)|Y ]] (25)

= Σ−1E[E[Y −Aψ(X)|Y ]E[ψT (X)|Y ]] (26)

= Σ−1E[E[Y ψT (X)|Y ]]−AE[E[ψ(X)|Y ]E[ψT (X)|Y ]] (27)

= Σ−1E[E[(Aψ(X) +W )ψT (X)]]−AE[E[ψ(X)|Y ]E[ψT (X)|Y ]] (28)

= Σ−1E[E[Aψ(X)ψT (X)]]−AE[E[ψ(X)|Y ]E[ψT (X)|Y ]] (29)

= Σ−1AE[E[ψ(X)ψT (X)]]− E[E[ψ(X)|Y ]E[ψT (X)|Y ]] (30)

= Σ−1AE[E[ψ(X)ψT (X)]]− E[ψ(X)E[ψT (X)|Y ]

− E[ψ(X)|Y ]E[ψT (X)]] + E[ψ(X)|Y ]E[ψT (X)|Y ] (31)

= Σ−1AE[[ψ(X)− E[ψ(X)|Y ]][ψ(X)− E[ψ(X)|Y ]]T ]. (32)

Note that we do not assume specific form of ψ(x) in previous proof, thus it applies to
arbitrary basis vector ψ(x), provided that it satisfies the regularity conditions.
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2 Proof of Theorem 2

Proof of Theorem 2. First we notice that

I(C;Y ) = h(Y )− h(Y |C) (33)

= h(Y )− h(Y |X) + h(Y |X,C)− h(Y |C) (34)

= I(X;Y )− I(X;Y |C), (35)

where the second equality is due to the fact that C → X → Y forms a Markov chain and
PY |X,C = PY |X . Following by the similar steps in the proof of Theorem 1, we have

∇AI(X;Y |C) = Σ−1AE[[ψ(X)− E[ψ(X)|Y,C]][ψ(X)− E[ψ(X)|Y,C]]T ]. (36)

Using the following facts that

E[E[ψ(X)|Y,C]E[ψ(X)T |Y,C]] = E[E[ψ(X)|Y,C]ψ(X)T ] = E[ψ(X)E[ψ(X)T |Y,C]] (37)

E[E[ψ(X)|Y,C]E[ψ(X)T |Y ]] = E[E[ψ(X)|Y ]E[ψ(X)T |Y,C]] = E[E[ψ(X)|Y ]E[ψ(X)T |Y ]]
(38)

E[ψ(X)E[ψ(X)T |Y ]] = E[E[ψ(X)|Y ]ψ(X)T ] = E[E[ψ(X)|Y ]E[ψ(X)T |Y ]], (39)

we have the following expressions

E[[ψ(X)− E[ψ(X)|Y ]][ψ(X)− E[ψ(X)|Y ]]T ]

= E[ψ(X)ψ(X)T − ψ(X)E[ψ(X)T |Y ]− E[ψ(X)|Y ]ψ(X)T + E[ψ(X)|Y ]E[ψ(X)T |Y ]] (40)

= E[ψ(X)ψ(X)T − ψ(X)E[ψ(X)T |Y,C]− E[ψ(X)|Y,C]ψ(X)T + E[ψ(X)|Y,C]E[ψ(X)T |Y,C]

+ E[ψ(X)|Y,C]E[ψ(X)T |Y,C]− E[ψ(X)|Y,C]E[ψ(X)T |Y ]− E[ψ(X)|Y ]E[ψ(X)T |Y,C]

+ E[ψ(X)|Y ]E[ψ(X)T |Y ]] (41)

= E[[ψ(X)− E[ψ(X)|Y,C]][ψ(X)− E[ψ(X)|Y,C]]T ] (42)

+ E[[E[ψ(X)|Y ]− E[ψ(X)|Y,C]][E[ψ(X)|Y ]− E[ψ(X)|Y,C]]T ].

Therefore, we have

∇AI(C;Y ) = ∇AI(X;Y )−∇AI(X;Y |C) (43)

= E[[ψ(X)− E[ψ(X)|Y ]][ψ(X)− E[ψ(X)|Y ]]T ]

− E[[ψ(X)− E[ψ(X)|Y,C]][ψ(X)− E[ψ(X)|Y,C]]T ] (44)

= E[[E[ψ(X)|Y ]− E[ψ(X)|Y,C]][E[ψ(X)|Y ]− E[ψ(X)|Y,C]]T ]. (45)
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