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1 Proof of Theorem 1

Proof of Theorem 1. The gradient of mutual information V4I(X;Y) can be expressed as
Val(X:Y) = Va[h(Y) — h(Y[X)] (1)
= Vah(Y) (2)

The equality follows from the fact that h(Y|X) = Ex(h(N(Y; Ay (X),X))), which is a con-
stant with respect to A. Hence, we have

Val(X;Y) = VAh(Y) (3)
—~Va [log AP )iy @)
=— / VaPy (y)dy — / log Py (y)V APy (y)dy (5)
= —VA/Py(y)dy - /log Py (y)VaPy(y)dy (6)
—— [1og Py 1)VaPy (1), ™)

where the change of operator orders in and @ follows from the assumed regularity
conditions. We now calculate the term V 4Py (y)

VaPy(s) = Va [ Prix(ulo)Px (@)do ®)
_ / Py (2)V 4Py x (y]z)dz 9)
— / Px(2)V 4N (s Av (), ) da (10)
_ / Py (2)V,N (y; Ad (), S0 (2)da (11)

— / Px(2)V, Py (yle)y” (2)de, (12)



where follows from the chain rule. Plug in back to and by the Fubini’s Theorem
[1], together with the regularity conditions, we have

VAI(XY) = = [ log Py (4) Py (0)V, P la) 0" (a)dady (13)
~ [ V1o Py (1) P (@) Py(ylo)o (o) dndy (14)
Px(x )PY\X(ZJVC) T
—- Py( ) Py ()" (a)dady (15)
—— [ P BT O = yldy (16)

where invokes the integration by parts [1]. Again via the assumed regularity conditions,
V4 Py (y) can be expressed as

V) = [ VP o) Px(e)ds (1)
— [ V108 Pyscylo) Py (vle) P () (1)
— [ V1o 5 A0 (), ) Py ala) Py () (19)
=E[(Vy log N(Y; Ap(X), X))[Y = y| Py (y)- (20)

It is straightforward to calculate
Vylog N (y; Ay (), B) = =57y — Ap()). (21)

Hence, we have

VyPr(y) = E[-S7(Y — A¢(X))] Py (y) (22)
= -XTE[W[Y = y]Pr(y). (23)

Combining with , we obtain

VAI(X;Y) = / STEW]Y = ] Py ERT(X)]Y = yldy

= SEEWYIERT(X)Y] 2

= YR E[Y — Ap(X)[Y]E[T (X)|Y]] 26

=Y 'EE[YyT (X)

_ S IE[E[(Ad(X X)YIER (XY (28
[E[
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(25)
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Y]] — AE[E[»(X)|Y]E[" (X)|Y]] (27)
(28)
(29)
(30)

(
— AE[E[y(X)[Y]E[p" (X)|Y]]
[

( )]
= STMAE[E[(X)y " (X)]] - E[E[(X)[Y]E[RT(X)|Y]] 30
= STUAEER (X)y" (X)]] - ER(X)E[T (X)]Y]
— E[p(X)[Y]E[" ()] + Ep(X)|Y]ERT (X)[Y] (31)
= STMAE[[W (X) — E[p(X)|Y]][(X) - ER(X)[Y]))]. (32)

Note that we do not assume specific form of ¢ (z) in previous proof, thus it applies to
arbitrary basis vector ¥ (x), provided that it satisfies the regularity conditions. O
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2 Proof of Theorem 2

Proof of Theorem 2. First we notice that

I(C;Y) = h(Y) = h(Y|C) (33)
= h(Y) — h(Y|X) + h(Y|X,C) — h(Y|C) (34)
= I(X;Y) - I(X;Y]|C), (35)

where the second equality is due to the fact that C — X — Y forms a Markov chain and
Py|x,c = Py|x. Following by the similar steps in the proof of Theorem 1, we have

VaI(X;Y|0) = STHAE[[Y(X) — E[p(X)]Y, C(X) — Elp(X)]Y, C))]. (36)
Using the following facts that

E[E[(X)[Y, CIE[»(X)"]Y, C]] = E[E[)(X)|Y, Cly(X)"] = E[p(X)E[R(X)"|Y,C]]  (37)

E[E[(X)|Y, CIE[(X)"|Y]] = E[E[(X)|Y]E[W(X)T|Y,C]] = E[EW(X)IY]EWX)TIE/H)
38

E[(X)E[(X)" Y]] = EE[R(X)[Y]o(X)"] = EE[R(X)[YIERX)T Y],  (39)

we have the following expressions

E[[y(X) — Ep(X)|Y]][(X) - E[(X)|Y]]"]
= E[p(X)yp(X)" = p(X)ERX) Y] = ER ()Y ]9 (X)" +E[p(X)YIE[R(X)TY]] (40)
= E[(X)¢(X)" = o(X)E(X)T]Y, C] = ER(X)|Y, Clo(X)T + E[p(X)[Y, CIE[H(X) Y, C]
+E[p(X)]Y, CIE[p(X)T|Y, C] = E[p(X)|Y, CIE[(X)T[Y] = E[p(X)|[Y]E[(X) Y, C]
+E[(X)|YIE[p(X)T Y]] (41)
= E[[(X) — E[p(X)|Y, ClI[$(X) — E[p(X)|Y, C]]"] (42)
+E[[E[p(X)Y] - E[p(X)]Y, C|[E(X)|Y] - E[(X)|Y, CJT].
Therefore, we have
VaI(C;Y) =VAI(X;Y) = VAI(X;Y|C) (43)
— E[[$:(X) — ER(X)|Y])[(X) - E[(X)[Y])"]
— E[[0(X) — E[R(X)]Y, Cl[%(X) — ER(X)|Y. C]]] (44)

(X
= E[[E[v(X)|Y] - E[(X)|Y, Ol ER(X)|Y] — E[p(X)|Y, CIT]. (45)
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